
Matching with Shape Contexts

Serge Belongie and Jitendra Malik
Department of Electrical Engineering and Computer Sciences

University of California at Berkeley, Berkeley, CA 94720, USA
fsjb,malikg@cs.berkeley.edu

Abstract

We introduce a new shape descriptor, the shape context,
for measuring shape similarity and recovering point cor-
respondences. The shape context describes the coarse ar-
rangement of the shape with respect to a point inside or on
the boundary of the shape. We use the shape context as a
vector-valued attribute in a bipartite graph matching frame-
work. Our proposed method makes use of a relatively small
number of sample points selected from the set of detected
edges; no special landmarks or keypoints are necessary.
Tolerance and/or invariance to common image transforma-
tions are available within our framework. Using examples
involving both silhouettes and edge images, we demonstrate
how the solution to the graph matching problem provides us
with correspondences and a dissimilarity score that can be
used for object recognition and similarity-based retrieval.

1. Introduction

This paper addresses two related problems: measuring
shape similarity and recovering point correspondences. The
shapes in our study include silhouettes as well as line draw-
ings with internal markings. We introduce a new shape de-
scriptor, the shape context, to describe the coarse arrange-
ment of the shape with respect to a point inside or on the
boundary of the shape. The shape context can be combined
with a conventional appearance-based descriptor, such as
local orientation. We then use the combined descriptor as a
vector-valued attribute in a bipartite graph matching frame-
work. Our proposed method makes use of a relatively small
number of sample points selected from the set of detected
edges. No special landmarks or keypoints are necessary.
We demonstrate by means of example how the solution to
the graph matching problem provides us with correspon-
dences and a similarity score that can be used for object
recognition and similarity-based querying. In this regard,
our contribution can be seen as a module that could add
functionality in a standard content-based retrieval system

(e.g. [3, 17, 12, 1]).
The matching method we propose operates on 2D im-

ages. Though there are certain applications in image re-
trieval where the media is inherently 2D (e.g trademarks or
fonts), ultimately our interest lies in matching 3D objects
from multiple 2D views. Since it is generally impractical to
have access to arbitrarily many views of an object, we need
a metric for similarity that is reasonably tolerant to pose
variations and occlusion.

The structure of this paper is as follows. We first discuss
related work in Section 2. Next, we introduce the shape
context in Section 3 and our method for matching in Sec-
tion 4. We then summarize our experimental results in Sec-
tion 5. Finally, we conclude in Section 6, where we outline
how this approach might be integrated into a general image
retrieval system using automatically segmented images.

2 Related Work

The related work on shape matching divides into three
main categories, which we discuss next.

2.1 Silhouettes

A great deal of research on shape similarity has been
done using the boundaries of silhouette images. Since sil-
houettes do not have holes or internal markings, the asso-
ciated boundaries are conveniently represented by a single
closed curve. Since this constraint is too restrictive for the
aims of our present work, we will only briefly discuss a few
works in this area.

Much of the early work on silhouette boundaries was
done using Fourier descriptors, e.g. [32, 18]. A representa-
tive of more recent works is that of Gdalyahu and Weinshall
[5], which is a dynamic programming-based approach that
uses the edit distance between curves. Their algorithm is
fast and invariant to several kinds of transformation includ-
ing some articulation and occlusion.

A dual approach to the problem of matching silhouette
boundaries can be found, for example, in the work of Kimia
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et al. [24]. Their approach makes use of the medial axis
representation and achieves similar results to those in [5].
The use of the medial axis shows promise from the point of
view of exploiting topology and reasoning about parts, but
is inherently sensitive to occlusion and noise.

