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Abstract

We consider the problem of clustering in domains where
the affinity relations are not dyadic (pairwise), but rather
triadic, tetradic or higher. The problem is an instance of
the hypergraph partitioning problem. We propose a two-
step algorithm for solving this problem. In the first step we
use a novel scheme to approximate the hypergraph using
a weighted graph. In the second step a spectral partition-
ing algorithm is used to partition the vertices of this graph.
The algorithm is capable of handling hyperedges of all or-
ders including order two, thus incorporating information of
all orders simultaneously. We present a theoretical analysis
that relates our algorithm to an existing hypergraph parti-
tioning algorithm and explain the reasons for its superior
performance. We report the performance of our algorithm
on a variety of computer vision problems and compare it to
several existing hypergraph partitioning algorithms.

1. Introduction

Clustering or partitioning a dataset in a manner that el-
ements of the same cluster are more similar to each other
than elements in different clusters is a fundamental task in
many fields of study including Computer Vision, Machine
Learning, VLSI CAD and Statistics. With a few notable
exceptions, formulations of the clustering problem and the
proposed algorithms for solving them are based on the as-
sumption that a pairwise (or dyadic) measure of distance
between data points is available. A common measure for
data points lying in a vector space is the Euclidean distance.
The use of a pairwise measure is characteristic of central
clustering methods like k-means and k-medoids, as well as
pairwise clustering methods [11, 18, 24, 27, 30].

It is not always the case, however, that there exists a sim-
ilarity measure between pairs of data points. For some clus-

tering problems, one may need to consider three or more
data points together to determine if they belong to the same
cluster. Consider a k-lines algorithm which clusters data
points in a d-dimensional vector space into k clusters where
elements in each cluster are well approximated by a line. As
every pair of data-points trivially defines a line, there does
not exist a useful similarity measure between pairs of points
for this problem. Yet there do exist useful measures for
triplets of points which indicate how close the three points
are to being collinear.

Weighted undirected graphs serve as a combinatorial
representation for datasets containing pairwise relation-
ships. For this reason, clustering algorithms are also fre-
quently referred to as graph partitioning algorithms. The
corresponding representation for datasets with higher or-
der relationships is a hypergraph. Like a weighted graph,
a weighted hypergraph is defined as a set of vertices and a
set of weighted hyperedges. Each weighted hyperedge can
now be an arbitrary subset of the vertices and has a scalar
weight associated with it.

The focus of this work is the largely neglected but fun-
damental problem of clustering data on the basis of triadic
and higher-order affinities. We introduce a general purpose
hypergraph partitioning algorithm, based on a novel graph
approximation scheme we call Clique Averaging, and show
that with an appropriate similarity measure, this generic
clustering algorithm can be applied to a number of clus-
tering problems that arise in computer vision1.

As an example of the kind of problems we are interested
in, consider the problem of clustering a collection of images
of different objects, each of which is imaged in the same
pose, but under a collection of different lighting conditions.
Belhumeur and Jacobs have shown that for any two im-
ages, there exists a Lambertian surface with spatially vary-

1For a tensor theoretic approach to the same problem see [14] in these
proceedings



ing albedo and a pair of light source directions that could
produce the two images [21]. Hence, there is no function
of a pair of images that returns zero when the images depict
the same object (but under differing lighting) yet returns a
non-zero value when the images are depicting different ob-
jects. Furthermore, it is well known that the set of images of
a Lambertian surface under arbitrary lighting (without shad-
owing) lies on a 3-D linear subspace in the image space [3].
As any three images span a three dimensional subspace, one
needs to consider atleast four images at a time to define a
measure of affinity.

