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Abstract

Complex re ectance phenomena such as specular re ectionfocnd
many vision problems since they produce image “featured'db not cor-
respond directly to intrinsic surface properties such agpshand spectral
re ectance. A common approach to mitigate these effects &xplore func-
tions of an image that are invariant to these photometrintsvén this paper
we describe a class of such invariants that result from éimpdocolor infor-
mation in images of dichromatic surfaces. These invariargsierived from
illuminant-dependent “subspaces' of RGB color space, hay ¢nable the
application of Lambertian-based vision techniques to athrass of spec-
ular, non-Lambertian scenes. Using implementations cémealgorithms
taken from the literature, we demonstrate the practichtydf these invari-
ants for a wide variety of applications, including sterdwme from shading,
photometric stereo, material-based segmentation, anmestimation.

1 Introduction

An image is the product of the shape, re ectance and illutidmain a scene. For
many visual tasks, we require only a subset of this inforomatand we wish to
extract itin a manner that is insensitive to variations erttmaining “confounding'
scene properties. For 3D reconstruction, for example, wk aecurate estimates
of shape, and we design systems that are insensitive tdivagan re ectance and
illumination.

One practical approach to these problems is to compute ¢gidanaf the input
images that is invariant to confounding scene properti¢sstdiscriminative with
respect to desired scene information. A number of theseiansa are described
in the literature, with the simplest example being a norrealiRGB image. For a
Lambertian scene, the normalized RGB color vector at eadd depends on the



spectral re ectance of the corresponding surface patcmotits orientation with
respect to a light source. It is useful invariant for maten@sed segmentation.

Like normalized-RGB, most existing invariants seek to aselinformation
about the material properties in a scene and are therefaigndel to be invari-
ant to local illumination and viewing geometry. In contratbtis paper consid-
ers a class of invariants that deliberately preserve gegnrdbrmation in a way
that is invariant to specular re ections. The proposed iiargs provide direct
access to surface shape information through diffuse spaffacts, and since dif-
fuse shading is often well approximated by the Lambertiardehothey satisfy
the “constant-brightness assumption' underlying mostagghes to stereo recon-
struction and structure-from-motion. In addition, theseariants provide access
to surface normal information, which can be recovered usiagnbertian-based
photometric reconstruction methods.

The idea underlying the proposed invariants can be intexgrgeometrically.
When the illuminant color is known, and the re ectance offaces can be repre-
sented by a dichromatic model (Shafer, 1985), we can lipgghsform the space
of RGB tristimulus vectors in a way that isolates speculazatioon effects. Fol-
lowing the transformation, two sensor channels are freqeda effects, and this
two-dimensional “color subspace” constitutes a speculariant. Since this oper-
ation is linear, the diffuse shading information is preserby the transformation,
and the invariant can be exploited photometrically. Albe, tnethod places no re-
strictions on scene texture because the computation e@gdratependently at each
image point. Finally, it only requires knowledge about thedral content of scene
illumination and therefore makes no assumptions aboutphgas distribution of
light sources.

This paper begins with the case of RGB images and singly-edlitilumination
environments (Sect. 3), in which case the linear transfoomaan be interpreted
as a transformation to an alternative, illuminant-depahdelor space. We refer
to this space aSUV color spaceln addition to providing a specular invariant, we
show that this color space leads naturally to a notion of ggized hue (Sect. 3.1).
We are not limited to this case, however, and a similar proedan be shown to
handle mixed-illumination environments and hyper-sddimages (Sect. 4). To
assess the utility of the proposed invariants they are eghpti number of visual
tasks, including binocular stereo, shape-from-shadihgtgmetric stereo, optical
ow estimation, and segmentation (Sect. 5). In each of tlwases, when the source
colors are known, signi cant improvements result from caripg the invariants
as a pre-process.



2 Background and Related Work

As mentioned in the introduction, many existing invarissggk to isolate informa-
tion about material properties in a scene. One such profsesiyrface re ectance,
which is often described by the bi-directional re ectandstribution function, or
BRDF. Here, we consider the BRDF to be a ve-dimensional fiarcof wave-
length and imaging geometry, and we writd (t ; ), where =( i; i; r; )
encodes the directions of the incident and re ected radiancthe local coordi-
nate system. The simplest model of re ectance is the Langrerhodel, accord-
ing to which the BRDF is a constant function of the imagingmgetry, so that
fC; )=10).

A number of photometric invariants have been proposed fartkertian scenes.
Normalized-RGB r-g chromaticity, and hue/saturation images are all examples
of representations that are independentiffiise shadindthe geometric relation
between a surface normal and the illumination directiorg) dapend only on the
spectral re ectance of the surface and the spectral povetrildition (SPD) of the
illuminant. Additional invariants to either local geomewr spectral re ectance
can be computed from “re ectance ratios” when multiple iraagf a scene are
available (e.g., Wolff and Angelopoulou, 1994), or when theectance of the
surface is spatially coherent (e.g., Nayar and Bolle, 1986)invariant to both
local geometry and illuminant spectral power distribut{®PD) can be computed
from a single image under appropriate imaging conditionsrdt¢y et al., 2002).

Invariants for more general scenes, including some sceitbsspecularities,
can be derived from the Shafer's dichromatic model of reamcte (Shafer, 1985).
According to this model, the BRDF of the surface can be deas®g into two
additive components: the interface (specular) re ectaacd the body (diffuse)
re ectance. In theory, by separating an image accordinp¢sd components, one
can obtain invariants to either diffuse or specular re ecteffects.

According to the dichromatic model (with the neutral inded assumption (Lee
et al., 1990)), the observation of a surface point can beemrit

& = ddk+ Sk 1)

where 4 and g are geometric scale factors that depend on the materiaéprep
and the local view and illumination geometry)( and
z
d«=  E()R()C( )d 2)
z
s« = E()C()d: 3)



Here,E( ) is the SPD of the incident illuminatio®R ( ) is the spectral re ectance
of the surface, an@y( ) is the spectral sensitivity of a linear sensor. A typical
RGB camera yields three such observations, and in this casenie erggs =
fexOk=r.c:z and de ned = fdigk=r:c:z ands = fsygk=r:c:z t0 be thediffuse
color and specular color respectively. These are conventionally assumed to be
vectors of unit length.

