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Abstract 

A given (overcomplete) discrete oriented pymmid may 
be converted into a steemble pyramid by interpolation. 
We present a technique for deriving the optimal interpola- 
tion functions (otherwise called steering coeficients). The 
proposed scheme is demonstmted on a computationally ef- 
ficient oriented pyramid, which is a variation on the Burt 
and Adelson pyramid. We apply the generated steerable 
pyramid to orientation-invarianttexture analysis to demon- 
strate its excellent rotational isotropy. High classiJcation 
rates and precise rotation identification are demonstrated. 

1 Introduction 

Oriented filters play a key role in early visual processes 
and in image processing. Earlier work by Freeman and 
Adelson [ 11 and Perona [2] has shown how the use of steer- 
able filters allows one to use a small set of such filters 
and still treat all orientations in a uniform way. Freeman 
and Adelson address the problem of synthesizing exactly 
steerable filters. Perona addresses the problem of calcu- 
lating the best steerable approximation to a given impulse 
response. We approach here a third related problem. It 
is sometimes desirable to use a particular set of oriented 
filters, due to certain desired filter characteristics, compu- 
tational complexity, existing hardware implementations or 
other constraints. The question arises: what is the best way 
to interpolate a given set of filters? In this paper we present 
a technique for deriving the optimal set of interpolation 
functions (steering coefficients) for a given overcomplete 
discrete representation, thus generating a steerable repre- 
sentation. We illustrate our technique using as a sample 
case an oriented Laplacian pyramid, which allows for a 
computationally efficient Gabor-like filtering scheme. 

The oriented Laplacian pyramid filtering scheme is a 
variation on the Burt and Adelson pyramid [3,4]. It was 
presented in the context of a texture-recognition system in 
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[5]. Some of its interesting characteristics are its computa- 
tional efficiency and compactness, which lead to minimal 
hardware requirements. We describe it in section 2. 

We next show how the oriented pyramid, which has 8/3 
redundancy (this is a more compact representation than has 
previously been used in the literature [1,3]), can be trans- 
formed into a steerable one. In sections 3 and 4 we present 
the procedure to calculate the interpolation functions which 
give us a steerable representation. 

We conclude this paper by addressing the issue of rota- 
tion invariant recognition via the extracted steerable repre- 
sentation. We present a scheme for generating rotationally- 
invariant feature-vectors for an input image, together with 
extracting the actual rotation information. High classifi- 
cation rates and precise rotation estimation results are pre- 
sented for both synthetic and natural textured images, which 
demonstrate the usefulness and precision of the steerable 
pyramid in the difficult real-world task of rotation invariant 
texture recognition. 

2 The Oriented Laplacian Pyramid 

There is both biological and computational evidence 
supporting the use of a bank of orientation-selective band- 
pass filters, such as the Gabor filters, for the initial feature 
extraction phase of many image-processing tasks. These 
tasks include edgedetection, motion-flow analysis and tex- 
ture recognition [5,6,7,8]. Orientation and frequency re- 
sponses are extracted from local areas of the input image 
and the statistics of the coefficients characterizing the local 
area form a representative feature vector. In the applica- 
tion domains listed above, the extracted feature vectors are 
used as an intermediate step towards orientation analysis, 
or other higher-level analysis. The constraints are therefore 
computational efficiency and memory requirements (espe- 
cially important for real-world applications), as opposed to 
achieving a complete self-inverting representation which 
is important for coding and reconstruction purposes. It is 
this distinction which motivates us into using the oriented 
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Laplacian pyramid described below, which is both compu- 
tationally efficient and compact. 

The pyramid filterhg scheme 

In a pyramid representation the original image is decom- 
posed into sets of lowpass and bandpass components via 
Gaussian and Laplacian pyramids, respectively [3]. The 
Gaussian pyramid consists of lowpass filtered (LP@ ver- 
sions of the input image, with each stage of the pyramid 
computed by lowpass filtering and subsampling of the pre- 
vious stage. The Laplacian pyramid consists of bandpass 
filtered (BPF) versions of the input image, with each stage 
of the pyramid constructed by the subtraction of two cor- 
responding adjacent levels of the Gaussian pyramid. We 
use the Filter-Subtract-Decimate (FSD) Laplacian pyramid 
[4], which is a variation on the Burt Laplacian pyramid 
[3]. In the following we refer to the input image as Go, 
the LPF versions are labeled GI thru GN with decreasing 
resolutions and the corresponding BPF versions are labeled 
LO thru LN respectively. 

