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Abstract

We introduce a framework for computing statistically opti-
mal estimates of geometric reconstruction problems. While
traditional algorithms often suffer from either local minima
or non-optimality - or a combination of both - we pursue the
goal of achieving global solutions of the statistically optimal
cost-function.

Our approach is based on a hierarchy of convex relax-
ations to solve non-convex optimization problems with poly-
nomials. These convex relaxations generate a monotone se-
quence of lower bounds and we show how one can detect
whether the global optimum is attained at a given relaxation.
The technique is applied to a number of classical vision prob-
lems: triangulation, camera pose, homography estimation
and last, but not least, epipolar geometry estimation. Experi-
mental validation on both synthetic and real data is provided.
In practice, only a few relaxations are needed for attaining
the global optimum.

1. Introduction
Minimizing globally a rational function of several variables
is a difficult optimization problem in general. Multivariate
polynomial minimization, a special case of rational mini-
mization, is a hard problem already for degree 4 polynomi-
als. For example [8], the problem of deciding whether an
integer sequence ��� � � � � �� can be partitioned, i.e. whether
there exists � � ����� such that

��

��� ���� � �, or equiv-
alently whether zero is the global minimum of polynomial
�
�

� �����
� �

�
���

�
� � ���, is known to be NP-complete.

Many geometric computer vision problems can be formu-
lated as a minimization problem where the objective function
is a rational polynomial in the unknown variables. These ra-
tional polynomials arise due to the perspective mapping of
the camera. In this paper, we show how such problems can
be recast as a polynomial optimization problem using linear
matrix inequalities (LMIs) and polynomial matrix inequal-
ities (PMIs). Such problems have been under intense re-
search during the last few years in the control community,
e.g. [11, 6]. We leverage on these results in order to solve a

number of geometric reconstruction problems, such as trian-
gulation, camera pose and epipolar geometry estimation.

Our main contributions are:
(i) A general framework for computing globally optimal

estimates for geometric vision problems is introduced.
We apply this technique to problems for which current
state-of-the-art uses local, iterative optimization tech-
niques. Such methods are dependent on good initializa-
tion which is often hard to obtain in practice. Therefore
they risk getting stuck in local minima.

(ii) We extend the theory of convex LMI relaxations by
showing that even though only partial relaxations are
employed, it is still possible to obtain global estimates,
and more importantly, to detect if global optimality is
achieved. As we shall see, this result makes it pos-
sible to avoid a combinatorial explosion of relaxation
variables and many of the problems we consider be-
come computationally tractable even when many un-
known variables are involved.

Structure and motion problems in computer vision are
core problems and have been studied for quite some time
now. Many good algorithms can be found in recent text-
books, e.g. [5, 20]. It is well-known that local minima fre-
quently occur and they have been analyzed in more detail in
[16, 14, 13]. The reconstruction methods can be classified
into three categories:

� Non-optimal methods use some simplied error criteria
in order to obtain an estimate, often in closed-form. A
classical example is the 8-point algorithm [5] or alter-
natively a minimal method [10]. These non-optimal
schemes often serve as an initialization for a local
method.

� Local methods such as gradient descent refinements,
also known as bundle adjustment [18] do optimize the
correct cost-function, but they are very sensitive to ini-
tialization point.

� Global methods are relatively rare in the vision litera-
ture. The triangulation problem for two views for differ-
ent optimality criteria was solved in [4, 13, 12]. How-
ever, the problem is rather limited in complexity and



it is hard to generalize even for three views (except in
the case of ��-norm [9]). The factorization algorithm
[17] computes a global estimate for both structure and
motion with respect to the optimal ��-norm, but this is
unfortunately only valid for the affine camera model.
Other interesting methods are graph-cuts which have
successfully been applied to multi-view stereo match-
ing [19] and interval analysis applied to auto-calibration
[3]. However, one of the drawbacks of [3], which is also
true for many other global methods is that they are com-
putationally highly demanding.

We propose another strategy to achieve globally optimal
estimates, which is still tractable from a computational point
of view and which can handle harder problems than, for in-
stance, the two-view triangulation problem. The method is
global in the sense that it solves the problem when finite con-
vergence occurs and it also provides a numerical certificate
of global optimality. The formulation is based on the LMI
formalism and we make extensive use of convex semidefi-
nite programming (SDP). In particular, we rely on efficient
SDP-solvers publicly already available, e.g. [15].

