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Abstract

Tracking a moving person is challenging because a person’s
appearance in images changes significantly due to articu-
lation, viewpoint changes, and lighting variation across a
scene. And different people appear differently due to nu-
merous factors such as body shape, clothing, skin color,
and hair. In this paper, we introduce a multi-cue track-
ing technique that uses prior information about the 2-D
image shape of people in general along with an appear-
ance model that is learned on-line for a specific individ-
ual. Assuming a static camera, the background is modeled
and updated on-line. Rather than performing thresholding
and blob detection during tracking, a foreground probabil-
ity map (FPM) is computed which indicates the likelihood
that a pixel is not the projection of the background. Off-
line, a shape model of walking people is estimated from the
FPMs computed from training sequences. During tracking,
this generic prior model of human shape is used for person
detection and to initialize a tracking process. As this prior
model is very generic, a model of an individual’s appear-
ance is learned on-line during the tracking. As the person
is tracked through a sequence using both shape and appear-
ance, the appearance model is refined and multi-cue track-
ing becomes more robust.

1. Introduction
The goal of our work is to develop techniques for robustly
tracking walking people over long sequences of images in
which the person may be seen from many directions, the
lighting may vary across the scene and over time, and where
there may be occasional occlusion and other moving ob-
jects. Our approach is essentially to treat person track-
ing as incremental appearance-based recognition in which
we have an appearance model for the class of objects that
we are tracking along with the object’s state in the pre-
vious frames. We start tracking with a shape model that
essentially captures the detectable silhouette of people and
is learned off-line from training sequences. On-line as a
person is first detected and then tracked just using the 2-D
shape model, the tracker automatically learns the appear-
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Figure 1: Overview of the proposed tracking algorithm; From the ac-
quired image frame, the foreground probability map is built using the back-
ground model, and both image and foreground probability map are used to
compute the updated location of people.

ance of the tracked person. Combining two cues, generic
person shape and person-specific appearance, the tracker is
able to continue to track the person in more difficult sit-
uations than just using shape alone. An overview of the
proposed algorithm is depicted in Figure 1.

When the camera is fixed and the scene is static or slowly
varying, a simple representation of the background can be
used, and it can be updated on-line during the process of
tracking. The background model is used to determine the
probability that a pixel is an element of background (or like-
wise the probability that it is part of a foreground object –
the foreground probability map (FPM)). The main advan-
tage of background modeling is that it provides information
about the shape and location of the object that we are in-
terested in. Early tracking algorithms used a background
model to find blobs in the foreground [9, 6]. But often this
approach fails due to image noise, shadows, sudden illumi-
nation changes, or movement of background objects.

In our approach, we train off-line on sequences of images
of walking people who assume different poses and config-
urations. Silhouettes (shape) are detected using the back-
ground model, and these are clustered; each cluster corre-
sponds to a different pose. Hence, the offline model is a col-
lection of FPMs representing distinctive poses. This shape
model can be used in detecting and tracking a person in the



image. When a connected component of pixels in the FPM
with high probability (a blob) is found, it is compared with
the silhouettes in the model, and if it is similar enough, we
initialize a tracking process. While tracking, we continu-
ously find the best affine warp that aligns the current blob
with one of the shapes in the model.

Tracking with silhouettes is very effective, but it can-
not distinguish between multiple people in the scene, and
sometimes fails when the foreground probability map be-
comes noisy or unavailable. To help the tracker to focus
on the correct target, we learn the appearance of the person
on-line. We adopted the WSL model [4] to represent the
pixel intensities of each pixel. The appearance model of the
tracked person consists of the sets of WSL models for dif-
ferent poses in the shape model. The learned appearance is
used in estimating the warp parameter jointly with the shape
model.

More than simply using two cues in tracking, we want to
emphasize that these two models have different modes. The
shape model is learned off-line from various individuals and
represents the general shape of people. The appearance
model is learned on-line from the person being tracked and
represents its own intensity patterns, which can be changing
over time. The shape model gives prior information about
people in general, and the appearance model gives detailed
information about an individual that distinguishes it from
other individuals. Combining these two features, we show
that the tracking process becomes more robust.