Go,+, = W*Gn ; L n  = G n - e + 1  

Gn+l= Sub-led Go,+, (1) 

The LPF, W, is Gaussian in shape, normalized to have its 
coefficients sum to 1. The values used in this work for W, 
which is a 5-sample separable filter, are (1/16,1/4,3/8,1/4, 
1/16). 

In order to extract the orientationally tuned band-pass 
filtering responses, the oriented pyramid is formed next. 
The oriented pyramid is the result of modulating each level 
of the Laplacian pyramid with a set of oriented sine waves, 
followed by another LPF operation using a separable filter, 
and corresponding subsampling, as defined in (2): 

on, = LPF[e('k:.qL,[z, y]] (2) 

where On, is the oriented image at scale n and orientation 
a, r' = zi'+ yi (z an$ y are the spatial coordinates of 
the Laplacian image), k, = (7r/2)[cosBU<+ sin8,jj and 

In this work we use 4 oriented components (N = 4). 
From (2), each level (n) of the pyramid is thus modulated 
by the following complex sinusoids: 

e, = ( I r / ~ ) ( a  - I), = 1 . ~ ) .  

- ei(r/2)* ; m2(z, y) = e'(*fi/4)(~+~) m l k ,  Y) - 
m3(z, y) = ei(r/2)y ; m(2, y) - - e i (4 /4I (~ -z )  (3) 

These four modulators differ only in their orientations, 
which are Oo, 4 9 ,  90° or 135' for ml through m4, respec- 
tively. The origin of z and y is taken to be the center 
of the image being modulated. Note that the modulating 
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Figure 1: Block diagram of the oriented pyramid genera- 
tion. The power maps represent the local statistics of the 
oriented pyramid's coefficients (section 5). 

Figure2: Left: A set of orientedpyramid filters, On,. Real 
and imaginary components are presented, top and bottom, 
respectively, for n = 0 and a = 1..4. Right: Power 
spectra characteristics for the chosen filter set (+ conjugate 
counterparts). 

frequency remains constant for each level of the pyramid. 
After modulation, the Laplacian images are lowpass filtered 
and subsampled. At this point, the Laplacian images have 
effectively been filtered by a set of log-Gabor filters: 

Fig. 1 shows a block-diagram of the orientation-pyramid 
generation. A set of oriented-pyramid filters are displayed 
in Fig. 2. 

Pyramid characteristics 

We briefly present some characteristics of the pyramid. The 
interested reader is referred to [1,3,4,10] for more elaborate 
details. 
- In the FSD pyramid (l), subtraction occurs before the 
decimation step. This ensures that aliasing does not get 
incorporated into the mid-band regions of the bandpass im- 
ages, Ln, and gives better bandpass characteristics overall. 
- The FSD pyramid allows for a simple pipeline architec- 
ture. 
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- The filtering operation in (2) is not the standard one found 
in the literature. Usually, the original image is filtered with 
a set of oriented sinewave modulated Gaussian filters. In 
(2) the oriented filters are applied to the bandpass image, 
L, . This ensures good low-frequency (dc) rejection. In ad- 
dition, a r e v d  in the ordering of the filtering operations 
is performed (the image is first modulated by a sinewave 
and then LPFed, rather than modulating the LPF prior to 
convolving with the image). This reversal gives us sepa- 
rable filters, and therefore it allows for a computationally 
efficient filtering scheme. 