The most closely related work we are aware of is [2].
A convexification scheme is also employed to solve a non-
convex problem, namely the problem of estimating the fun-
damental matrix � subject to the cubic constraint ���� � �.
However, the objective function is the algebraic cost-function
used in the 8-point algorithm. This problem can be simplified
to a non-linear problem with two unknowns. Their approach
of computing the solution involves solving a series of convex
LMI problems via a bisection method.

2. Convex LMI Relaxations of Non-
Convex Problems

2.1. Scalar Polynomial Optimization
There are several approaches to dealing with non-convexity
in optimization problems. In [11] a technique is described
which consists in building a hierarchy of nested convex lin-
ear matrix inequality (LMI) relaxations for non-convex opti-
mization problems with scalar multivariate polynomial con-
straints. The relaxations are obtained by gradually adding
lifting variables and constraints corresponding to lineariza-
tions of monomials up to a given degree. This is the tech-
nique we will adopt and we will exemplify the lifting idea
below.

Under some mild assumptions akin to qualification con-
straints in mathematical programming, it is shown that the hi-
erarchy of relaxations converges asymptotically to the global
optimum. Convergence is proved using results of real alge-
braic geometry, namely the primal decomposition of a mul-
tivariate polynomial as a sum-of-squares, as well as the dual
theory of moments.

The LMI relaxation covering monomials up to a given

even degree 	Æ is referred to the LMI relaxation of order
Æ. It turns out that for many of the non-convex polynomial
optimization problems described in the technical literature,
global optima are reached at a given accuracy for a mod-
erate number of lifting variables and constraints, hence for
an LMI relaxation of moderate order. Standard routines of
numerical linear algebra can be applied to provide a numeri-
cal certificate of global optimality based on computing ranks
of moment matrices. In particular, a sufficient condition for
reaching the global optimum is that the moment matrix has
rank one.

As an illustrative example of the LMI relaxation tech-
nique, consider the non-convex optimization problem

�� � 
�� ��

��� ����� � � � 	�� � ��� � ��� � �

����� � ��� � �� � ���� � �
����� � � � ���� � �

(1)

where the linear objective function is maximized over a non-
convex feasible set delimited by circular and hyperbolic arcs.
The feasible region is shown in Figure 1(a).

The first LMI relaxation (Æ � �) is
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with optimal value �� � 	. In this relaxation, the �� � posi-
tive semidefinite matrix (denoted by� �) is a moment matrix
of order up to 	. Problem constraints are linearized with the
help of lifting variables: a monomial ���� ���� is replaced with
����� . Let 	���� � � �� ��� �� �

� be a basis for polynomials
of degree 1. The moment matrix is obtained by linearizing
the trivial relation 	����	����

� � � valid for any � � �
� .

Note that the matrix 	����	����� has rank one.
In Figure 1(b) we show the projection of the feasibility

set of LMI relaxation onto the plane ���� ��� of first-order
moments. This convex feasibility set inscribes the original
non-convex feasible set. We can see that the optimum of the
LMI relaxation is achieved at a point that is infeasible for the
original non-convex problem (1).

The second LMI relaxation (Æ � 	) is
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Figure 1: Problem (1). (a) The feasible set (shaded region) is non-convex and delimited by circular and hyperbolic arcs. (b)
Feasible set of the first convex LMI relaxation (blue region) is obtained by projecting the first-order moments onto the plane.
The optimum is attained at the upper vertex (green dot). (c) Feasible set of the second convex LMI relaxation (blue region) is
obtained by projecting the first-order moments onto the plane. The optimum equals the global optimum (green dot).

with optimal value �� � ������, which is the global op-
timum �� within numerical accuracy. In addition, first or-
der moments ������ �

�

��� � ��������� ������� provide an
optimal solution of the original problem. Let 	���� �
� �� ��� ��� �

�
�� ����� �

�
� �

� be a basis for polynomials of de-
gree 2. The � � � moment matrix constraint is obtained by
linearizing the rank one matrix constraint 	����	����� �
� and the other LMI constraints correspond to linearizing
�����	����	����

� � � for 
 � �� 	� �, where ����� denote
the three inequality constraints in (1).