2.2 Image Matching

Image matching or appearance-based methods offer a
complementary view to silhouette-based methods. Rather
than focus on the shape of the occluding contour, these ap-
proaches make direct use of the brightness values within the
visible portion of the object. A measure of similarity can be
computed via simple correlation or, as is done in the so-
called “eigenimage” approaches, by comparing projections
onto a set of principal components. Much of the work in the
latter area involves face recognition, e.g. [25, 26]. Murase
and Nayar have applied these ideas to multiple 2D views
of 3D objects [14], and this has been an area of continued
activity.

Though the eigenimage framework will most certainly
persist at least as a component of future image retrieval and
object recognition systems, it is inherently too sensitive to
small changes in illumination and pose to be practicable as
a general solution.

2.3 2D Point Sets

The last category is that of 2D point set methods. We
use this designation to refer to approaches for which the
input representation is a set of extracted feature points (e.g.
edge elements or corners) which are regarded as lying in the
plane rather than along a parameterized curve.

These methods benefit from being abstracted away from
the raw pixel brightnesses since the feature detection can be
made invariant to common variations in illumination. More-
over, the lack of dependence on a 1D arclength parameter-
ization makes these methods in principle more tolerant to
linebreaks due to small occlusions or noise.

Huttenlocher et al. developed a method in this category
based on the Hausdorff distance [8], yielding a significant
improvement over binary correlation. The method can be
extended readily to deal with partial matching and clutter.
One drawback, however, is that it is highly dependent on
having closely spaced poses in the training set [9], as was
true for Murase and Nayar [14]. The entities considered
in the Hausdorff distances are the points themselves – edge
elements, in this case – with no associated local or global
encoding of shape, the inclusion of which could allow one
to encode invariance to changes in pose. Another drawback
for our purposes is that the method does not return corre-
spondences, though this can be seen as a benefit from the

standpoint of speed. Methods based on distance transforms,
such as [4], are similar in spirit and behavior.

The work of Sclaroff and Pentland [21] makes the shape
description for points on an object more explicit through
the physical analogy of a finite element spring-mass model.
The corresponding eigenmodes were shown to be effective
for recovering accurate correspondences and indexing into
databases based on shape similarity. Though the method
appears to be highly tolerant to deformation, the problem of
occlusion is not addressed. Earlier examples of approaches
in this vein can be found in [23, 22, 27]. An alternative
approach along the same lines has been developed by Gold
and Rangarajan using deterministic annealing [7, 6].

The method of deformable templates [31] lies some-
where between the 2D point set and appearance-based cat-
egories. A deformable template is a parameterized model,
e.g. of a human eye, that searches for a good fit in the sur-
face of the grayscale image. This is a very flexible approach
in that invariance to certain kinds of transformations can be
built into the measure of model similarity, but it suffers from
the need for hand-designed templates and the sensitivity to
initialization when searching via gradient descent.

Geometric hashing and indexing techniques, e.g. [2, 11]
have also seen some success in the shape matching appli-
cation. Since these methods can be viewed as speeding up
algorithms that can be described in more straightforward but
less efficient terms, we do not focus on the details of these
systems here.

For a more detailed discussion of the variety of shape
matching techniques, the reader is referred to [28].

3. Introducing the Shape Context

In order to compute shape correspondences and similar-
ity, one must start by defining a shape descriptor. In analogy
to the stereo matching problem, we would like to have de-
scriptors that can be computed in one image and used to find
corresponding points, if visible, in another image.

3.1 The Basic Idea

The shape context analysis begins by taking N samples
from the edge elements on the shape. These points can be
on internal or external contours. They need not, and typi-
cally will not, correspond to keypoints such as maxima of
curvature or inflection points. We prefer that the samples
be roughly uniform in spacing, though this is also not crit-
ical. An example using the shape in Figure 1(a) is shown
in Figure 1(c). Note that this shape, despite being very sim-
ple, does not admit the use of the silhouette-based methods
mentioned in Section 2.1 due to its internal contour.