We next investigate the redundancy of the generated 
pyramid. The redundancy in the nonoriented Laplacian 
pyramid representation is 4 3 .  In the pyramid scheme ds 
fined above, we use four complex oriented filters to create 
eight oriented bandpas components from each nonoriented 
Laplacian level. The eight include the real and imaginary 
response maps from each complex oriented filter modula- 
tion. Since this involves lowpass filtering after the modu- 
lation, it is possible to subsample these oriented bands by 
a factor of 2 in each dimension. From each band of size 
M x M, we thus hold 8 bands of size M2/4. The total 
number of pixels at each level therefore increases fiom M2 
to (M2 x 8)/4 = M2 x 2. leading to an increase of re- 
dundancy by a factor of two. Overall, the redundancy of 
our oriented pyramid is 4/3 x 2 = 8/3. This pyramid is 
more compact than other oriented pyramids described in 
the literature which usually exhibit 16/3 redundancy [l-31. 

In the following d o n s  we investigate into the ex- 
tracted pyramid kernels. We show that we span the orien- 
tation space, we extract the interpolation coefficients that 
allow steerability in orientation, and finally, we utilize these 
properties for rotation invariant recognition. 

3 Spanning the Orientation Space 

In this section we show that the oriented pyramid as 
defined in the preceding section, with the selected oriented 
kernels of 45* bandwidth, spans the orientation space. 

Following the work of Perona 121, we make use of the 
singular-value decomposition (SVD) to investigate the in- 
dependence of the set of oriented pyramid kernels (as in 
equation 2). This procedure consists of the following steps: 

0 Generate 360 oriented pyramid kernels (at a single 
scale) via equation 2 with N = 360. 

0 Concatenate each of these 360 kernel matrices into 
column-vectors, and combine these column vectors to 
form a large matrix, A 

0 Perform the SVD by finding the matrices U, V, and 

Figure 3: SVD decomposition for the oriented pyramid 
kernels. The first seven singular values contain approx. 
99.5% of the sum of all the singular values. 

diagonal matrix I: such that 

A = UXVT (5 )  

The diagonal matrix I: contains the square roots of the pos- 
itive eigenvalues of ATA. The number of nonzero eigen- 
values in I: is equal to the number of linearly independent 
column vectors in A. Upon inspecting the results of the 
SVD, the first seven singular values, al..u7, in contain 
approximately 99.5% of the sum of all the singular values 
(E ai). This is shown in Fig. 3. The above result indicates 
that a set of eight filters, i.e., an orientation bandwidth of 
45O, is sufficient to span the 360° of orientation space with 
more than 99% accuracy. The four filters, 0,1 through 
On4, and their conjugate counterparts, which we hereon 
term 0,s through On8, satisfy this requirement. The cho- 
sen set of 4 filters are shown in Fig. 2 left. The filters’ 
combined power spectra (above 4 together with their con- 
jugate counterparts) covers uniformly the 360’ orientation 
space, as shown in Fig. 2 right. 

4 Interpolating in Orientation Space 

Given the set of oriented pyramid filters, 0,1 through 
O,g, we next define the interpolation functions (or steering 
coefficients) which allow us to use the finite set of eight 
filters (per scale) to synthesize oriented filters across the 
entire orientation space. Note that in this section we as- 
sume the input image to the pyramid to be a delta function, 
Go(z, y) = 6(z, y). We wish to use a finite set of oriented 
filters to calculate the output of filters at any orientation 
in a continuum. Let &&(e), k = 1..8, represent the 
interpolation coefficients in orientation space. We wish 
to calculate the filter output for any given angle 8, which 
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we define as f t (z) ,  via a linear interpolation scheme as 
follows: 

a 
&,O(z) = x p n , k ( e ) o n , k ( z )  (6) 

k=1 

For clarity purposes we hereon avoid using the scale nota- 
tion, with the understanding that the following derivation 
is performed at each scale, n, independently. 
Our goal is to minimize the error betyeen the filter output, 
Fe(z), and the interpolated output, Fe(z), (in space for a 
particular orientation e): 

ming,,, IIWz) - pe(z>IIiz (7) 

We have 

IIFe(z)-pe(z)I12 = IIFe(z)II2+llpe'Oz>1I2-2(Fe(z), pe(t)) 

where 
(8) 

and 

with rh(8)  = (Fe, O h ) @ .  