As another example, consider the problem of partition-
ing a set of correspondences into clusters that are related by
the same motion model. The usual approaches are based
on (i) doing a greedy set covering using RANSAC [31], (ii)
performing a Hough Transform [2], or (iii) performing pose
clustering in the space of the model parameters [29]. There
are fundamental problems with each of these approaches.
RANSAC was designed for detecting a single model in
the presence of a noise and as we will show it does not
scale well to the case of multiple overlapping models. Ap-
proaches based on a generalized Hough Transform require a
bounded finite parameterization of the model. Finding such
a parametrization is not a trivial problem, and even if one is
available, the Hough transform for anything but the simplest
problems requires huge amounts of memory. Clustering in
the space of model parameters, while conceptually attrac-
tive, may not be tractable. The problem is, to perform this
clustering one needs to be able to define a measure of sim-
ilaritybetween arbitrary pairs of models. Given that most
parameter spaces are non-linear manifolds without a global
metric there may not be any easy way of doing so. In con-
trast, the fitting error of a set of points to a model is a nat-
ural and easily available measure of disassociation, without
any limitations on the geometric structure of the parameter
space of the model2.

The rest of the paper is organized as follows. In Section 2
we survey related work on hypergraph partitioning. Sec-
tion 3 presents the theory behind the proposed algorithm. In
Section 4 we report the performance of our algorithm on a
variety of computer vision problems and compare it to sev-
eral existing hypergraph partitioning algorithms. Section 5
concludes with a discussion of open problems and avenues
for future work.

2. Related Work

The study of distances defined over sets of size greater
than two is not new The literature on n-metrics is devoted to
constructing and analyzing distance measures defined over
n+1-tuples. The primary focus of this literature is the study

2For the particular case of parameter spaces that are linear subspaces
see GPCA [32]

of topological and geometrical properties of these general-
ized measures [8].

While the work on n-metrics is theoretical, a more prac-
tical line of work has emerged in the psychometrics com-
munity. Starting with the work of Hayashi, who proposed
the area of a triangle as the triadic distance between its ver-
tices [16], a number of researchers have developed gener-
alizations of Multidimensional Scaling (MDS) to the case
of triadic data. MDS is a technique for embedding pair-
wise similarity or dissimilarity data in a low dimensional
Euclidean space [5]. This embedding is primarily used for
the purposes of visualization, but can also be used as a pre-
processing step for data analysis methods that require a co-
ordinate representation of their input. In one of the earli-
est such works, Carroll and Chang developed an algorithm
for n-adic MDS using a generalization of the SVD to the
case of n-dimensional matrices [6]. Subsequently, Cox et
al. have proposed an MDS algorithm based on a combina-
tion of a Gradient Descent and Isotonic regression [7]. Ax-
iomatic theories of triadic distances have been developed by
Joly & LeCalvé and Heiser & Bennani [17, 22].

The most extensive and large scale use of hypergraph
partitioning algorithms, however, occurs in the field of
VLSI design and synthesis. A typical application involves
the partitioning of large circuits into k equally sized parts in
a manner that minimizes the connectivity between the parts.
The circuit elements are the vertices of the hypergraph and
the nets that connect these circuit elements are the hyper-
edges [1]. The leading tools for partitioning these hyper-
graphs are based on two phase multi-level approaches [23].
In the first phase, they construct a hierarchy of hypergraphs
by incrementally collapsing the hyperedges of the original
hypergraph according to some measure of homogeneity. In
the second phase, starting from a partitioning of the hyper-
graph at the coarsest level the algorithm works its way down
the hierarchy and at each stage the partitioning at the level
above serves as an initialization for a vertex swap based
heuristic that refines the partitioning greedily [9, 25]. The
development of these tools is almost entirely heuristic and
very little theoretical development exists that analyzes their
performance beyond empirical benchmarks.

The set of tools available for partitioning graphs are
much better developed than those for hypergraphs. A case
in point is the development of algorithms for solving the
max-flow min-cut problem on hypergraphs. While ex-
tremely efficient algorithms for the case of graphs have been
available for sometime now [13], it is only recently that ef-
ficient algorithms that operate directly on hypergraphs have
become available [28]. Thus it makes sense to consider
methods that construct a graph that approximates the hy-
pergraph and partition it; this partition in turn induces a
vertex partitioning on the original hypergraph. In fact, it
is possible to construct methods that operate directly on the



hypergraph while implicitly working on its graph approxi-
mation [12]. The two most commonly used graph approxi-
mations are Clique Expansion and Star Expansion. Clique
Expansion, as the name implies, expands each hyperedge
into a clique. Star expansion introduces a dummy vertex for
each hyperedge and connects each vertex in the hyperedge
to it [19]. As can be expected, the weights on the edges of
the clique and the star determine the cut properties of the
approximating graph. We refer the reader to [15, 20] for
further discussions that address this problem.