Now consider the vectors originating from a point in Fig-
ure 1(d) to all other points in the shape. These vectors ex-
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Figure 1. Shape context computation and graph matching.
(a,b) Original image pair. (c) Edges and tangents of first let-
ter with 50 sample points. (d) Vectors from a sample point
(at left, middle) to all other points. The median distance �
for all N2 point pairs is shown at bottom for reference. (e)
log r; � histogram of vectors in (d), with 5 and 6 bins, re-
spectively. (Dark=large value.) (f) Correspondences found
using Hungarian method, with weights given by sum of two
terms: histogram dissimilarity and tangent angle dissimilar-
ity. (g,h) The “shape contexts” for the two letters, formed by
flattening and concatenating the histograms for all points in
each image; each shape context has 50 rows, one per sample
point, and 30 columns, one for each histogram bin.

press the appearance of the entire shape relative to the ref-
erence point. Obviously, this set of vectors is a rich descrip-
tion, since as N gets large, the representation of the shape
becomes exact.1

Since our goal is to match shapes that vary from one in-
stance to another, to use the full set of vectors as a shape
descriptor is inappropriate.

Our solution is to produce a compact descriptor for each
sample point by computing a coarse histogram of the rel-
ative coordinates of the remaining points. The reference
orientation for the coordinate system can be absolute or rel-
ative to a given axis; this choice depends on the problem
setting. For now we will assume an absolute reference ori-
entation, i.e. angles measured relative to the positive x-axis.

Since we would like the histogram to distinguish more
finely among differences in nearby pixels, we propose to
use a log-polar coordinate system. An example of a such a
histogram computed for the set of vectors in Figure 1(c) is
shown in Figure 1(e); dark pixels denote larger values. We
call this histogram the shape context. In this example we
have used 6 equally spaced angle bins and 5 equally spaced
log-radius bins. The complete set of N shape contexts are
shown, flattened and concatenated, in Figures 1(g) and (h)
for the two sample images in (a) and (b).

3.2 Incorporating Local Appearance

While the shape context encodes a description of the
density of boundary points at various distances and angles,
it may be desirable to include an additional feature that ac-
counts for the local appearance of the reference point it-
self. Such features might include local orientation, vec-
tors or filter outputs, color histograms, and so on (see e.g.
[19, 29, 10, 20]). In our experiments, we illustrate this con-
cept using the simple feature of local orientation.

3.3 Incorporating Invariances

Depending on the application, it may be necessary to
have invariance to certain image transformations. Note that
in some cases, as when distinguishing 6 from 9, complete
invariance (in this case, to rotation) impedes recognition
performance. We now discuss how these invariances can
be addressed by our system.

3.3.1 Translation

Invariance to translation is intrinsic to the shape context def-
inition since everything is measured with respect to points
on the object. If translation-variant descriptors are desired,
an absolute reference frame with a fixed origin can be used.

1This assumes the contours have bounded curvature; we are not con-
sidering fractals and such.

0-7695-0695-X/00 $10.00 (c) 2000 IEEE 



3.3.2 Scale

A number of choices are available for achieving varying de-
grees of scale invariance. The method we use is to normal-
ize all radial distances by the median distance � between
all N2 point pairs in the shape, since the median is reason-
ably robust to outliers. An example of the median length is
shown in Figure 1(d).

3.3.3 Rotation

Invariance to rotation can be obtained in several ways. The
simplest method is to measure all angles for an object rel-
ative to its axis of least inertia. This axis will be arbitrary,
however, for shapes that are not elongated. A more general
solution is to measure all angles relative to the tangent angle
at each sample point. In this frame, which we refer to as the
relative frame, the shape context definition becomes totally
rotation invariant. The drawback is that if one wishes to
incorporate rotation-variant local appearance features (e.g.
local orientation), their discriminative power is lost. In or-
der to fix this problem, one might make use of a voting
scheme such as pose clustering to guess a global reference
frame. We intend to explore solutions to this problem in
future work.