pression with respect to p: 
Using (&lo), we need to minimize the following ex- 

h,k h 
p- 

a b 

The derivative with respect to pz of the left term (a) gives: 
2 z k  p k  ( 0 2 ,  ok). m e  derivative Of the right term (b) 
gives: -21; (e). 
Equating the sum of the above two terms to zero leads to 
the following equation for the p's: 

~ ( o , , o k ) g L Z p k ( @ )  = r z ( 8 )  % = 1..N,k = 1..N 
k 

(12) 
In matrix form we have: 

op = r, (13) 

r 

1-  

0 8  - 

0.6 - 

0.4 - 

0 46 90 136 180 225 270 316 
whdw-8 

0 

Figure 4: One characteristic interpolation function (solid), 
as compared with the Sinc function (dashed). 

withO= (Oh,Ok)922,p=acolumnofthePk's,k: = 1." 
andr=acolumnofther,'s,z= 1." 
In the orthonormal case, 0 is a diagonal (identity) matrix 

In that case from (12) we get: 
since (Oh, o b )  = 6 h k .  

/%(e) = r h ( 8 )  = (Fe, Oh)w (14) 

For the nonorthonormal case, the solution requires more 
computation - one method would be Gauss elimination 
method, the other would be to decompose 0 by SVD to 
UXVT and use this to calculate 0-'. Here, UUT = I 
and VVT = I. The inverse matrix, O-l ,  can be found as: 

0-' = ~ [ c i i a g ( ~ / ( ~ j ) l ~ *  (15) 

p = ~ [ c i i a g ( l / ( ~ j ) l ~ ~  r, (16) 

The solution for p can now be extracted as: 

where in the case of a zero eigenvalue, Xi = 0, the corre- 
sponding 1/Aj in gets replaced by a zero. The above 
scenario takes care of all possible 0 matrices, even if the 
matrix is not full rank. Overall, if I' is in the range of 0 
then the extracted /3 functions are exact. If I' is not in the 
range then the p functions are the closest we can find in 
least-squares sense; i.e., minimizing 10 - p - r 1. 

Using the eight 45O bandwidth oriented filters, 01 
through 08, we extract the eight steering coefficients 
( p k  for k = 1 ..8), as outlined above. A plot of /&(e) over 
the range Oo - 360° is shown in Fig. 4. It is very similar 
to a sinc function. The curves for each P k  (e) le = 1. .8 are 
cyclic shifts of one another at 45' increments. 

With the interpolation functions in hyd,  we can now go 
back and calculate the oriented filters, Fe, from the finite 
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Feature vectors are extracted from the oriented pyramid 
via the following procedure: Power maps are first extracted 
from the oriented pyramid. The power of each filtered map 
can be defined as: 

0.4 

Pn,= IOn,l,n=O,l,2 C Y =  1,2,3,4.  (19) 

The power maps form a pyramid of the local statistics of 
the oriented pyramid's coefficients, which characterize the 
image local-area response to the different orientations and 
frequencies. Levels 0 and 1 of the power-pyramid are low- 

00 46 90 1% 1.D 928 270 511 300 passed and subsampled to be the size of the smallest level 
of the pyramid (see Fig. 1). Each pixel in the resultant 
power maps thus represents an 8 x 8 window in the original 
image. 15 dimensional fature-vectors are formed from 
the extracted power maps. These vectors consist of the 4 
oriented components per scale together with a non-oriented 

01 

0.1 

m h d . q u  

Figure 5:  Percent error in the reconstruction Of Oriented 
filters across the continuous orientation space, 8 = 0 - 360 
degrees, from the finite filter set, O k ,  k = 1 . A  

set of oriented filters, o k ,  as: 

PO = x @ k ( e ) o k  (17) 
k 

across the continuous orientation space, 8 = 0' - 360'. 
Fig. 5 shows the percent error, E(8), in the reconstruction 
of the oriented filters, for 8 = Oo - 360' with steps of 5'. 
Here the interpolation error E is defined as: 

Note that the peak error is less than 1%. This is in agreement 
with the SVD bound found in section 2. We have thus 
completed the proof of the pyramid steerability. 