3. Theory

In this section, we describe our proposed hypergraph par-
titioning algorithm. It is a two-step procedure. In the first
step we construct a weighted graph that approximates the
hypergraph. This approximation is based on a novel algo-
rithm that we call Clique Averaging. In the second step we
use a spectral clustering algorithm based on the normalized
Laplacian of the graph to partitioning its vertex set. As the
second step of this algorithm is well known, we will mainly
focus on the development and properties of Clique Averag-
ing. As part of our analysis we will also show the relation
of Clique Averaging to Clique Expansion, which is a com-
monly used graph approximation in the VLSI CAD litera-
ture. Finally as a consequence of this relationship we are
able to show the relationship between the algorithm pro-
posed by Gibson et al., and our algorithm. We begin with
some notation.

A weighted undirected hypergraph H is a pair (V, h).
Here V is the set of vertices of H , and subsets of V
are known as hyperedges. The function h associates non-
negative weights with each hyperedge. In the special case
when the cardinality of the hyperedges is 2, H is a weighted
undirected graph and the hyperedges are the same as ordi-
nary graph edges. We use G = (V, g) to denote a weighted
undirected graph defined over the same set of vertices V
with the weighting function denoted by g. We will as-
sume that the number of vertices in the hypergraph is n, i.e.,
|V | = n. While general hypergraphs can have hyperedges
of varying cardinality, and the algorithms we present will
work on hypergraphs with arbitrarily sized hyperedges, we
will for reasons of notational simplicity assume that all hy-
peredges are of a fixed known size k ≥ 2. The two weight-
ing functions h and g can then formally be described as

h : V k → R+ and g : V 2 → R+. (1)

As the hypergraphs we are dealing with are undirected, the
functions h and g are symmetric in their arguments, i.e.,
their value remains the same if the order of the arguments
is arbitrarily permuted. Finally we will use the symbols dk

to denote the vector of hyperedge weights obtained from H
by ordering the hyperedges in lexicographic order based on

their vertex sets. The vector d2 denotes the corresponding
lexicographically ordered weight vector for the graph G.

In the above notation, the problem of approximating the
hypergraph with a graph can now be restated as the problem
of approximating the weighting function h with the weight-
ing function g. But before we introduce our approximation
scheme, it is instructive to consider the feasibility of such
an approximation in a purely combinatorial sense.

For a complete weighted hypergraph of order k defined
on |V | = n vertices, the weighting function h can take on(
n
k

)
different values. For a complete graph on the same

number of vertices, the number of degrees of freedom is
only

(
n
2

)
. Even for moderately sized n and k, the num-

ber of degrees of freedom for a graph is a tiny fraction
of that of a hypergraph. Thus it is not reasonable to ex-
pect any graph approximation that preserves the number
of vertices to do a good job of approximating every pos-
sible hypergraph. However we are not interested in approx-
imating all possible hypergraphs. For a dataset to be clus-
terable the weighting function should be indicative of the
cluster structure in the data. For example in the case of bi-
partitioning a hypergraph, the ideal hypergraph would con-
sist of two completely connected components. The set of
hypergraphs of this type is much smaller than

(
n
k

)
; in fact

it is only O(n2) and are easily represented by graphs con-
taining two completely connected components on the corre-
sponding vertices. But real data is noisy and the correspond-
ing hyperedge weights reflect that; however, for data that
can be divided into well separated partitions, one would ex-
pect that the corresponding hypergraph is close to a hyper-
graph containing two densely connected components, and
thus amenable to approximation with a weighted graph.