2. Related Work
In this section we review representative previous works and
relate it to our approach.

Recently Toyama and Blake [7] developed a contour-
based human body tracker. This algorithm uses exemplars
of contours to model the shape of possible targets, and a
probabilistic framework to maintain the model efficiently
and effectively. In this work, since only contour informa-
tion is used for tracking, it may fail when the edges in the
frame become unavailable or inaccurate, for example, due
to background clutter or occlusion.

When the camera is static, the background image can
be modeled to indicate whether or not each pixel is similar
to the modeled background, and this information directly
gives the location of the foreground objects. Most previ-
ous work used rather simple background models for perfor-
mance reasons, and focused on choosing a probability or
color model to handle difficult situations like cast shadows
or moving background objects [8, 3]. Compared to hard
thresholding, we adopted a probabilistic representation of
the foregroundness of each pixel. This probabilistic repre-
sentation enables more robust and accurate object detection
and tracking.

One effective technique to model the appearance of ob-
jects was introduced by Jepson et al. [4]. The WSL model
is able to maintain a probabilistic representation for noisy
and time-varying data. Tracking with only the WSL model
may suffer drifts due to the lack of prior information about
the object being tracked; the background may be mistakenly
incorporated into the object model, and the tracker may then
drift.

3. Models for Tracking
To track an individual, we maintain both a representation
of the person as well as the background. We use the back-
ground model to identify pixels that are likely to be part of
the moving person, and use two models to represent peo-
ple: the shape model for people’s general shapes and the
appearance model for an individual’s texture and color.

3.1. Background Model
We assume that the camera is static, and learn the back-
ground scene to segment people from a stationary or slowly
varying background. Background pixel color is modeled as
a multivariate normal distribution with a mean µ and a diag-
onal covariance matrix Σ at each pixel at x (the background
model is then B = {(µx, Σx)}). The YUV color space is
used since with the proper distribution on pixel values, the
effect of shadows can be reduced. We defined the probabil-
ity that a pixel at x belongs to the foreground as

pfg(x|I, B) = 1 − pbg(x|I, B) = 1 − e−d(x|I,B)2

where d(x|I, B)2 is the squared Mahalanobis distance
(I(x) − µx)�Σ−1

x (I(x) − µx). For every pixel x in an in-
put image, pfg(x|I, B) can be evaluated to produce a fore-
ground probability map Ifg . See Figure 2 for an example.

At each frame, the mean and variance of each pixel in
the background model are updated on-line [6].

µ(t+1)
x ← (1 − ρ)µ(t)

x + ρ I(t)(x)

σ
(t+1)
x,i ← (1 − ρ) σ

(t)
x,i + ρ (I(t)

i (x) − µ
(t)
x,i)

2

where the superscript (t) represents the data at time t, σx,i

is the i-th element on the diagonal of Σx, Ii(x) and µx,i are
the i-th element of I(x) and µx, and ρ is the learning rate,
which is usually a small constant. We only keep diagonal
terms of the covariance matrix for simplicity and efficiency,
and to avoid instability, set a lower bound on the variance.

Due to the noise from the image acquisition process, the
foreground probability map is often noisy and needs to be
smoothed to get a robust estimate of object status. We can
suppress the noise by augmenting our assumption of pixel-
wise independence in the background model by considering
spatial coherence [1]. The spatial coherence on pixels in an



Figure 2: Foreground probability maps before and after spatial coher-
ence smoothing.

image I can be expressed as minimizing the error function

Esc(Î | I) =
∑
x

(
| Î(x)−I(x) |2+

∑
x′∈N (x)

c | Î(x)−I(x′) |2
)

where N (x) is the horizontal/vertical neighbors of x, and
c is a weighting constant. We can calculate Îfg using an
iterative gradient descent algorithm. After convergence, the
smoothed foreground probability map Îfg replaces Ifg .

3.2. Shape Model
The background model allows us to build the foreground
probability map of the current frame. In the foreground
probability map, there may be false positive pixels like mov-
ing background objects or shadows. To distinguish human
shapes from other shapes, we use a prior model of the pos-
sible shapes of people.

3.2.1. Learning the Shape Model

The shape model is learned off-line from training video se-
quences of people walking around, which are taken in favor-
able imaging conditions. From training images and using
background modeling, we can obtain cropped silhouettes of
people to build a large collection of foreground probability
maps of humans in a wide variety of poses. In most of the
frames, the blob detector finds the correct bounding boxes
of humans, and when the region does not represent a human
or includes false positives or excessive noise, an operator
can ignore or modify the detected region. After this step,
all patches are scaled and aligned to have the same size and
center, so that they represent normalized human shapes.