There is practical utility in separating the diffuse andcpar components in an
image. Since diffuse re ections are typically well-repeaged by the Lambertian
model, computing this separation as a pre-process allogvagblication of pow-
erful Lambertian-based vision algorithms to a variety ohst@mbertian scenes.
Materials that can be treated in this way include plant lsaeioth, wood, and
the skin of fruits (Lee et al., 1990; Tominga and Wandell, 2)9& addition to a
large number of dielectrics (Healey, 1989). The dichromBRDF model has also
proven useful for a number of applications involving humkim ge.g., face recog-
nition (Blanz and Vetter, 2003), pigment-based analysi synthesis (Tsumura
et al., 2003)), even though the re ectance of human skin isenamcurately de-
scribed by the higher dimensional BSSRDF (Wann Jensen, @08l1).

Despite its apparent utility, image analysis relying onliepdecomposition
of the diffuse and specular components is rare because plagas®n problem is
ill-posed. Classically, this separation problem is adsidsusing color histogram
analysis. As made clear by Eq. 1, in the RGB cube, a colledfarolor vectors
from a dichromatic material under multiple view and illuraiion con gurations
(i.e,., different values of ) lie in the dichromatic plane-the plane spanned by
the specular and diffuse coloisandd (Shafer, 1985). These color vectors often
cluster in the shape of a “skewed-T' in this plane, where the ltmbs of the
skewed-T correspond to diffuse and specular re ectionggfzan, 1987; Klinker
et al., 1988). When these limbs are suf ciently distincte ttiffuse and source
vectors can be recovered, the two components can be seharatethe highlights
can be removed (Klinker et al., 1988).

While this method works well for homogeneous, dichromatidaces in the
noiseless case, there are two signi cant limitations thakenit dif cult to use in
practice. First, many surfaces are textured and violatén¢imeogeneous assump-
tion. Even when an imagdoescontain homogeneous surfaces, a non-trivial seg-
mentation process is required to identify them. Secondyderofor the specular
and diffuse limbs of the skewed-T to be distinct, the spedialae must be suf -
ciently narrow (i.e., its angular support must be smalltreteto the curvature of the
surface.) Overcoming these restrictions generally reguidditional assumptions
regarding spatial coherence on the surface (Nayar et &7; Mallick et al., 2006;
Tan and Ikeuchi, 2003; Tan et al., 2006), speci ¢ parametradels for specular
re ectance (Ragheb and Hancock, 2001), or the use of meliiphges that exploit
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additional cues such as polarization (Wolff and Boult, 1,99ayar et al., 1997).

When the source color is known and constant over a scene,amneompute
specular invariants that are based on transformations @& Bfor space and do
not require explicit specular/diffuse separation. Thithis approach taken in this
paper, and it is related to the work of Tan and lkeuchi (20@8)p obtain such a
specular invariant using a source-dependem-lineartransformation of the RGB
values at a pixel. The transformation is computed indepathdat each point, and
it yields a positive grayscale image that depends only dog#fre ections (4 and
d) and is independent of specular effectg)( Another non-linear transformation
that provides a similar invariant under white illuminatisrproposed by Yoon and
Kweon (2006a). As an alternative, Park (2003) de nelnaar transformation
that provides two channels that, while not pure invariaats, highly insensitive
to specular re ections. Following this transformationgtimeasurements in one
channel correspond predominantly to specular re ectant@mation, while the
other two are predominantly diffuse. Unlike these existingthods, we present
true invariants that are computed linearly, and hence Haweiique property of
preserving diffuse shading (and geometry) information.

The invariants presented in this paper assume knowleddgeeafdene illumi-
nants. In controlled environments, or when the illuminants do ciwnge signi -
cantly over time, the required source color vectors can basored by imaging a
calibration target. This is the approach taken in this pay#nile not explored here,
it may be possible to apply these invariants in more unciatt@nvironments by
combining them with existing image-based methods for ilhant estimation. For
scenes with suf cient color diversity, for example, one astimated the illumi-
nant color using statistical knowledge of common sourceksamfaces (Brainard
and Freeman, 1997; Finlayson, 1996; Finlayson et al., 208mann and Palm,
2001; Rosenberg et al., 2001; Sapiro, 1999; Tominga and #la@®02), and for
glossy scenes with only a small population of diffuse cqldrsan be estimated
using methods based on the dichromatic model (FinlaysonSaméefer, 2001;
Lee, 1986; Tan et al., 2004; Tominga and Wandell, 1989). Toeracy of these
methods depends on the materials and illuminants that aseptin a particular
scene, so in a generic setting, one would probably want tesoisee combination
of them. For discussions, and for detailed evaluations wfesof these algorithms,
the reader is referred to (Barnard et al., 2002a,b; HordhelyFanlayson, 2006).

Invariants for scenes with more general re ectance fumstiare developed by
Narasimhan et al. (2003). They describe a general model eftesce consist-
ing of a product of a “material” term (Lambertian albedo, $frel coef cient, etc.)
and a “geometry” term that encodes the relationship betwleesurface normal,
light-source, and viewing direction. Invariants to bothluése terms can be com-
puted from either multiple observations of a single poindemvariable view or
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illumination, or from one observation of a spatially-cor scene. The geometry
invariant is of particular interest, since it can be usee@atly for material-based
segmentation.