3.1. Clique Averaging

We are now ready to introduce our hypergraph approx-
imation scheme. Our construction and analysis of the ap-
proximation will be based on considering graph approx-
imations of a single hyperedge z. The extension to the
whole hypergraph is then a matter of linear superposition.
We begin by revisiting the observation that the value of
the weighting function h(z) is independent of the order in
which we consider the vertices in z. In light of this, when
considering the various kinds of graphs that can be asso-
ciated with the hyperedge z, the only graph structure that
satisfies the requirements of symmetry is the k-clique on z.
A k-clique is a completely connected graph on k vertices.
Thus the task of approximating h(z) boils down to assign-
ing weights to the edges in k-clique associated with z.

As we mentioned earlier, the most widely used such ap-
proximation scheme is Clique Expansion, and is based on
the assumption that every edge in the clique associated with



z has edge weight equal to h(z). Formally

h(z) = g(vi, vj), ∀ vi, vj ∈ z (2)

Collecting the above set of equations over all hyperedges re-
sults in an over-determined linear system consisting of

(
k
2

)(
n
k

)
equations. This system has a simple least squares solu-

tion given by

g(vi, vj) =
1

µ(n, k)

 ∑
vi,vj∈z

h(z)

 . (3)

Here µ(n, k) =
(
n−2
k−2

)
is the number of hyperedges that

contain a particular pair of vertices. Thus the weight on an
edge is the arithmetic mean of the weights of all the hy-
peredges that contain both of its vertices. Other choices
for µ(n, k) are also possible and will amount to different
weighting schemes when working with hyperedges of vary-
ing sizes. The optimal choice of weighting in Clique Ex-
pansion when combining information across hyperedges is
an area of research in itself [15, 20].

The relationship between a hyperedge and the edge
weights in its clique in the above approach was the simplest
possible, where we assumed that the hyperedge weight and
the edge weights are equal to each other. In an attempt to
make this relationship richer, we take a generative view of
the problem. Let us assume that there exists a

(
k
2

)
-ary func-

tion F such that, given the edge weights on a k-clique, it
returns the corresponding hyperedge weight. Formally

h(z) = F (g(v1, v2), . . . , g(vi, vj), . . . , g(vk−1, vk)) .
(4)

Now given a particular generative model F and a hyper-
graph H , the hypergraph approximation problem can then
be stated as the problem of solving for those values of the
graph edge weights g(vi, vj) that satisfy the above equation
over all hyperedges simultaneously. Of course how well the
graph G captures the structure of hypergraph H is now a
function of F . So what is a good choice of F ? We begin our
search by demanding some simple properties of F : (i) Pos-
itivity F should be positive for positive valued arguments,
(ii) Symmetry F should be symmetric in its arguments, (iii)
Monotonicity F should be monotonic in each of its argu-
ments. Positivity and symmetry are simple consequences of
the definition of h. Monotonicity is a reasonable demand to
make of F as one would expect that as the interaction be-
tween two vertices increases or decreases the strength of the
hyperedge would be indicative of that change. Within these
constraints there are still very many choices for F . In this
paper we consider the family of functions Fp parameterized
by the positive scalar p > 0,

Fp(x1, x2, . . . , xu) =

(
λ(u)

u∑
i=1

xp
i

)1/p

, u =
(

k

2

)
(5)

where λ is a scalar function of the arity of Fp. We can now
write Equation (4) as

h(z) =

λ

((
k

2

)) ∑
vi,vj∈z

i<j

gp(vi, vj)


1/p

(6)

For brevity we will write λ(k) = λ(
(
k
2

)
). Using this and

taking the pth power on both sides gives us

hp(z) = λ(k)
∑

vi,vj∈z
i<j

gp(vi, vj) (7)