In Figure 1(c) we show the projection of the feasibility
set of the second LMI relaxation onto the plane ���� ��� of
first-order moments. By construction, the feasibility set of
the second LMI relaxation is included in the feasibility set
of the first LMI relaxation. We can see that the feasibility
set of the second LMI relaxation is the convex hull of the
original non-convex feasible set, and the global optimum is
now attained because the objective function is linear in the
first-order moments.

2.2. Polynomial Matrix Optimization
In this paper we will face a particular class of polynomial
optimization problems where the constraints are not scalar,
but polynomial matrix inequalities (PMI). Moreover, only a
limited subset of the decision variables enter in a non-linear
and hence possibly non-convex way in the PMIs.

We can thus apply the same methodology as described
in Section 2.1 to build up a hierarchy of nested LMI relax-
ations. The main difference however is that the LMI relax-
ations are obtained by linearizing the non-linear monomials
only, a technique that we will refer to as a partial relaxation.
On the one hand, this results in a dramatic drop in the num-
ber of LMI variables and constraints when compared with the
full relaxation. On the other hand, in contrast with the scalar
case, we are not able to ensure asymptotic convergence to
the global optimum. However, if the moment matrix corre-
sponding to this limited subset of non-convex variables has
rank one, then we have a numerical certificate of global opti-

mality just as in the scalar case.
Experimentally, it has been observed that minimizing the

trace of the moment matrix generally results in a low rank
moment matrix. In practice, in an LMI relaxation we add
to the objective function the trace of the moment matrix
weighted by a sufficiently small positive scalar �.

3. Optimal Structure and Motion
A perspective camera projects a point � in 3D space to a
point 
 in the image plane as

�
 � ��� (2)

Here the points are represented by homogeneous coordi-
nates. In this expression, � is a rank-� matrix of size � � �
called the camera matrix and � is a (positive) scalar account-
ing for depth.

Assume that the measured image points, denoted by �
�,

 � �� ���� � , are corrupted by independent Gaussian noise,
but otherwise, an ideal perspective camera model. Then the
statistically optimal cost-function is the least-squares errors
between measured and reprojected image points [5]. Hence,
our goal is to solve the following optimization problem,
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�	
���

���
�� 
�����
� 
��� ����� � �� (3)

where ��	� 	� is the Euclidean distance and � denotes the set
of unknowns. Each term in the cost-function can be ex-
pressed as a rational function,

���
�� 
�����
� �

������
� � ������

�

������
� (4)

where ������, ������ and ����� are polynomials in �.
Minimizing the sum of rational functions can be achieved

by reducing to the same denominator and applying the LMI
relaxation technique described in [8], which is an extension



of the technique of [11]. However, this approach is computa-
tionally demanding and not tractable if � is large, due to the
high degree of the resulting denominator.

Instead, suppose each residual in (4) has an upper bound
��, that is, �������� � ������

��������
� 
 ��. Then, the for-

mulation in (3) is equivalent to
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 �������

�
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 � �� ���� ��
(5)

The hierarchy of LMI relaxations of [11] can be applied to
this polynomial optimization problem. Denoting by Æ the
highest degree of � occurring in polynomials ������, ������,
�����, the constraints in the above problem have degree
	Æ � �, meaning that the first LMI relaxation to be tried has
order Æ.

4. Schur Formulation
In this section we will show how the polynomial optimization
problem in the previous section can be recast and relaxed
using polynomial matrix inequalities.

Before we continue, we need to introduce a concept due
to Schur [1]. Let

� �

�
� �
�� �

�
�

be a symmetric matrix and suppose that � � �. Then, the
following are equivalent:

� � � �
 � ������� � ��

The matrix �������� is called the Schur complement of
� .

Now, set � � diag�������� �������, � �
� ������� ������ �

� and � � ��. It follows immediately
that the Schur complement condition � � ������ � �
is equivalent to the inequality in (5) and hence we have the
following reformulation:
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(6)

We will refer to this as the Schur form. Note that �� appears
only as a linear term and the only non-linearity remaining
is due to ������ if the polynomials ������ and ������ are of
degree one. Thus in order to take advantage of the result in
Section 2.2, it is enough to apply LMI relaxations on � �
���� ��� ����

� and it is not necessary to relax ��, 
 � �� ���� �
provided the globality check is fulfilled for some relaxation
order. If we were to apply full relaxations to all variables, the
problem would become intractable for small � .