Since the shape of each pose may be significantly dif-
ferent, the global mean image (FPM) of all cropped, scaled
and aligned patches is too blurry to be used in detection and
tracking. Instead of one global mean, we need a more pre-
cise representation of each pose which then leads to greater
discriminative power. All of the normalized patches are
clustered into k sets using the K-means clustering algo-
rithm. For each set of patches, we build the mean image
as the representation of the pose. We will denote the shape
model S as {sk}, where sk is the mean image of the cluster
k. The result of clustering 453 images of a walking person
into four clusters is shown in Figure 3. We used this shape
model for all tracking experiments in this paper. Each mean
image represents the pose of people clearly, and the variance

Figure 3: The shape model; the mean and variance images of 4 clus-
ters of normalized foreground probability map patches from the training
sequence.

images show significant variation only along the boundary
of the shape. Recall that we are not clustering intensity im-
ages, but the foreground probability maps.

The main advantage of using the shape model is that it
gives a simple and concise representation of the possible
shapes of people regardless of their clothing or appearance.
Also this shape model is general, in the sense that it does
not depend much on the identity of individuals. Since we
will allow the model to deform in an affine way, the size or
aspect ratio (which can be related to each person’s charac-
teristics) can be easily handled by this shape model.

3.2.2. Tracking with the Shape Model

In our formulation, tracking amounts to finding a set of
warp parameters which map the foreground blob of the cur-
rent frame onto one of the silhouettes in the shape model.
Throughout this work, we use 2D affine warps as our mo-
tion model, and this captures 2D translation, rotation, scal-
ing with fixed or changing aspect ratio, and skewing. We
denote an affine warp of the coordinates x with the param-
eter θ as w(x; θ). We can formulate the error of the current
warp with parameter θ as follows:

E(θ) = min
k

∑
x

| sk(x) − Ifg(w(x; θ)) |2 (1)

Usually finding the global minimum of this error func-
tion is very hard, but for tracking, we can expect the mo-
tion of people between two consecutive frames to be small
enough to be able to assume that a local minimum close to
the current parameter is the correct warp. We use a gradient-
descent method to find the warp, and a Taylor series expan-
sion for efficient computation [5, 2]. We decompose θ into
θ0 + δθ where θ0 is the initial warp parameter for the cur-
rent frame, and δθ is the update for the warp. The error
function can be written as a function of δθ instead of θ as

E(δθ) = min
k

∑
x

| sk(x) − Ifg(w(x; θ0 + δθ)) |2

� min
k

∑
x

| ∆Ifg(x, k; θ0) − M�
k δθ |2

where ∆Ifg(x, k; θ0) = sk(x)− Ifg(w(x; θ0)), and Mk is
a matrix whose i-th column is ∂x

∂θi

∂sk

∂x . The update δθ for
the pose k is given as

δθk = (MkM�
k )−1 Mk ∆Ifg(x, k; θ0) (2)

and since the matrix (MkM�
k )−1 Mk remains constant un-

less sk changes, it can be precomputed at the program start



and used there after. The pose k and the corresponding θ k

giving the minimum error are picked as the estimated pose
and motion parameters of the current frame.

3.2.3. Detection using Shape Model

To initialize the tracker, we need to find the image region
that contains a person who has entered the field of view.
The shape model can be used for tracker initialization, since
it can be used as a filter which ignores non-human objects
based on their similarity to the shape model. We can de-
tect people most of the time without rotating or skewing
the image. This helps to keep the detection process sim-
ple, since we only translate and scale the model according
to the bounding box of the foreground blob. To minimize
the false-positives in detection, we restrict the scale to be
in a reasonable range and the threshold for similarity high
enough not to detect moving non-human objects as being
human. Due to this restriction, a person may not be de-
tected for some period until the size and shape are within
the specified range to initialize the tracker.

3.3. Appearance Model
Though silhouettes are a powerful representation of per-
son shape, in many cases, shape itself is not enough, for
example, when two people cross each other or when the
background model fails (like shadow or sudden illumina-
tion change). To compensate for this weakness, we learn
on-line the appearance of people that we are tracking, by
remembering the pixel intensities at each pixel of each pose.