We note that the above equation states that the Lp norm of
the clique weights is proportional to the hyperedge weight.
It is also worth noting that as the value of p increases the
Lp norm is biased towards the largest clique weight. For
a given h and a fixed p this is a linear system in g(vi, vj)p.
Thus without any loss of generality we can restrict our anal-
ysis to the case p = 1. With this in mind let us interpret
the above equation. Modulo a constant the above equation
states that the weight of a hyperedge is the arithmetic mean
of the edge weights in the clique it induces. Thus a natural
choice for λ(

(
k
2

)
) is
(
k
2

)−1
. Other choices for λ(k) are pos-

sible and will amount to different weighting schemes when
working with hyperedges of varying sizes. When working
with hyperedges of the same size, which is the case in the
current study, the choice of λ(k) is immaterial as it amounts
to a uniform scaling of the graph weights. As spectral clus-
tering algorithm are insensitive to scaling of the edge affini-
ties this is not a problem. For the sake of concreteness
we will use the arithmetic mean interpretation of the above
equation and the resulting choice of λ(k).

Also without loss of generality we will assume that the
set of hyperedges has been ordered in a lexicographic order
based on the vertices incident on each hyperedge. A similar
ordering is done on the set of graph edges too. We can now
define the incidence matrix ∆. ∆ is a zero-one matrix, that
represents the incidence relationship between a hyperedge
in H and an edge in G. We say an edge is incident on a
hyperedge if the hyperedge contains both of its vertices.

∆ij =

{
1 if edge j is incident on hyperedge i

0 otherwise
(8)

The rectangular matrix ∆ has
(
n
k

)
rows and

(
n
2

)
columns.

Note that ∆ is an extremely sparse matrix with only
(
k
2

)
non-zero entries. Now recall that d2 denotes the vector of
graph edge weights of size

(
n
2

)
and, dk denote the vector of

hyperedge weights. Then Equation (7) for the case of p = 1
can be written in matrix form as

∆d2 = λ(k)dk (9)



This equation assumes that d2 ≥ 0, i.e., each element of the
vector d2 is non-negative. Hence when solving for d2 given
dk, we will explicitly enforce this constraint. When work-
ing with hypergraphs with edge weights that are bounded
above as in the case of affinities; we will enforce an up-
per bound d2 ≤ 1 also. Since the linear system is over-
determined, the solution to Equation (9) has to be deter-
mined by minimizing the least squares error. Thus for the
case of a hypergraph with hyperedge weights bounded in
the interval [0, 1], its graph approximation is given by the
edge weight vector d2 that minimizes the following con-
strained minimization problem

min
d2

‖λ(k)∆d2 − dk‖2F 0 ≤ d2 ≤ 1 (10)

The above optimization problem is an instance of the
Bounds Constrained Least Squares problem. However as
we noted earlier ∆ is a sparse matrix and thus we can ex-
ploit efficient iterative methods for solving it [4]. We use
lsqlin in MATLAB’s Optimization Toolbox.

3.2. Duality

In this section we analyze the link between Clique Av-
eraging and Clique Expansion. In Section 3.1 we saw that
the graph edge weights as a result of Clique Expansion are
given by

g(vi, vj) =
1

µ(n, k)

 ∑
vi,vj∈z

h(z)

 . (11)

using the notation of the previous section we can re-write
this as

de
2 =

1
µ(n, k)

∆>dk. (12)

We use the superscript e to indicate Clique Expansion.
From Equation (9), the linear system for Clique Averaging
is

λ(k)∆d2 = dk (13)

It is readily shown that the above two equations are duals of
each other.

Let us now multiply both sides of Equation (12) by ∆ to
get

∆de
2 =

1
µ(n, k)

∆∆>dk. (14)

Note that modulo a constant, Wquations (13) and (14) differ
only in the right hand side by a pre-multiplication by the
matrix S = ∆∆>. To understand the action of this pre-
multiplication let us consider the structure of the matrix S.