3 A Source-dependent Color Space

Suppose we treat RGB tristimulus values as poinR3mnd linearly transform the
RGB coordinate system by rotating the axes. Also, as showmmeiteft of Fig. 1,
suppose this rotation is such that one of the axes (red, smpntes aligned with
the direction of the effective RGB source vectrThis transformation de nes a
new color space (see below), which we refer to asSh®/ color space It can
be de ned according t@syy = Regrgg using anyR 2 SO(3) that satis es
Rs = (0;0;1). From Eq. 1 it follows that tristimulus vectors in the tramshed
space satisfy
esuv = d g+ S5 ; (4)

with

d=Rd; ands= Rs =(0;0;1):
Notice that according to our de nition, the S channel is wsty de ned for a given
s (and thus a given illuminant SPD and sensor), while the U antdannels can be
arbitrarily chosen from the family of orthonormal basestfa plane orthogonal to
S.

The SUV color space is source-dependentolor space because it depends
on the effective source color vector in the image. It has twpartant properties.
First, it separates the diffuse and specular re ectionat$feThe S channel encodes
the entire specular component and an unknown fraction ofliffiese component,
while the remaining two channels (U and V) are independent;@nd are there-
fore specular invariants.

The second important property is that shading informatsopréserved by the
linear transformation. This is clear from Eq. 4.r]T denotes thé" row of R, the
values of the two diffuse channels satisfy

eu =r;d g and ey =r3d g 5)

Assuming Lambertian diffuse re ectanceq is a constant function of the local
view and illumination directions. In this case, the two4chel color vector

j =(eu;ev) (6)

and its monochromatic relative
j= &g+¢ (7
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Figure 1:Linear and non-linear transformations of the RGB cube. &lofgservations of
the same material yield color vectas, e,; ez in the dichromatic plane spanned by the
source and diffuse colossandd. Left: The SUV color space is de ned by a rotation of
the RGB coordinate vectors. One axis is aligned with thea®uolor, and two of three
resulting channels (UV) are invariant to specular re ectioDiffuse shading information
is preserved in these channels and can be used to recover. shdgitionally, the ratio
between the U and V channels represeygreralized hué ), which provides a second
invariant depending only on spectral re ectance. Rightliklh\SUV space, central projec-
tion used to compute-g chromaticity values and HSV-type color spaces does noepres

diffuse shading information.

provide direct information about the normal vector on thdage, with the terms
r>d andr3d in Eq. 5 contributing to the effective Lambertian albedoues.

An example of the monochromatic specular invariant congpditem SUV
space is shown in Fig, 2. In this example, the invariant waspmded using the
source color determined by intersecting lines in chrontgtigpace (Lee, 1986),
and then transforming the image from RGB to SUV space on a-pixpixel ba-
sis. (Here, we choosB = Rg( <)Rg( s) whereRg( ) is a right-handed
rotation about thé-axis by angle , and( s; s) are the elevation and azimuthal
angles of the source vectsin the RGB coordinate system.) Comparing the result
to the original image, we see that specular effects arellargenoved. Note that
the dichromatic model is violated when saturation occuthéinput images, and
this causes errors at points of extreme brightness.

To see that SUV space is in fact a color space, recall thatiaegrlcolor space
can be de ned by a linear transformation of the color matghiunctions of an-
other. Such a transformation provides a mapping, say, leetwe 1ISO RGB color
space (with an identi ed white point) and the CIE XYZ colorage, and it induces
a corresponding invertible linear mapping between théinridus vectors in the
two spaces. The rotation matrix described above is a comalitmansformation,
and it therefore de nes a spectral space that is relatede@tiginal sensor space



Figure 2: Input RGB image (left) and its corresponding specular imar(right) com-
puted pixel-wise according to Eq. 7 using the known illunmiheolor.

through a corresponding linear transformation of the sesensitivity functions.
The important point is that following the transformationetilluminant SPCE ( )
integrates to black against two of the three transformeditbaty functions. Thus,
by converting to SUV space, we are implicitly choosing a $farmation of the
sensor such that the transformed sensitivigssatisfy
Z
E()Ck()d =0; k=1;2

It is clear that the same invariant properties could be abthusing any transfor-
mationT 2 GL (3) satisfyingTs / [0; 0; 1]>. The rotation matrix used in the
de nition above is simply one practical choice.

Figure 1 compares the linear, source-dependent SUV codmespith conven-
tional non-linear representations of color that also havariant properties. Non-
linear representations suchrag chromaticity and hue-saturation-value (HSV) are
computed by central projection. Each RGB vector in the RGIBeds intersected
with the planeR+ G+ B = cfor some constart. For example, hue and saturation
correspond to the distance and polar angle of these intemsqmints relative to
the cube diagonal, and chromaticity coordinates are difivam the intersection
of these color vectors with the plafe+ G + B = 1. Non-linear representations
such as these are useful for recognition, for example, Isecthey remove Lam-
bertian shading and shadow information. All positive scafaultiples of ercg
map to the same chromaticity coordinates and the same hue.

In contrast, the diffuse channels of SUV color spaceserve diffuse re ec-
tion effectsencoded in the geometric scale factqr Since diffuse re ectance is



Figure 3: Pseudo-colored generalized hue images, each computedafrsingle RGB
image of a globe under point source illumination having dimti$ color. Generalized hue
is invariant to both specularities and diffuse shading,ianéscriminative only with respect
to the spectral re ectance of the surface.

often well-approximated by the Lambertian model, this iegpkhat the specular-
invariant image often: 1) satis es the “constant-brigstassumption' underlying
most stereo and structure-from-motion systems; and 2)ige\access to surface
normal information through Lambertian-based photomegmonstruction meth-
ods such as shape-from-shading and photometric stereo. résu#, by com-
puting these invariants as a pre-processing step, we caesafally apply many
Lambertian-based algorithms to a much broader class otigrenon-Lambertian
surfaces. Applications are explored in Sect. 5.