5. Example: Triangulation
In the triangulation problem, the camera matrices ��, 
 �
�� ���� � are considered to be known and the goal is to recover
the unknown scene point � � ��� � �� � ���� ��� ��� � �

� .
It is easy to verify that the polynomials ������, ������ and
����� in (4) have degree one and that the coefficients are de-
termined by the elements in the camera matrix and the mea-
sured image coordinates.

As an example, consider the following camera triplet,
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�
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�

and assume that the measured image point in each view is at
the origin. What is the optimal 3D point in terms of minimal
reprojection errors?

The polynomial functions defined in (4) for the first cam-
era are particularly simple ������ � ��, ������ � ��,
����� � �. Note that the first residual is actually a polyno-
mial. Introduce the squared upper bounds ��� and ��� for the
second and third residuals1. Then, the scalar formulation (5)
can be stated as
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��
The inequality constraints are of degree four and hence the
lowest possible relaxation order is two. Relaxation is re-
quired for all five variables ���� ��� ��� ��� ���. We have
ignored the positive depth constraint, though, it would be
straightforward to incorporate.

The Schur formulation (6) of this problem is given by
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Similar to problem (1), the LMI relaxed formulation is ob-
tained by the lifting procedure: a monomial ���� ���� ���� is
replaced with the lifting variable ������� and adding that the
moment matrix should be positive semidefinite.

The results of the two LMI problems are summarized in
Table 1. The best estimate of the polynomial formulation
was also refined using bundle adjustment2, resulting in the
following 3D point estimates for the three different schemes:
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�-���	
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�

�
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�-��
�
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�
�	
�

�
, �����
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�-��
�
-����
�
��
�

�
�

1Experimentally, we have found that replacing �� with ��
�

works better.
Note that this does not increase the LMI relaxation order, which is still Æ.

2Bundle adjustment also optimizes the sum-of-squares cost-function, but
it is based on iterative, gradient descent minimization.



Form RMS Order Moments Variables
Polynomial .362 2 	�� 	� 125

.181 3 ��� �� 461

.162 4 �	�� �	� 1286
Schur .175 1 �� � 12

.164 2 ��� �� 37

.162 3 	�� 	� 86
Bundle adj. .161 n.a. n.a. 3

Table 1: Data from the triangulation example, from left to
right: problem formulation, Root Mean Squares (RMS) er-
rors in pixels, LMI relaxation order Æ, the size of the moment
matrix and the total number of decision variables.

Examining the moment matrix of the estimates, the ratio of
the two largest singular values, �����, is ���� and ��� for the
polynomial method and the Schur form, respectively. Thus,
the moment matrices are close to rank one which would guar-
antee global optimality, cf. Section 2.

Remark. It is important to note that in the polynomial
scheme, the number of decision variables increases drasti-
cally while the increase in the Schur form is more moder-
ate. The complexity of the polynomial approach for prob-
lems with (i) more than three views or (ii) more degrees of
freedom is computationally very demanding. Therefore, we
will focus on the more promising Schur method in the re-
maining part of the paper.

6. More Applications
6.1. Camera Pose
In the problem of camera pose, also known as camera re-
sectioning or absolute orientation, the camera matrix is the
object of interest. Given a set of known 3D points ����

�
���

in the scene, the goal is to reconstruct the camera matrix � .
Let

� �
� �� �� �� ��
�� �� �� ��
�	 ��� ��� �

�
�

The polynomials ������ ������ and ����� will again be affine
functions (that is, having degree one) and the coefficients are
determined by the scene points �� and the measured points
�
�. While ������ and ������ will generally depend on all
�� variables in �, the depth function ����� depends only on
three variables, namely ����� � ������ ���� ����. Thus, in
the optimization process, it will suffice to do partial relax-
ations on these three variables, as described in Section 2.2.
If all �� variables were to be relaxed, then the problem would
have become computationally impossible, or at least hard, al-
ready for relaxation orders greater than two.