An alternative scheme to the interpolation functions 
derivation of above which does not involve matrix inver- 
sions, makes use of the Gram-Schmidt orthogonalization 
process. This scheme is outlined in [ 101. 

5 Application of the Steerable Pyramid Ker- 
nels for Rotation-Invariant Texture Recog- 
nition 

We conclude this paper by demonstrating the application 
of the steerable pyramid kernels to rotation-invariant texture 
recognition. Here we am interested in learning a set of 
textured inputs, following which we would like to recognize 
new test inputs as belonging to one of the prelearned classes, 
even if the new input is rotated relative to the original 
input. Furthermore, we wish to state the orientation of the 
test input relative to the original one. An example of 10 
textures, 8 taken from the Brodatz texture database 19 1, and 
2 (cardboard, denim) acquired by us, is presented in Fig. 6. 

component extracted from the Laplacian pyramid. For ad- 
ditional details on the feature extraction stage see [5]. 

For a given input texture we define a characteristic curve 
(per scale) across orientation space as the texture's response 
curve to any oriented filter in the 360' space. The four 
oriented components (per scale) and their conjugate coun- 
terparts, sample the texture's characteristic curve at eight 
points. These samples cycle along the continuous curve as 
the texture is rotated. 

We have so far shown the steerability of the oriented 
filters (17). The exact interpolation equation for the filter 
powers is complex and will not be derived here. Given the 
fact that the energy is lowpass in orientation we make the 
approximation that the filter output powers can be interpo- 
lated with the (sinc-like) @ functions (this is confirmed by 
empirical observations): 

PO x p k ( e ) p k .  (20) 
k 

Here, 4 ,  k = 1 ..4, are the 4 oriented power components, 
PRO , a = 1. .4, and 9, k = 5 .  .8 is a duplicate set represent- 
ing the power components of the conjugate counterparts. 
Po represents the estimated power map for the texture ro- 
tated at 8. 

We test the estimation accuracy on a few texture exam- 
ples. Fig. 7 presents the estimation error, E(B), across 
orientation space (steps of 5 O ) ,  for a set of 5 textures. Here: 

with PO representing the actual pow,er map extracted from 
the input texture rotated to 8, and PO representing the es- 
timated response based on the original, nonrotated power 
maps. The error is less than 3%. These results demon- 
strate that the finite set of oriented filters which we chose 
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Figure 6 10 texture database. Top row (left to right): bark, 
calf, cloth, cardboard, denim. Bottom row (left to right): 
grass, pig, raffia, water, wood. 

P.(muIoT k k.wnvec4orollouWon 

Andm h denmr 

Figure 7: Percent error in the calculation of characteristic 
curves, 5 texture case. 

for our representation gives us a steerable pyramid and in- 
dicates the validity of the interpolation functions in a real 
application. Furthermore, the results confirm the validity 
of (20). 

Shifting to a DFT representation 

We note that four samples allow us to reconstruct the char- 
acteristic curve for each texture in orientation space. We 
can therefore shift to any other four-dimensional represen- 
tation. For recognition purposes it is beneficial to use a 
shift-invariant representation, such as the Discrete Fourier 
Transform (DFT). Companion feature-vectors are formed, 
f ,  which contain the 4point DFT of the oriented compo- 
nents for each level, as in (22). in addition to the three un- 
altered non-oriented components from the original feature- 
vector. In our case, fq represents the four components 
P*p 

3 

fk+l = fq+le-irqk'z for k = 0,1,2,3 (22) 

The DFT can be used to create companion feature-vectors 
that are invariant in magnitude and reveal through their 
phase the rotation of the input texture. 

q=o 

To begin investigating the prospect of an invariant fea- 
ture waveform, the feature-vectors for an ideal sinusoidal 
grating texture at orientations from 0' to 45' with steps of 
5' were set aside, for a total of 10 feature-vectors. Then 
a companion set of 10 feature-vectors was formed. Fig. 
8 top shows magnitudes of the 10 DFT's for the ideal si- 
nusoidal grating and denim test textures. Fig. 8 bottom 
shows the phase of the DFT's for the sinusoidal grating. 
The magnitudes overlap onto a si!gle c$aracteristic curve. 
With regard to the phase, either fi or f4 can be inspected 
to determine the amount of rotation on the input. 