3.1 Generalized Hue

An additional invariant is created by taking the ratio betwespecular invariant
channels of Eqg. 6. The result,

ey=ey = r;d=r;d;

is independent of both the diffuse and specular geometale dactors 4 and .
As shown in Fig. 1, it is instructive to interpret this rati® @ angle and de ne

=tan l(ey=ey)=tan ! rjd=r;d ; (8)

which we refer to ageneralized hueNotice that reduces to the standard de ni-
tion of hue when the source colsiis white.

Examples of generalized hue images are shown in Fig. 3 foeeusgr globe
under two different source colors. In each case, the sowcwris measured by
imaging a Macbeth color checker, this vector is used to caenpuwo-channel
subspace image as in Eq. 6, and the ratio between the two elsaisnused to
compute . Since it depends only odh, the value of within each country on the
globe is constant and is invariant to both specular re extiand diffuse shading.
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4 Color Subspaces

If we again think of RGB vectors as pointsR¥, the invariants de ned in the previ-
ous section are seen to derive from a projection onto thedivwi@nsional subspace
orthogonal to the source vectsr (See left of Fig. 1.) Based on this interpreta-
tion, the invariants de ned in Egs. 6 and 7 can be generaliaeshvironments with
mixed illumination.

The invariants of the previous section are based on Eq. 1¢chaini turn is
premised on the assumption that the illuminant SPD is cahsteer the incident
hemisphere of a surface point (i.e., that the illuminaniokas the same in all
directions.) Notationally, iL(! j; ) represents the incident radiance at a surface
point, where! ; = ( j; i) 2 parameterizes the hemisphere of incident direc-
tions, the model requires that this input radiance eld caridztored (with a slight
abuse of notation) als(! )E( ). To relate this to the terms in Eqg. 1, recall that

f(; )Yywth =(; i; r; r)denotes the BRDF of the surface, and write the
image formation equation as
ZZ
& = f(5 )L(ti; )C«( )cos jd!d: 9)

According to the dichromatic model, the BRDF of the surfaae lbe decomposed
into additive diffuse and specular components, and eacheskttwo components
can be factored into a univariate function of wavelengthanaultivariate function
that depends on the imaging geometry. Finally, assumingudral interface the
index of refraction on the surface is constant over the la@siipectrum—a valid
assumption for many materials—so that the specular fumadfowavelength is
constant. This leads to the common expression for the BRDé& dithromatic
surface,

fC5 )= fa( )RC)+ ksfs(); (10)
whereks is a constant. Substituting into Eq. 9 yields the expression

Z

d = fa( JL(* i)cos i d!

z

s = ks fs()L(!i)cos idl;
z

d« = R()E()C()d
Z

Sk = E()C()d:
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To generalize the model, we consider a mixed-illuminatioirenment whose
spectral content can be written in terms of a nite linearibas

X
L('i; )= Li (" )E;( ): (11)
j=1

An example withN = 2 is an of ce environment where the illumination in every
direction can be described as a mixture of daylight and soeat light. When the
input radiance eld can be decomposed in this manner, the BREcomposition
of Eqg. 10 yields

oo -
& = g+ B, (12)
j=1
with
| ya
P = fa( )Lt i)cos  di;
z
§ = ks fs()Lj("i)cos d
| z
d = R()E()C()d
| yd
si) = Ej( )C( )d:

Equation 12 suggests the existence of a specular invahantigs analogous
to the two-dimensional subspace de ned of Eq. 6. In thatigegctthe illumi-
nant color is assumed constant over the input hemispherelvelorresponds to
N = 1 in Eqg. 12) and the specular invariant subspace computed &dhnee-
channel RGB image is two-dimensional. In general, giveiMaichannel (possi-
bly hyper-spectral) image and anN -dimensional spectral basi€; ( )gj=1::n
for the incident illumination, there exists a subspace ofatision(M N) that
is independent of all Q) and therefore invariant to specular re ections. Letting
frig=1..(m n) represent an orthonormal basis for this specular invasait
space, thé!" component (or “channel) of the specular invariant imaggiven

by
XN _
jl=¢e’r = >l (13)
j=1

A specular invariant image wittM  N) channels de ned by this equation can
be treated as an image, and as is the case for the U and V chafrgkct. 3,
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Figure 4: Left: For any mixture of two source SPDs, the specular imrgrsubspace is
one-dimensional. By projecting RGB color vectors onto timis, a specular invariant can
still be computed. Right: Two frames of an RGB video of a sagitle mixed illumination
and the corresponding specular invariants. A blue lightrenright and a yellow light on
the left induce complex specular effects. Projecting tlmesges onto the one-dimensional
subspace orthogonal to the source color vectors in RGB gpelcks an invariant to spec-
ular re ections that preserves diffuse shading informatio

the channel values in this image can assume negative valtés.often more
convenient to use the monochromatic specular invariarngoy
1
M N 2
Jivw Ny = it (14)
I=1

where the subscriptny) is used to indicate that the grayscale invariant is derived
from au-dimensional specular invariant subspace. It is clearHogt 6 and 7 are
speci ¢ examples of these invariants for the cdde= 3 andN =1.

Since the vast majority of cameras record three (RGB) cHanaeother inter-
esting case to considerid = 3, N = 2. An example is shown in Fig. 4, where
light comes from two sources with different SPDs. These SRisce two source
color vectorss) ands®@ in RGB space (these are measured by imaging a calibra-
tion target), and by projecting the RGB color vectors of thguit image onto the
one-dimensional subspace orthogonal to these vectorsreséecan image that is
void of specular re ection effects.

4.1 Generalized Hue Under Mixed lllumination

The concept of generalized hue (Sect. 3.1) can also be eddndchandle hyper-
spectral images and mixed illumination. In Bh-channel image of a scene illu-
minated by a mixture oN illuminant SPDs, generalized hue can be de ned as a
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scalar function de ned on the surface of @ N  1)-dimensional unit sphere
embedded inthéM  N) dimensional diffuse space. The sphere may be param-
eterized by a vector of angles.