Due to the huge variety of colors or textures of human
clothing, skin and hair, learning a general appearance
model a priori for people is very difficult, but once we
track one specific individual who steps in view, the color
or texture does not change much, so on-line appearance
modeling is possible.

The statistics of pixel intensities are learned using the
WSL model [4]. (Note that in our current implementation,
we only use intensity not color as initial experiments did not
yield much benefit from color for the added computational
cost). It maintains three probability distributions, Wander-
ing, Stable and Lost models. The Stable model gives rep-
resentative values of the pixel, and the weights among the
three models show the confidence given to each model. The
probabilistic mixture model for the data dt at time t is

pwsl(dt |mt, µs,t, σ
2
s,t, dt−1) = mwpw(dt; dt−1, σ

2
w)

+msps(dt; µs,t, σ
2
s,t) + mlpl(dt)

where mt = (mw, ms, ml)t are the mixing probabilities,
µs,t, σ2

s,t are the mean and variance for the Stable model,
σ2

w is a fixed variance for the Wandering model. pw and
ps are normal distributions, and pl is a uniform distribution.

Among these parameters, mt, µs,t and σ2
s,t are updated on-

line. More details are described in [4].
We assign one WSL model per each pixel of each pose,

and all models of the estimated pose are updated on-line
with the current frame. The template of the appearance for
tracking is defined as ak = {µs at pixel x of pose k }.

3.4. Tracking with Shape and Appearance
With the shape model and the appearance model, we need
to rewrite the objective function in (1) to use both models.
We use the Stable model as the template of appearance ak

of the pose k.

E(θ) = min
k

∑
x

(
| sk(x) − Ifg(w(x; θ)) |2
+ α| ak(x) − Igr(w(x; θ)) |2

)

where Igr is the current frame image converted into
grayscale. With a formulation similar to the one in Section
3.2.2, we can compute the update parameter δθ as

δθk = (MkM�
k + α NkN�

k )−1
(
Mk ∆Ifg(x, k; θ0)

+α Nk ∆Igr(x, k; θ0)
)

(3)

where Nk is, similar to Mk, a matrix whose i-th column is
∂x
∂θi

∂ak

∂x , and ∆Igr(x, k; θ0) = ak(x) − Igr(w(x; θ0)).
The contribution of the two models to the parameter up-

date can be controlled by the constant α. In this paper we
used a fixed α, but α could be determined automatically
according to the likelihoods of the shape and appearance
models to the current frame.

4. Experimental Result
The algorithm is implemented in C++, and is tested on both
recorded sequences and live video inputs. On a modest
desktop machine, it runs at 3-4 frames per second (fps) with
the shape model only, and at 1-2 fps with both models. The
main reason for the difference in performance is that, for
the appearance model, we cannot precompute the matrix re-
quired in the parameter update step (Eq. (2) & (3)), since
the appearance model is updated on-line at each frame.

In Figure 4, the window in the upper left of each image
shows the current status of the appearance model, the left
subwindow is the Stable model, and the right subwindow
is the weight of the Stable model in the WSL model. The
tracking result is overlaid over the original frame in a red
color with a white bounding box.

Figure 4 shows frames from a video which has one per-
son in it. The person in the sequence walks around in
the room, and his pose, location and scale in the image
change significantly. The person in this sequence has not
been shown in the training sequences for the shape model,
which shows the extensibility of our shape model. In Figure
4.a, the person appears in the scene, but the shape does not
match anyone in the shape model. After some frames, the



a. frame 63 b. frame 88 c. frame 93

d. frame 121 e. frame 152 f. frame 338

Figure 4: Tracking result for a one-person sequence. In the window at the upper left corner of each frame, the left subwindow shows the estimated pose,
the center subwindow shows the appearance model learned for the pose, and the right subwindow shows the weight of the Stable model in the appearance
model. a. A person is not detected at this time instance because the size and shape of the target is not within the detection range. b. A tracker is allocated
for him, and his appearance is learned. c,d. Tracking is successful, and the appearance model becomes more stable. e,f. Since appearance is learned per
pose, the appearance model for each additional pose is also learned (note different pose in the subwindows).

detector finds the human shape and initializes tracking (Fig-
ure 4.b). In Figure 4.c the representative pose has changed
due to changes of the shape of the person’s silhouette. After
some period of time, the appearance model learns the pixel
intensities, and the weight of the Stable model has become
higher (Figure 4.d). Since each pose has a separate appear-
ance model and the pose in Figure 4.e has never been seen
before, the pixel intensities for this pose start to be learned
in the appearance model.