3.3.4 Occlusion

Occlusion presents a comparatively more difficult problem
than the preceding cases since it involves a loss of informa-
tion. Much work is still required in the area of object recog-
nition to fully address this problem; we do not claim to have
solved it. However, certain characteristics of our approach
help to minimize its impact. The use of log-distances places
more dependence on nearby pixels, so that pixels far from
the occluded edge still have a chance of finding a good cor-
respondence in the model image. Though the correspon-
dences will be poor for the occluded points, we can exploit
the good correspondences either to iterate and repeat the
match only using the hypothesized unoccluded regions, or
simply use a partial cost to achieve some robustness to out-
liers. We intend to explore this in future work.

4. Matching Shape Contexts

In determining shape correspondences, we aim to meet
two criteria: (1) corresponding points should have very
similar descriptors, and (2) the correspondences should be
unique. We will start with the first criterion.

The matching cost is comprised of two terms: one for
shape context and the other for local appearance. The shape
context term CS is given by the �2 distance between the
two histograms. If we denote the two K-bin (normalized)

Figure 2. Correspondences between selected points on a
pair of hands, with and without “digital surgery” (after
[21]). The number of samples used was 100.

histograms by g(k) and h(k), the �2 distance is given by

CS =
1

2

KX
k=1

[g(k)� h(k)]2

g(k) + h(k)

Its value ranges from 0 to 1.
The local appearance term CA, which in our case rep-

resents a measure of tangent angle dissimilarity, is defined
by

CA =
1

2
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In other words, it is half the length of the chord in the unit
circle between the unit vectors with angles �1 and �2. Its
value ranges from 0 to 1.

The combined matching cost is computed via a weighted
sum: C = (1 � �)CS + �CA. We assume that the same
number of samples (N) are taken from each shape.

Given the set of costs Ci;j between all pairs of points,
we can proceed to address the uniqueness criterion. Our
objective is to minimize the total cost of matching subject
to the constraint that the matching be one-to-one. This is
an instance of the square assignment (or weighted bipartite
matching) problem, and it is solved in O(N3) time by the
Hungarian method [16].

The input to the Hungarian method is a square cost ma-
trix with entries Ci;j representing the cost of matching node
i in the first image to node j in the second. The result is
a permutation �(i) such that the sum

P
i Ci;�(i) is a min-

imum. The result of applying this method to the letter-
A example is shown in Figure 1(f), where we have used
� = 0:3. Another example with the same settings (except
thatN = 100) is shown in Figure 2 for a few selected points
on a pair of hands.

5. Experiments

In the following experiments, the dissimilarity score is
defined as the total cost

P
i Ci;�(i) and the bin definitions

are as follows: 12 equally spaced angle bins, from 0Æ to
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Figure 3. Left: Kimia dataset. Right: Dissimilarity matrix.
The digits in each row indicate the three nearest neighbors.

360Æ, and 5 log-spaced radius bins from 0:125� to 2�. Ra-
dius values inside 0:125� or outside 2� are assigned to the
first or last radius bin, respectively. In each experiment the
number of samples is N = 100.

5.1 Silhouettes I

The first silhouette database [24] consists of 25 objects
divided into 6 classes. They are shown in Figure 3. In this
experiment we used the relative frame (see Section 3.3.3)
and � = 0.

The results are summarized in Figure 3, which shows
the matching cost found using the Hungarian method for
all 252 shape pairs. In [24] and [5], the authors summarize
their performance on this dataset in terms of the number of
1st, 2nd, and 3rd nearest neighbors that fall into the correct
category. Our performance measured in this way is 25/25,
24/25, 23/25. The results reported in [24] and [5] are 23/25,
21/25, 20/25 and 25/25, 21/25, 19/25, respectively.

5.2 Silhouettes II

Our next experiment makes use of a set of 56 silhouettes
scanned from the index of the Audubon North American
Mammals field guide [30]. Limited space does not permit
us to show the complete set. Since these shapes do not
divide into strict classes, our experiments are designed to
show the ability of our system to sort shapes by similarity.
A subset of the results, using absolute frame and � = 0:3,
are shown in Figure 4.