As with RGB sensors and single illuminants, this expanddnmf general-
ized hue is independent of both shading and specularityitamdonsistent in that
it reduces to the standard de nition of hue for an RGB imagguaed under white
light.

4.2 Practical Considerations

The quality of the specular invariant signal depends on pleetsal characteristics
of the scene and the accuracy of the estimated source vedgsliscuss each
separately in this section.

Spectral Characteristics

When a surface is "white', the spectral re ectance is a amtsfunction of wave-
length, so thaR( ) = R. In this case, since
z

dk = R E()Ck()d = Rsg;

it follows that the observed color vecterthe diffuse color vectod and the source
color vectors are collinear. For these surfaces, the invariant imaga® zero;
and as a result, they provide no information about the sesfeegardless of the
illuminant and sensors that are chosen. This is the sametiest noted by Klinker
et al. Klinker et al. (1988); when the diffuse and source olre the same, there
is no way to distinguish between the two re ection composent

More generally, the utility of the proposed invariantseelbn the angular sep-
aration between the observed color ve@and the source vectoss When this
separation is small, the signal-to-noise ratio (SNR) initivariant image can be
prohibitively low. This is evident, for example, in the gealkezed hue image of
the globe in the bottom-right of Fig. 3, where the hue vasiatvithin the People's
Republic of China is seen to be large.

Assuming independent, additive Gaussian noise with ze@nnaed variance

2 in each of the three channels of a color ve@ggs , and assumingerce k

1, the signal-to-noise ratio (denoted SMRcg )) is 1010g;o(1= ) dB. The mag-
nitude of the diffuse color vectgris related to that of the original color vector by
kik = kergg ksin , where is the angle between the source cataand color
vectorergg in color space. It follows that

SNR(j) = SNR(ercg ) + 10logo(sin ): (15)
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Figure 5:The signal-to-noise ratio (SNR) of the two-channel diffirmage () relative to
that of the original imaged| as a function of , the angle betweeaand the source color

sin the RGB cube.

This relationship is shown in Fig. 5, and it suggests thatrvthe angle between the
image and the source color is less tH#n, the two-channel diffuse signal suffers
severe degradation.

In practice, this can be improved by increasing the SNR ofitpbaet images
using multiple exposures (Grossberg and Nayar, 2003). tidaily, since sur-
face points with low SNR can be detected by monitoring thdeabgtween the
source colors and the input color vectorsrgs , this information can be easily
incorporated into any robust vision algorithm (see, e.an de Weijer and Gevers,
2004).

Source Color

It is dif cult to make general statements regarding the #efity of these invari-
ants to errors in the source color estimates, because tis#igity depends on the
sensitivity functions as well as the spectral re ectanced #dluminant SPDs of a
particular scene. We can, however, gain some insight frensitihple case of a ho-
mogeneous surface under a single illuminant. We presendlgaiive description
of this case here; related quantitative empirical resuipeesented in Sect. 5.4.2.

RGB observations of a homogeneous surface under a singairiant lie in
the dichromatic plane spanned the source and diffuse wes@mdd. Assuming
the source vector is known, a two-channel invarignt (j1;j2) is computed by
projecting the vectors onto the subspace orthogonal tosthusce vector. When
the estimate of the source color is inaccurate, the compmtedant also contains
error. To describe sensitivity, we consider the square efgfayscale invariant
ji%v(z) = j?+ j2 and compute its derivatives with respect to angular vaniatin
S.

Let frq;rog be an orthonormal basis for the subspace orthogona| snd
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choose this basis such thatis in the dichromatic plane. Since the observed color
vectors also lie in the dichromatic plane, any one vectol éle coordinates of
the forme = ( e1; 0; e3) in the coordinate system de ned by, ro, andr, ro = s.
Thus, the squared value of the grayscale invariant is sirely

To describe a perturbation of the source direction, we densi small rotation
about an axisg, say) orthogonal it. The pencil of rotation axes orthogdaalcan
be parameterized by the angle fram(so thata(' ) = (cos'; sin'; 0)), and the
“noisy' invariant [i%v(Z) ) that results from a rotation by angleabout any one of
these axes is

ji%v(Z):<R3' r;e>?+ <R.rye>2: (16)

Here, the rotation matriR - is obtained from the axis angle representation as
usual,
R, =1l+sin [a(")] +( cos)a( )]*;

where[] is the skew symmetric matrix equivalent of the cross praduct
A measure of the sensitivity of the invariant is obtaineddiing the derivative
of Eqg. 16 with respect to and evaluating it at = 0:

@ ﬁv(Z)
@

=2e€38in" (17)
=0

This expression reveals that the sensitivity of the invaria highly asymmetric.
When' =0, the rotation axis lies in the dichromatic plane, and thec®wector
is perturbed in a direction orthogonal to that plane. In ti@se, the derivative is
zero and the invariant is largely unaffected by small pégtions of the source
estimate. In contrast, when the source color is pertuskigitin the dichromatic
plane (e.g., = =2), the magnitude of the derivative is maximal.

For any perturbation direction (i.e., for ahy, the sensitivity is proportional
to the product of the two non-zero components of the colotorex Thus, if we
consider vectors of equal norm, the sensitivity is largesémnvthe angle between
the observed color vecterand the source vectaris 45 .

Source Color and Interre ections

In cases of signi cant interre ection, it is possible for ersurface pointfd, say)
to specularly re ect light that is rst re ected at anotheoimt. When the rst
re ection is diffuse, the re ected spectral radiance is mtaded by the spectral
re ectance of the surface, and in general, it is not spdgtejuivalent to the scene
illuminant SPD. Thus, with respect the rst point behaves much like a light
source having a distinct SPD, and the effective source veatimointp is different
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froms. In this case, the intensity observegatoes not follow the image formation
model of Eq. 1 (or Eg. 12 in the mixed case), and the proposetdiants may be
contaminated by specular effects.