In the next sequence, we show various situations related
to initialization and termination of trackers. In Figures 5.a
and 5.c, the detection results do not cover the whole body
due to an incomplete probability foreground map (a) and
partial occlusion (c), but when complete information about
the targets is available, the trackers recover correct repre-
sentations of individuals (Figure 5.b,d). Figure 5.e-h show
the departure of one person from the view. When the in-
formation about the target becomes insufficient or unavail-
able, the tracker for the individual terminates automatically
(Figure 5.g). Figure 5.i-j show another departure without
occlusion and the reentry of the previous target. As we do
not maintain past models, the returning person is treated as
a new individual. A natural extension is to store the indi-
vidual models and use them in a recognition process when
a new person is detected.

4.1. Effectiveness of Appearance Model
In this section, we compare the accuracy of tracking re-
sults when only the shape model is used to when both the
shape and appearance models are used. Figure 6 shows
frames from two tracking results, (a-e) are from the shape-
only tracking and (f-j) are from the shape-appearance track-
ing. To show the accuracy of tracking, the upper left win-
dow in each image shows the warped images of the current

grayscale frame and the mask. Note that the person is par-
tially out of sight, so there is no information in the missing
region to update the warp parameters.

Since the shape-only tracker uses just the foreground
probability maps and tries to minimize the error function
in (1), the warp parameter starts deviating from the correct
position (Figure 6.b). Because the out-of-scene part is not
considered in the parameter update, and since the tracker
does not have any information about the appearance of the
person, the estimation converges to the incorrect local min-
imum and switches to the pose which gives minimal error
(Figure 6.c). In Figure 6.d-e, the pose is again corrected due
to the large gap from the person to the right side of the im-
age, but it still failed to recover the correct warp parameters.

The tracking algorithm using both models only suffers
small deviations when the person returns to the center from
the occluded area (Figure 6.g-h), but due to the information
about the appearance, it does not deviate much. When the
silhouette of the person becomes fully available (Figure 6.i),
the appearance model guides the tracker to converge to the
correct point.

5. Conclusion and Future Work
We introduced a tracker that uses two representations of hu-
man images. The shape model captures the shapes of var-
ious poses, and the appearance model captures the texture
of each pose. Due to their intrinsic differences, we trained
the shape model off-line, but the appearance is learned on-
line while the target is being tracked. More importantly,
they represent different kinds of information about the tar-
get, and therefore they offer complementary advantages for
tracking. We focused the experiments of this algorithm on
tracking people, but there is no restriction in extending this



a. frame 62 b. frame 76 c. frame 125 d. frame 143 e. frame 279

f. frame 297 g. frame 303 h. frame 347 i. frame 389 j. frame 459

Figure 5: Tracking result for a two-people sequence. a,b. One person enters, and a tracker for him is initialized. Due to incomplete FPM, the head
region is not included in the initial estimates, but the tracker recovers after several frames. c,d. The other person enters. The detector finds him very early,
but due to partial occlusion, the initialization does not include the shins. The tracker recovers when the partial occlusion disappears. e-h,i. The departure
of a person is automatically detected and handled by terminating the tracker for him. j. The person returns into the room, and a new tracker is initialized.

a. frame 165 b. frame 172 c. frame 177 d. frame 182 e. frame 209

f. frame 165 g. frame 172 h. frame 177 i. frame 182 j. frame 209

Figure 6: Comparison between shape-only and shape-appearance models (a.-e.: shape-only, f.-j.: shape-appearance). The upper left window in each
image shows the pose and warped image patch from the frame. The shape-only model drifts much (c.) and fails to recover correct warp parameters (d.,e.),
but the shape-appearance model can robustly track the person (note the accuracy of estimated warp in the windows of f.-j.).

work to general object tracking.
There are a number of ways to improve this approach.

Based on the tracking result, we can build a layered rep-
resentation of the current scene, each layer represents one
object moving in the scene or occluding the other objects.
The current implementation does not consider the transi-
tion probability between poses, but this can be learned dur-
ing the training process and improve the tracking perfor-
mance and stability. Also we will extend this work to a
multi-camera situation, to track objects in 3-D space and to
represent objects more precisely.
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