S is a symmetric matrix, with rows and columns corre-
sponding to the hyperedges H . The entry in the zi row and

zj column corresponds to the inner product of the zth
i and

the zth
j rows of ∆. ∆ as we noted earlier is a zero-one ma-

trix, hence the dot product counts the number of edges in
the graph G that the two hyperedges share. These entries
are easily calculated, for if l = |zi ∩ zj | denotes the num-
ber of vertices the two hyperedges have in common then
[S]zizj

=
(|zi∩zj |

2

)
=
(

l
2

)
Let the distance between two hy-

peredges of size k be k− l, then multiplication with the zth
i

row of S is equivalent to multiplying each element of dk by
a decreasing function of the distance from the hyperedge zi

and summing over them. This is in fact a convolution of
the hyperedge weights by a quadratically decreasing kernel.
Thus Sdk is a low passed version of dk. This implies that
Clique Expansion solves the same approximation problem
as Clique Averaging, but instead of operating on the orig-
inal hypergraph it operates on a low passed version of it.
We know from basic signal processing theory that low pass
filtering is an operation that loses information and in the
limit transforms the weight vector dk into a constant vector.
Hence the approximation produced by Clique Averaging is
of a higher quality and better preserves the cluster structure
present in the hypergraph H .

3.3. Partitioning the Hypergraph

We now describe our proposed hypergraph partitioning
algorithm. Given a dataset, the first step is the construc-
tion of the affinity hypergraph H by calculating the affinity
for every distinct k-tuple in the dataset. However, calcu-
lating

(
n
k

)
hyperedge weights can be computationally pro-

hibitive. In many cases the user has a choice of the size
of hyperedge when constructing the hypergraph. Using a
simple counting argument one can show that since the num-
ber of within cluster hyperedges to the number of between
cluster hyperedges goes down geometrically with increas-
ing hyperedge size, the smallest possible value of k should
be chosen. We get around this problem by sub-sampling the
hypergraph and instead considering a hypergraph H ′ ob-
tained by sparsely sampling hyperedges. Since the column
rank of ∆ is

(
n
2

)
, we need at least that many rows, which

in turn puts a lower bound on the number of hyperedges in
H ′. In our experiments we fix nsamples = 5pn2 where p is
the number of partitions that the data is to be divided into.
We then use Clique Averaging to construct a graph G. To
partition the graph into p parts, we use a spectral clustering
algorithm that uses the first p eigenvectors of the normalized
Laplacian of the graph and performs k-means clustering on
the resulting k-dimensional embedding [26, 30].

4. Experiments

In this section we study the performance of six different
algorithms out of which five are hypergraph partitioning al-



gorithms. The sixth algorithm is a multi-round variant of
RANSAC. We report the performance of the algorithms on
two datasets. The algorithm are

1. Clique Averaging+Ncut (CAVERAGE) The hypergraph is
approximated using Clique Averaging and the resulting
graph is partitioned using the Normalized Cuts algorithm.

2. Clique Expansion+Ncut (CEXPAND) The hypergraph is
approximated using Clique Expansion and the resulting
graph is partitioned using the Normalized Cuts algorithm.

3. Gibson’s Algorithm-Sum Model (GIBSONS) Gibson et al.’s
algorithm operating under the sum model [12].

4. Gibson’s Algorithm-Product Model (GIBSONP) Gibson et
al.’s algorithm operating under the product model [12].

5. kHMeTiS (KHMETIS) The leading tool for hypergraph par-
titioning in the VLSI community based on multi-level itera-
tive refinement.

6. Cascading RANSAC (CRANSAC) A simple multi-round
extension to the RANSAC algorithm. In the ith round a
number of trials are performed to identify that k-tuple that
has the highest number of inliers. This k-tuple and its asso-
ciated inliers are identified as the ith group in the dataset and
removed from it.

Reporting unbiased performance comparison of cluster-
ing algorithms is a hard problem, since each algorithm
that one compares against has one or more free parameters
one must set according to the particular problem at hand.
Thus while comparing performance across problems, an ap-
proach giving each algorithm the best shot would need to
perform a sweep over all possible parameter values. While
this might report the best behavior of the algorithm it is
clearly not informative about the robustness of the algo-
rithm to parameter choice, a property that is of vital impor-
tance to a user who is using the algorithm on a novel dataset.
Thus it is important to use an experimental protocol that is
as close as possible to real world usage.