5.3 Columbia Object Database

The COIL-100 database [15] consists of 100 color pho-
tographs of objects on a turntable with rotations in azimuth
of 0Æ through 360Æ with 5Æ increments. For our tests, we

0.13465 0.15257 0.17109

0.20012 0.24158 0.25294

0.16821 0.22158 0.22694

0.14976 0.17115 0.17231

0.18419 0.19194 0.21248

0.1215 0.15226 0.1794

0.10287 0.1794 0.18419

0.21604 0.22129 0.22305

0.13512 0.13574 0.1497

Figure 4. Mammal silhouettes. Column 1: query images.
Columns 2-4: matching images, sorted by similarity.

converted the images to grayscale and selected three views
per object (�15Æ; 0Æ; 15Æ) for a total of 300 images. We
extracted the Canny edges using the same threshold set-
tings for the whole set. We then compared the 300 images
exhaustively. For these tests, we used � = 0:3, absolute
frame, and a fixed value of � = 50.

To measure performance, we counted the number of
times the closest match was a rotated view of the same ob-
ject. The result is 280=300. Of the 20 misses, 11 are due
simply to the absence of color as a feature (e.g. red/green
peppers, orange/green Rolaids bottles, yellow/green packs
of gum). Of the remaining 9, the majority of the closest
matches occur within similar object categories. The three
closest matches for 10 examples are shown in Figure 5.

6. Conclusion

We have presented a new approach to computing shape
similarity and correspondences in a graph-matching frame-
work. In our experiments we have demonstrated invariance
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0.12438 0.15686 0.19185

0.096817 0.10599 0.14549

0.10782 0.11005 0.17081

0.13576 0.14546 0.21586

0.12754 0.13599 0.24696

0.12857 0.13412 0.13628

0.12216 0.12242 0.12304

0.15563 0.16365 0.16369

0.1172 0.12587 0.12652

0.15839 0.15892 0.1596

Figure 5. Three closest matches for ten example images
in the COIL-100 database. Query images appear in the
first column; matched images are shown to the right, with
matching cost shown below. Rows 1-5: closest match cor-
rect. Rows 6-10: closest match incorrect. We observed
that the majority of the matches labelled “incorrect” oc-
curred between objects in similar categories (e.g. convert-
ible/sedan car) or of different colors (e.g. red/green pepper).

Figure 6. Future directions. Shown here is a pair of im-
ages segmented using the method of Malik et al [13]. By
combinatorially hypothesizing merged regions, and with the
help of color and texture cues, we aim to combine our shape
matching technique with an automatic segmentation system
to improve object recognition and retrieval performance.

to several common image transformations, including sig-
nificant 3D rotations of real-world objects. The problem of
occlusion remains to be explored.

A major focus in our ongoing work is to incorporate
the methods discussed here, which assume that the image
has been segmented, into a system with automatically seg-
mented real-world images. For illustrative purposes, Figure
6 shows a pair of images segmented using the algorithm
from [13]. In order to apply a shape matching technique
to this problem, one must first hypothesize merged regions
from each image (or only one, if the model image is labeled)
to compensate for oversegmentation, which may be due to
error or to valid internal boundaries in multi-part objects.
Since the number of segments is quite small relative to the
original number of pixels, one can reasonably apply com-
binatorial methods, influenced of course by color or texture
cues, contiguity, and so on. We intend to explore these di-
rections in our ongoing work.

Acknowledgements

This research is supported by (ARO) DAAH04-96-1-
0341, the Digital Library Grant IRI-9411334 and an NSF
graduate Fellowship for S.B. We would like to thank
Alyosha Efros, Thomas Leung, and Jan Puzicha for help-
ful discussions and Niclas Borlin of Umeå University for
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