6.2. Homography Estimation
A homography is a projective transformation from�� to ��.
The problem of estimating a homography is similar to that of

camera pose. For example, suppose we are given a collection
of 3D points ����

�
��� on a plane, then there exists a homogra-

phy, which can be represented by a ��� matrix � , mapping
these points to the image plane, as ��
� � ��� where �� are
homogeneous plane coordinates. Hence, by setting

� �
� �� �� ��
�� �� ��
�� �� �

�
�

the problem can be put in the standard form (6) with LMI
relaxations on �� and �
.

More generally, if we are given two collections of points
in��, then we can compute the homography� � �� �� ��,
mapping one set to the other. All measurement errors will be
assumed to be in one of the point sets and it will suffice to re-
lax the variables appearing in the last row of the homography
matrix in accordance with the principle of partial relaxation,
cf. Section 2.2.

In the case of a plane-to-image homography as described
above, it makes sense to speak of the optimal homography.
However, for other problems involving projective transfor-
mations, it may not be the best choice to optimize the ��-
norm. For example, for an inter-image homography it would
be better to use a symmetrical cost-function.

6.3. Epipolar Geometry
Given corresponding image points in two views, we could
in principle follow the same strategy as before in order to
reconstruct both camera matrices and scene structure. But
this would unfortunately lead to an intractable problem since
there are simply too many variables that would appear in
non-linear polynomials.

Therefore, we will reformulate the problem once again.
Given corresponding points 
 and 
� in two images, the
epipolar constraint should be fulfilled:


���
 � ��

where � is a � � � matrix of rank two. Given � , one can
recover uniquely two camera matrices modulo projective co-
ordinate system [5]. In [21], the following optimization cri-
terion was analyzed:
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It was shown that the criterion can be regarded as a first or-
der approximation of the optimal two-view structure and mo-
tion problem. Moreover, for certain motion configurations,
it is even equivalent. From a practical perspective, the re-
constructed motion using the criterion was very close to the
statistically optimal one.

Analogously to the derivation in Section 4, let �� be an
upper bound on the 
th residual term. Using a Schur comple-



ment argument, the problem can be reformulated as,
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Finally, by parametrizing the fundamental matrix by

� �
� �� �� ��
�� �� ��
�� �� �

�
�

the problem is given in a Schur form. As the determinant
constraint is cubic in �, a relaxation order of at least two is
required. All elements in � appear in non-linear expressions
and hence all eight variables need to be relaxed. In addition
to ���� � � one can add �� ���� � �, 
 � �� ���� � without
increasing the complexity and to tighten the LMI relaxations
of the non-convex problem.

7. Experimental Validation
The proposed approach for geometric reconstruction prob-
lems has been validated on both simulated and real data. The
goal has been to determine if a global estimate is actually ob-
tained and if so, at what accuracy. This is not an easy task,
however, since there are no other independent methods to
compute the global estimate.

We have compared our algorithms with standard linear
techniques as well as bundle adjustment [5]. In all exper-
iments, the bundle adjustment has been initialized with (i)
our method, (ii) the linear algorithm and when available,
(iii) the synthetically generated ground truth3. Out of these
bundle results, only the one with lowest reprojection error
is reported. For easier comparison, the Root Mean Squares
(RMS) errors are given instead of the sum of squares errors.

7.1. Implementation Details
All the described reconstruction algorithms have been imple-
mented under the Matlab environment in the publicly avail-
able package GloptiPoly [7] using the conic programming
solver SeDuMi [15]. The computation times (i.e. the cputime
for the solver SeDuMi) vary from .23 s for three-view trian-
gulation to 3.4 s for epipolar geometry with 104 correspon-
dences on a Pentium 4 with 2.8 GHz. In all experiments but
the last one, an LMI relaxation order equal to 3 has been used
with � � ����� for the trace of the moment matrix, cf. Sec-
tion 2.2. For the estimation of epipolar geometry, the corre-
sponding numbers are LMI order 2 and � � �������. These
settings have been found empirically. There are many tuning
parameters in the algorithm that can significantly impact on
the performance and accuracy (including all the tuning pa-
rameters of the SeDuMi solver). It is out of the scope of this
paper to give a comprehensive description of the respective
and relative influences of all these parameters.

3The ground truth gives only zero reprojection error when no image
noise is added.