One of the ways in which algorithms are tuned is by run-
ning them on a small pilot dataset similar to the real prob-
lem. This is the basis of our experimental protocol. When
running an algorithm over a suite of experiments, we choose
a problem that lies at the center of the set of experiments
in terms of complexity and choose the best performing pa-
rameters using a parameter sweep. This parameter setting
is used for all the experiments in the test suite. To be fair
to CRANSAC in terms of computation resources, we set
the total number of trials it could perform to be equal to
the number of hyperedges. GIBSONS and CAVERAGE
were run with p = 1. The only free parameter across all
the hypergraph partitioning algorithms was the parameter σ
that was used to convert a dissimilarity d into the affinity
e = e−d/σ . In case of CRANSAC the error threshold for
inlier detection was the free parameter.

4.1. k-lines Clustering

In the first experiment we consider the k-lines problem
in spaces of dimension greater than two, i.e., given a set of
points in Rd, the task then is to partition them into a number
of d-dimensional lines. In the case of lines in two dimen-
sions the Hough transform solves this problem quite effec-
tively, but with three or more dimensions there is no conve-
nient parameterization that can be used. Pairwise measures
of similarity are not applicable here since any two points
are co-linear, thus it takes at least three points to determine
a measure of co-linearity. This is an example of a triadic re-
lationship. The dissimilarity measure on triples of points is
their distance to the best fitting line. Our dataset consists of
points sampled from gently curving lines with noise added
to them. All the lines pass through the origin. Thus all
clusters overlap with each other to some degree. The lines
are generated as arcs of circles with a controllable radius of
curvature. We consider the performance of the six hyper-
graph partitioning algorithms. The results are reported over
a dataset containing 5 lines, in the cube [−1, 1]5. We sam-
ple 70 points from each line for a total of 350 points. The
hypergraph was generated by sampling k2

(
n
2

)
= 549675 3-

tuples. For this dataset we considered the performance the
five hypergraph partitioning algorithms over varying values
of σ. Results are reported over 30 trials.

CAVERAGE 12.6 CEXPAND 12.9
GIBSONS 17.3 GIBSONP 55.1
KHMETIS 18.0 CRANSAC 23.4

But a more elaborate picture emerges when one looks at
the performance of the algorithms over a range of values of
σ. Figure 1(a) plots this behavior. The graph has a number
of notable features. We begin by noting that Clique Expan-
sion and Clique Averaging are the two best performing al-
gorithms and for small and moderate values of sigma there
is virtually no difference between their performance. It is
however interesting to note that as sigma increases further
the performance of Clique Expansion sharply degrades and
reaches 80% error which is the same as chance. Clique Av-
eraging on the other hand continues to perform well at about
30% error while the other four algorithms are operating at
70%−80% error. The error curve for HMETIS is disjointed
because for those values of σ the program crashed.

4.2. Illumination Invariant Clustering

It has been shown that all the images of a Lambertian
object illuminated by a point light source lie in a three di-
mensional subspace [3]. This leads to a natural measure of
dissimilarity over four(tetradic) or more images and allows
us to perform clustering using it. Indeed this is a general-
ization of the k-lines problem to the k-subspaces problem.
If we assume that the four images under consideration form
the columns of a matrix, then d = s2

4
s2
1+···+s2

4
, serves as a



10
−2

10
−1

10
0

10
1

0

10

20

30

40

50

60

70

80

90

100

σ

E
rr

or

CAVERAGE
CEXPAND
KHMETIS
GIBSONS
GIBSONP

10
−2

10
−1

10
0

10
1

0

10

20

30

40

50

60

70

80

90

100

σ

E
rr

or

CAVERAGE
CEXPAND
KHMETIS
GIBSONS
GIBSONP

(a) (b)

Figure 1. (a) and (b) show the performance of the five hypergraph partitioning algorithms on the
k-lines and Yale face datasets respectively as the scale parameter σ is varied. Note that in both
cases despite similar best case performance, CAVERAGE is much more robust to scale changes
than CEXPAND.

measure of dissimilarity. Where si is the ith singular of this
matrix.