One method for handling interre ection effects is to logadistimate the effec-
tive source colors, and to allow these source colors to vam point to point. As
shown by Nayar et al. (1997), this can be accomplished byudagt multiple ex-
posures from a xed viewpoint with polarization lters atftBrence orientations.
For the purposes of this paper, however, we assume intetiere effects to be
negligible so that that effective source vectors are theesatrevery point and a
single image can be used as input.

5 Applications and Evaluation

This section investigates the utility of the subspace-thaseariants for a number
of vision algorithms and compares the results to those mbdausing standard
grayscale images= (er + eg + eg)=3. For RGB images, when the illumination
is a mixture of two known SPDs, the two-channel specularriamj ; from Eq. 13
is grayscale and is equal fgy(1y from Eqg. 14. On the other hand, a single-SPD
specular invariant computed from an RGB image includes tiffasg¢ channels
fj1,J20, which can be combined into a grayscale invariggjz) using Eq. 14.
In this case, one can also compute generalized hue, whichease to replace
conventional hue as a material descriptor. The resultsisgbction show that
these invariants can have advantages over conventiongagla and hue images
in the presence of specular re ections.

For the experiments in this section, the source colors assuared by imaging a
Macbeth color checker in an of ine calibration procedunag ave focus on cases in
which the diffuse and source color vectors are distinct. Argjiiative investigation
of the sensitivity with respect to noise in the measured®muolors is provided in
Sect. 5.4.2.

5.1 Binocular Stereo

The vast majority of binocular stereo algorithms are bassthdr explicitly or
implicitly) on the assumption that surfaces are Lambertiimce specular re ec-
tions violate this assumption, stereo reconstructiongpetslar surfaces are often
inaccurate. The most common approach to handle specutst®fh binocular
stereo is to treat them as outliers. These outliers can bereixplicitly detected
and removed (Brelstaff and Blake, 1988) or handled impjiaising robust tech-
niques (Yoon and Kweon, 2006b). Instead of treating themudieecs, one may
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also reduce specular re ection effects by modifying theestematching function
to permit a more general relationship between matchedmedidim et al., 2003).
Alternatively, one can use enhanced acquisition systeatsaifow the effects of
specularities to be reduced or eliminated. Examples irchadilti-view acquisi-
tion schemes (Bhat and Nayar, 1998; Li et al., 2002; Jin g2@05), and binocular
schemes with active illumination (Zickler et al., 2003; TudaMendonca, 2003;
Davis et al., 2005b).

More directly related to the present work are reconstruastisystems that ad-
dress specular re ection effects using color informati@me approach is to solve
the (ill-posed) problem of explicit specular/diffuse segin and use the diffuse
images for stereo correspondence. This is explored by Lah €2002), who show
that the problem can be more manageable when additionapuiete are avail-
able. Another approach is to use stereo matching based eculapénvariants.
For the case of monochromatic illumination, binocular eteusing a non-linear
specular invariant (which does not preserve diffuse stugpidiformation) has been
explored by Yoon and Kweon (2006a), and a method that esptaitor informa-
tion in a multi-view system with monochromatic illuminatics presented by Yang
et al. (2003).

Here we investigate the use of the proposed invariants, wéiie based on
linear transformations and are applicable in both monauht and mixed illu-
mination environments. In cases of signi cant specularections and complex
illumination conditions, we can improve the accuracy oférg stereo algorithms
by computing these specular invariants as a pre-proceggire=6 compares the
results of two binocular stereo algorithms (Birch eld andnfasi, 1998; Boykov
et al., 1998) applied to grayscateand single-illuminant invariant,,) images
derived from a recti ed RGB stereo pair. There is a dramatipriovement in the
quality of reconstruction when specular invariant imageswsed. This point is
further emphasized in Fig. 7, which compares binoculaestegsults obtained us-
ing conventional grayscale images, the single-illumin@m subspace) invariant
Jinv(2) » and the two-color (1D subspace) invarigpt - In this case, the original
RGB image includes two specular highlights caused by blukyatiow illumi-
nants. The blue highlight is largely eliminated in the se&agblor invarian i) ,
while imagej (1) Is invariant to specular re ections of both colors. As exjeel;
the results from the grayscale and single-color invarisuaiges are poor in specular
regions, and the depth map obtained uging,) is signi cantly improved.

5.2 Optical Flow

Motion estimation through the computation of optical owasother example of
an application that can bene t from specular invariance cdvering dense opti-
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Grayscale Specular Invariant

Birch eld/Tomasi

Boykov/Veksler/Zabih

Figure 6: Stereo reconstructions under a single-color illuminantothBconventional

grayscale images and specular invariantimages (Eq. 7parputed from a recti ed stereo
pair (top) and these are used as input to existing binoctdee® algorithms. Middle row:
disparity maps obtained from the grayscale (left) and sped@wvariant (right) images us-
ing the method of Birch eld and Tomasi (1998). Bottom row:o#ie obtained using the
method of Boykov et al. (1998).

cal ow relies on the “constant-brightness assumption'joluhis violated when an
observer moves relative to a static, specular scene.

As is the case with stereo, existing work has shown that domrmation
can be exploited to deal with violations of the constangdiiess assumption (see
Barron and Klette (2002) for a survey). Most existing altjoris exploit color by
computing either a shading invariant (e.g., normalized R@® white-illuminant
specular invariant (e.g., hue) as a pre-process, and sthdiee shown that these
can provide improved estimates of the optical ow eld.