Normalization of the input coordinates is essential, both
for the linear algorithms and for the Schur method. The mo-
ment matrices contain lifting variables of high-order mono-
mials making the optimization sensitive to data scaling. This
preprocessing step has been done by changing coordinate
systems in order to get coordinates with magnitude around
one, see [5]. In the Schur formulation, only transformations
invariant to the cost-function are applied.

In all parametrizations of the unknowns, one element in
a homogeneous vector is dehomogenized, normally the last
element. This may cause numerical problems when the last
element happens to be close to zero. On the other hand, the
situation is detectable via, for instance, the global optimality
check and one can then dehomogenize another element in the
vector and rerun the algorithm.

7.2. Synthetic Data

All simulated data was generated in the following man-
ner. Uniformly random 3D points with coordinates within
���� � � units were projected to cameras with focal lengths
of � pixel. The camera centers were (randomly) chosen at
distances of 5 units from the origin in average. The cam-
eras’ viewing directions were also random, though biased to-
wards the origin. In addition, the image coordinates were
corrupted by zero-mean Gaussian noise with varying levels
of s.t.d. This procedure typically gives coordinates with ab-
solute values less than a pixel.

We have tested the Schur formulations for triangulation
and camera pose on simulated data. The results are presented
in Figure 2 and the graphs show the average result of ���
repetitions. The behavior of the two schur algorithms rela-
tive the other methods are similar when noise levels and the
number of points/views, respectively, are varied.

In Figures 2(a) and (e), one can see that the errors for
the Schur formulations follow very close to that of the best
obtained with bundle adjustment. Recall that the bundle ad-
justment is initialized with the Schur estimate and the linear
estimate as well as the ground truth. The result with the low-
est RMS error is kept. The linear algorithm yields worse
estimates, as expected.

In Figures 2(b) and (f), the percentage of times the refined
estimates (Schur or linear) equal the estimate of the (best)
optimum, obtained by applying bundle adjustment. Gener-
ally, the Schur estimates attain the optimum and the moment
matrices are close to rank one. Hence, it is likely that the
global optimum is retrieved. The refined linear estimates risk
getting stuck in local optima.

When the number of views or points are varied, the Schur
algorithms also closely follow the bundle result, see Fig-
ures 2(c) and (g), and generally the optimum is attained, cf.
Figures 2(d) and (h). As more views or points are taken into
account, the differences between the linear and the Schur
methods decrease.



0 0.02 0.04 0.06
0

0.02

0.04

0.06

0.08
Triangulation, 3 views

Noise level (pixels)

R
M

S
 e

rr
or

 (
pi

xe
ls

)

Linear algorithm
Schur formulation
Bundle adjustment

0 0.02 0.04 0.06
80

85

90

95

100
Triangulation, 3 views

Noise level (pixels)O
pt

im
um

 a
tta

in
ed

 (
%

)

Linear algorithm

Schur formulation

2 4 6 8 10
0.01

0.02

0.03

0.04

0.05

0.06

Triangulation, noise 0.05 pixels

Number of views

R
M

S
 e

rr
or

 (
pi

xe
ls

)

Linear algorithm
Schur formulation
Bundle adjustment

2 4 6 8 10
80

85

90

95

100
Triangulation, noise 0.05 pixels

Number of views

O
pt

im
um

 a
tta

in
ed

 (
%

)

Linear algorithm
Schur formulation

(a) (b) (c) (d)

0 0.02 0.04 0.06
0

0.1

0.2

0.3

0.4
Camera pose, 10 points

Noise level (pixels)

R
M

S
 e

rr
or

 (
pi

xe
ls

)

Linear algorithm

Schur formulation

Bundle adjustment

0 0.02 0.04 0.06
60

70

80

90

100
Camera pose, 10 points

Noise level (pixels)O
pt

im
um

 a
tta

in
ed

 (
%

)

Linear algorithm

Schur formulation

6 10 15 20 25 30
0

0.1

0.2

0.3

0.4
Camera pose, noise 0.05 pixels

Number of points

R
M

S
 e

rr
or

 (
pi

xe
ls

)

Linear algorithm
Schur formulation
Bundle adjustment

6 10 15 20 25 30
80

85

90

95

100
Camera pose, noise 0.05 pixels

Number of points

O
pt

im
um

 a
tta

in
ed

 (
%

)

Linear algorithm

Schur formulation

(e) (f) (g) (h)

Figure 2: Upper row: Triangulation. Lower row: Camera pose. See text for details.