Rotation invariant texture recognition results 

Finally, we present results of applying the above analysis to 
a 10-texture recognition task (see Fig. 6). The test consists 
of presenting different 128 x 128 images from the input set, 
with each image arbitrarily rotated at one of 5 angles: (0, 
10,20,30,40) degrees. In the recognition process feature- 
vectors are extracted and each component is averaged over 
the entire image, to produce one representative feature- 
vector per input. The extracted feature-vector, [, is next 
used to generate the companion feature-vector, f ,  via the 
DFT transformation of the previous section. 

For each of the 10 textures we investigate the-mugnitude 
deviation of the representative feature-vector, f, as the in- 
put texture is rotated. We compare the standard deviation 
within each class, ci (in the 15 dimensional space), to the 
average (and minimum) distance between the mean of class 
ci and the means of all other texture classes c,, j # i ;  i.e. 
the average (/min) interclass distance. This is shown in the 
following table: 

cardboard 
denim 
grass 

raffia 
water 
wood 

innerclass 
Std. 
0.99 
2.62 
3.84 
2.76 
1.27 
1.33 
0.87 
0.97 
0.65 
0.96 

interclass 
avg. 
10.89 
12.56 
10.29 
12.67 
14.84 
18.17 
10.32 
9.61 
15.54 
10.59 

interclass 
min. 
5.92 
6.37 
0.74 
6.45 
6.37 
7.86 
0.74 
5.92 
8.11 
6.08 

In the above results we observe more than a factor of 10 
difference between the innerclass and average interclass 
distances, for most textures. Looking at the minimum in- 
terclass distance for each texture, we again see that it is 
much larger than the innerclass standard deviation, except 
for the cloth and pig texture pair, for which the represen- 
tative feature-vector means are very close. This difficulty 
is inherent in the similarity of the textures, as can be seen 
in Fig. 6. The small innerclass standard-deviation strongly 
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Figure 8: Top: DFT magnitudes for 10 rotated sinusoidal 
and denim test textures. Bottom: DFT phase for 10 rotated 
ideal sinusoidal-grating textures. 

indicates the consistency of the DFT magnitude represen- 
tation; i.e., the invariance of the response with the rotation 
of the input textures. To make this claim stronger, we use 
the well known K-nearest-neighbor classification scheme 
on the set of 10 textures above. In the training stage, we use 
16 128 x 128 examples per texture class, with no rotation. 
The test set consists of a new set of textures, which are 
rotated arbitrarily in one of the 5 angles: (0, 10,20,30,40) 
degrees. In t h i s  10 texture recognition case we get 100% 
correct classification. 

Once the identity is found we utilize the phase infonna- 
tion from the DFT representation, to estimate the orienta- 
tion of the test input, relative to the original texture from the 
training set. Here we are interested in the error, in degrees, 
between the true rotation angle and the estimated rotation 
angle. The average rotation-angle estimation error for the 
10 textures is 0.84O. 

Both the perfect class identification and the high- 
resolution orientation estimation, as presented above, are 
very encouraging results in the difficult domain of rotation 
invariant natural texture identification. 

6 Summary and Conclusions 

In this paper we have presented an optimal technique 
for deriving the set of interpolation functions (or steering 
coefficients) which enable us to convert a given overcom- 
plete oriented filter set into a steerable representation. As 
a sample case we have chosen to work on a computation- 
ally efficient oriented Laplacian pyramid. We described 
the characteristics of the 8/3 redundant pyramid and have 
shown that the pyramid is steerable by defining a set of 
eight 45O bandwidth oriented kernels and deriving the cor- 
responding steering coefficients. Properties of the kernels 
and interpolation functions have been investigated. Finally, 
we demonstrated highly encouraging results in applying the 
pyramid for rotation-invariant recognition. 

A similar framework to the one presented here can be 
applied to scale invariance. Future work involves extending 
the work to scale and rotation invariant texture recognition 
on large databases [ 113. 
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