We approach the problem of optical ow in a similar spirit ngithe invariants
de ned in Sect. 4, which have the advantages of handlingwabite illuminants
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Figure 7: Stereo reconstruction under mixed illumination. Top leftne image of an
input stereo pair with blue and yellow illumination. Top ¢en Single-color invariant
imagejiny2) from Egs. 13 and 14 witls in the direction of the blue source. Top right:
Two-color invariant i,y obtained by projecting to the 1D subspace orthogonal to both
sources. Bottom row: depth map obtained using the sterewitign of Boykov et al.
(1998) in each case.

and mixed lighting environments. Figure 8 shows a comparidmptical ow es-
timation in the presence of specular re ections under aleieglor illuminant. An
RGB image sequence is captured by a camera translatingohtally relative to a
static scene. The sequence is used to compute a convergiayskale sequence
e(t) and a single-color invariant sequergg ) (t), and these are used as input to
a robust optical ow algorithm (Black and Anandan, 1993)n& the camera un-
dergoes pure translation, the “ground truth' ow lies algragallel horizontal lines.
As the gure shows, in regions that are predominantly défuhe ow obtained in
both cases is close to the ground truth. In regions of spetulaowever, there is
a signi cant improvement in the quality of estimated ow whepecular invariant
images are used.

More interesting is the case of optical ow estimation undgxed illumina-
tion, which is shown in Fig. 9. A similar sequence is capturader illumination
that is a mixture of two distinct SPDs, and the sequence id ttseompute a con-
ventional grayscale sequene), a single-color invariant sequengg,) (t), and
a two-color invariant sequengé, ) (t). These three videos are used as input to
the same optical ow algorithm (Black and Anandan, 1993).eTéft of Fig. 9
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Figure 8:Optical ow under a single-color illuminant. An RGB imagecgeence is cap-
tured by a camera translating left relative to a speculaleafipth conventional grayscale
and specular invariant images (Eq. 7) are computed fromRE@B sequence, and these
are used as input to Black and Anandan's robust optical ogoathm (Black and Anan-
dan, 1993). Left: Single frame from the grayscale sequeiight: ows obtained for
regions that are highly specular and predominantly diffuRed ow is computed from
the grayscale sequence and is severely corrupted by spee@etion. Blue ow is com-
puted from the specular invariant sequence and is muchrdosgound truth, which is
horizontal and to the right.

shows a single image from each sequence, and the right shewsdovered ows
in the indicated window. The ow recovered using the coniaml grayscale and
single-color invariant sequences are severely corrupyespbeular highlights. In
contrast, the ow computed from the mixed-illuminant iniaart (shown in red) is
close to the ground truth and is largely unaffected by theselrambertian effects.

5.3 Shape from Shading

The previous two sections demonstrate the utility of thecslae invariant for
stereo matching and optical ow, both of which bene t fronetfact that the spec-
ular invariant images do not change with viewpoint. The rikste sections show
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Figure 9: Optical ow under mixed illumination. An RGB image sequengep left)

is captured by a camera translating left relative to a spe@gple under yellow and blue
illumination. Derived conventional grayscai), yellow-invariang i) (t) (left middle),

and two-color invariangtin,1) (t) (left bottom) sequences are computed and used as input
to Black and Anandan's robust optical ow algorithm (BlackdhAnandan, 1993). Right:
ows obtained in the three cases. Green and blue ows are fgrayscale and yellow-
invariant sequences, respectively, and both are corruptegecular re ections. Red ow

is computed from the two-color invariant and is much clogegtound truth, which is
horizontal and to the right.

that since they preserve diffuse (ideally Lambertian) sigmihformation, these
invariants can also be used to enhance photometric reactistr methods.

In shape from shading, one seeks to recover surface shapéfeqphotometric
information available in a single image. The vast majorityhe existing methods
assume Lambertian re ectance, and even then the problendifscalt one. Of
the small number of methods that consider non-Lambertitactsf most assume
re ectance to be of a speci ¢ parametric form—such as thedioce-Sparrow or
Oren-Nayar models—which must be knownpriori (Ahmed and Farag, 2006;
Bakshi and Yang, 1994; Ragheb and Hancock, 2001). The usal@fio shape
from shading is rare. One notable example is the work of Trah BEsui (1997),
which considers re ectance that is a linear combination dfaanbertian diffuse
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Grayscale [(R+ G+ B)=3] Specular Invariant [jinye2) |

Grayscale

Specular invariant:

,,,,,

Figure 10: Shape from shading comparison. Top: An RGB image of a peasdsd to
compute conventional grayscale (left) and specular iavaiiright) images, and these are
input to a shape from shading algorithm (Zheng and Chellap@@il) yielding the surfaces
shown in green. Bottom row: cross-sections of the recoveuefdces along the indicated
horizontal lines.

component and an ideal specular spike.

The invariants presented in Sect. 4 provide a means for demsg a much
broader class of surfaces. By combining these invariaritsexisting Lambertian-
based methods for shape from shading, one can recover girajpeflaces having
rather arbitrary specular components (i.e., gerfgy@l) in Eqg. 10) which need not
be well-represented by any known parametric form. All tsakeiquired is that the
surface conforms to the dichromatic model.

When illumination can be described as a single point sourdééctionl (say)
and the diffuse re ectance at a surface point is Lambertiaa,can write 4 =
fan” 1, wheren is the surface normal at the point afgis the albedo. When this
is true, the specular invariant image of Eq. 14 reduces to

1
jivi) = fa (r7d)?+(r3d)? “n’l; (18)

which is the image formation equation for a Lambertian sugfaith an effective
albedo given by the rsttwo terms. Thus, the specular irasgtrcan be used directly
as input to any Lambertian-based shape from shading digarit

The bene t of this approach is demonstrated in Fig. 10, wheseassess the
performance of a conventional shape from shading algori@heng and Chel-
lappa, 1991) for both a grayscale imag@nd a single-SPD invariant imagg, ) -
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The top of the gure shows grayscale and specular invariaagies computed from
an RGB image of a pear, and the middle row shows the surfaaearh recovered
by applying the same algorithm in the two cases. The soli@ Ipiw le in the
bottom graph shows that specular re ections cause sevéfacts when the algo-
rithm is applied to the grayscale image. In contrast, as shoythe dashed red
pro le, one can obtain improved results using the same #lgorby computing
the specular invariant as a pre-processing step.