7.3. Real Data

We have worked with two publicly available sequences with
given point correspondences4 to test the performance on real
image data. The first one is a corridor sequence with a
forward-moving camera motion consisting 104 correspon-
dences visible in all 11 images. The second one is a turn-
table sequence of a dinosaur with 36 images and in total �	�
points with lots of occlusions, cf. Figure 3.

Out of the 104 correspondences in the corridor sequence,
	� points lie on the left, frontal wall and hence the points
should be coplanar in space. These points were used to com-
pute inter-image homographies between consecutive views5.
In Figure 4(a), the errors are shown. The linear algorithm
performs well, but generally the Schur algorithm performs
better and it has similar performance as bundle adjustment.

The two-view epipolar geometries for consecutive images
in the corridor and the dinosaur sequences have also been
computed. In the corridor sequence, all ��� correspondences
were used and the RMS errors are presented in Figure 4(b).
The epipolar lines for the first image pair are illustrated in
Figure 3. The performance of the Schur method is again
comparable to the result of bundle adjustment.

We have also computed the epipolar geometries for con-
secutive views in the dinosaur sequence, cf. Figure 3. The
average RMS errors for the 35 image pairs are �	��, �	��
and �	�� for our method, the 8-point algorithm and bundle
adjustment, respectively. Hence, the three methods are simi-
lar in performance for this scene.

We have noticed that the Schur algorithm for epipolar ge-
ometry estimation is more sensitive to data scaling than for

4Available at http://www.robots.ox.ac.uk/�vgg/data.html.
5Our optimization criterion is not the best choice in this case, since it is

implicitly assumed that there is no noise in one image.

Figure 3: First images of the corridor (left) and dinosaur
(right) sequences with epipolar lines with respect to the sec-
ond view. While the first camera is moving forwards (or
backwards), the other one is moving sideways.

the other tasks. Also, it is usually not good practice to de-
homogenize the last element in the fundamental matrix since
it will vanish if the optical axes intersect. Due to this sen-
sitivity, one may have to rerun the Schur algorithm several
times if an element in the fundamental matrix is dehomoge-
nized which has small magnitude. A priori, it may be hard
to say which element has the largest magnitude, or more im-
portantly, which element gives the most accurate result. Such
numerical aspects need to be further investigated.

8. Discussion
The area of geometric reconstruction problems is a mature
field and state-of-the-art methods are quite sophisticated.
For example, linear methods with proper data normalization
perform often satisfactorily for low noise levels. Still, our
approach gives generally better estimates, particularly, for
higher noise levels. In fact, our experiments indicate that
the estimates are very close to the global optimum and that
the risk of getting stuck in a local minima is small.

We have extended the existing theory of LMI relaxations
of scalar polynomial optimization problems to matrix poly-
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Figure 4: Estimation results of homographies (left) and two-
view epipolar geometries (right) for consecutive images in
the corridor sequence.

nomial optimization problems. Instead of linearizing all
the monomials, we used partial relaxations, i.e. we consid-
ered only a limited subset of variables corresponding to non-
linear, hence potentially non-convex terms in the PMIs. In
general, these structure-exploiting partial relaxations are of
smaller size than the full relaxations described in [11]. On
the negative side, contrary to the full relaxations, we cannot
guarantee asymptotic convergence to the global optimum.
However, practice reveals that the moment matrix has nu-
merical rank close to one for LMI relaxations of moderate
order, which ensures global optimality in most cases.

Several numerical aspects related with these LMI relax-
ations deserve to be studied in further detail. Since the LMI
relaxations are built on moment matrices which may fea-
ture monomials of relatively high order, the use of alternative
polynomial bases (Chebyshev, orthogonal polynomials) may
be interesting. Appropriate definitions of numerical analy-
sis concepts such as conditioning or scaling of these moment
matrices would also be required in this context. Moreover,
evaluating the rank of a numerical matrix is a difficult task.
The underlying numerical analysis problem is ill-posed, in
the sense that the rank function maps a continuous set (reals)
onto a discrete set (integers) and a vanishing perturbation can
affect the output. Evaluating the rank requires to set up an ar-
bitrary threshold on the eigenvalues (absolute or relative) - a
sensitive task.
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