The Yale database contains 45 images each of 10 indi-
viduals. The aim of the clustering procedure is to partition
the images into groups by identity. Figure 1(b) shows the
result of performing a parameter sweep over the parameter
σ for the case of 7 identities. The gross behavior of the algo-
rithms in Figure 1(a) and Figure 1(b) is very similar. Again
CAVERAGE and CEXPAND are consistently the best per-
forming algorithms and CAVERAGE is much more robust
to changes in the value of the scaling parameter σ. This ex-
periment was used as the basis for tuning the parameters for
individual algorithms for the following experiment.

The following table presents the results of running the
six algorithms on four subsets of the Yale face dataset with
increasing number of points and clusters. Each algorithm
was run 30 times with parameters picked by running a pa-
rameter sweep over σ case of 7 identities. The results are in
the form of mean error/standard deviation.

4 6 8 10
AVERAGE 4.2 / 6.3 12.7 / 8.4 17.4 / 4.0 16.0 / 3.0
CEXPAND 11.8 / 3.4 17.6 / 5.4 21.8 / 5.4 24.9 / 4.3
GIBSONS 25.9 / 7.3 42.2 / 3.8 47.7 / 3.0 51.5 / 2.1
GIBSONP 67.4 / 2.3 75.2 / 1.2 79.7 / 0.8 82.8 / 0.7
KHMETIS 21.5 / 4.3 41.9 / 6.8 38.4 / 4.7 58.3 / 3.3
CRANSAC 16.2 / 9.5 23.6 / 9.2 35.1 / 7.9 37.1 / 6.6

As can be seen in the above table, CVERAGE beats all
other algorithms across the board.

While two problem sets do not make for conclusive evi-
dence, but they are indicative of a few general trends. CAV-
ERAGE is much less sensitive to changes in the dynamic
range of hyperedge weights, providing empirical verifica-

tion of the relationship established between CEXPAND
and CAVERAGE in Section 3.2. It is also consistently
the best performing algorithm amongst the six we have
tested. It can be shown that the only difference between
GIBSONS and CEXPAND is that the former uses the un-
normalized Laplacian, while the latter uses the normalized
Laplacian. This set of experiments is further evidence that
it is preferable to use the normalized Laplacian over its un-
normalized variant.

5. Discussion

In this work we have introduced hypergraph partition-
ing as the natural formulation for a number of computer vi-
sion tasks. Leveraging a simple additive generative model,
we have introduced a new class of hypergraph approxima-
tion algorithms which have provably better behavior than
existing approximations, for which we have presented em-
pirical proof. We also compared the performance of our
proposed algorithm to four existing hypergraph partition-
ing algorithms and a multi-round variant of RANSAC. In
all our experiments, our Clique Averaging approach outper-
formed its competitors both in terms of clustering error as
well as insensitivity to parameter changes in the data. There
do however remain a number of open questions and direc-
tions for future work. The most important question is that
of computational complexity. Since we solve for the all the
graph edge weights, the sampling complexity for the algo-
rithm is lower bounded by O(n2). However there is evi-
dence that for data that is clusterable into a small number
of clusters, spectral clustering can be performed using far
fewer than O(n2) graph edges [10], thus it seems a signif-



icant reduction in the sampling complexity of Clique Aver-
aging is possible. We have developed a sparse implemen-
tation of the current Clique Averaging algorithm that works
with an order of magnitude fewer samples; lack of space
precludes us from including a discussion of it. There is also
the possibility of developing better generative models relat-
ing graphs and hypergraphs.

While the methods we discussed in this paper are fo-
cused on converting a hypergraph to a graph and then oper-
ating upon it, the development and performance of methods
that operate directly on the hypergraph without any inter-
mediate or implicit reduction to a graph remains an open
question.
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