5.4 Photometric Stereo

In photometric stereo, one seeks to recover shape from & saages acquired
from a xed viewpoint under multiple illumination conditis. Like shape from
shading, photometric stereo requires the inversion ofrtteggie formation process,
and as a result, existing methods also require signi camitadge about the re-
ectance of surfaces in a scene. Many photometric sterdanigoes assume that
surfaces are Lambertian (Woodham, 1978), and others asthame ectance to
be givena priori by a reference object (Silver, 1980), a linear basis of ezfee
objects (Hertzmann and Seitz, 2003), or by a parametric BRDHel (Ikeuchi,
1981; Nayar et al., 1990; Tagare and deFigueiredo, 1991 er\iliese re ectance
assumptions are not satis ed, the accuracy of the recov&rage can be compro-
mised.

Coleman and Jain (1982) were perhaps the rst to present eptairic tech-
nique for reconstructing non-Lambertian surfaces withrenuexplicit re ectance
model. In their method, the BRDF is assumed to be a linear owatibn of a
Lambertian diffuse component and an unde ned specular corapt with limited
angular support. When four point-source illuminationsav@lable, specular mea-
surements can be treated as outliers and discarded, pdayidethe illumination
directions are far from one another relative to the anguéereg of the specular
lobe. (This ensures that the specular re ectance compaserdro for three of
the four observations of each surface point.) Barsky antbB€2003) re ne this
technique by using color information to improve the detattof specular mea-
surements. Like the original work, however, specular messants are treated as
outliers, and the specular component is assumed to havedirmhgular support.

Another approach to photometric stereo for non-Lambemdiafaces is to as-
sume dichromatic surfaces, and to explicitly separateifhieséd and specular com-
ponents as a pre-processing step. This is the approach higkeohliins and Wit-
tig (1993), who assume homogeneous dichromatic surfaoesseparate the dif-
fuse and specular components using color histogram asalyshniques similar
to Klinker et al. (1988). Sato and lkeutchi (1994) take a Emapproach, but
avoid the restriction to homogeneous surfaces by usingge laumber of light
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source directions to compute a distinct color histogramaahepoint. Because
these methods explicitly recover the diffuse and specuanponents, they have
the additional bene t of providing an estimate of the difusolord at each point

in addition to recovering the surface shape. Since they asedon explicit spec-
ular/diffuse separation, however, they are subject to dstrictions discussed in
Sect. 2. Most importantly, they assume that the specula ismarrow relative

to the surface curvature, an assumption similar to that nlyidg the four-source

method of Coleman and Jain (1982).

By using the invariants from Sect. 4 in conjunction with &xig Lambertian-
based methods for photometric stereo, many of these liotiatan be overcome.
In fact, this provides a reconstruction method that opsratampletely indepen-
dent of specular re ections (i.e., independentfgf ) in Eg. 10) and therefore
requires no additional assumptions regarding the spebalaavior of a surface. In
this sense, this approach to photometric stereo is relatether recent reconstruc-
tion methods that exploit physical properties such as rmece isotropy (Lu and
Little, 1999), reciprocity (Magda et al., 2001; Zickler ét, 2002), the constancy
of radiance in free space (Magda et al., 2001; Koudelka g2801), and light
transport constancy (Davis et al., 2005a) to enable aaweabnstructions of very
broad classes of surfaces. An important difference, howevéhat the photomet-
ric stereo method described here requires a simple adquisiystem and is quite
easy to implement.

To use the proposed invariants for photometric stereo, \wenas directional
monochromatic illumination as in the previous section. jllej?, j° be three two-
channel color vectors produced by observing a single paideuthree different
lighting directionsl?, |2, I3, specular invariants are computed from the RGB im-
ages according to Eq. 13. Assuming Lambertian diffuse raece, we see that

h is
j“= Gz =71 ; (19)
=[ 1; 2" =fq rid; r3d

>

being an effective two-channel albedo, and it follows thaise specular invariant
images can be used as input to a Lambertian photometriostgerithm. In what
follows, we adapt the algorithm of Barsky and Petrou (20@&)} tvas originally
designed to handle RGB images of Lambertian scenes.
Similar to Barsky and Petrou (2001), shading vectoris de ned ash =
hl:h2;h3 ~ = [I? 12 13 n, and the invariant images resulting from the three
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Figure 11:Photometric stereo procedure. Three or more RGB imagesguérad under
known illumination conditions, and specular invarignése computed according to Eq. 13.
The invariants represent diffuse images of the object, Aede are used with standard
photometric stereo techniques to estimate the surfaceal@heach pixel. The normals
are integrated to recover the surface.

lighting directions are combined in @mtensity matrixsatisfying

2 3 2 3
it i3 ht1 h,

J=4j2 j25=4n*; h?,95=h": (20)
i? i3 h® 1 h3,

The least-squares estimate of the shading véttisrcomputed from the intensity
matrix; it is the principal eigenvector @k >. Once the shading vector is deter-
mined, the surface normal is found by solving the matrix éiqad = [1* 12 13]> n.
This reconstruction procedure is outlined in Fig. 11, ar@hit be applied without
change to any number of images larger than three.

5.4.1 Experimental Results

Photometric stereo provides a convenient means for gatiméitanalysis of the
proposed invariant, since we can directly measure the acgwf reconstructed
shapes having different material properties. To perforansun analysis, we painted
ve identical spheres, shown in Fig. 12, with standard lgteints that were mixed
to have approximately the same color pigment and ve diffiédevels of glossy
nish: at, eggshell, satin, semi-gloss, and high-glossheTobserved incident-
plane BRDFs of these spheres are shown in Fig. 13.

For each sphere, a set of four high dynamic range (HDR) images captured
from a xed viewpoint and four known illumination directisn The source color
was calibrated by imaging a Macbeth color checker, and ituwgas to compute the
specular invariantg andj i,y (2 according to Egs. 13 and 14. The second column
of Fig. 12 con rms that the specular invarignt, 2y depends largely on the diffuse
re ectance.
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INPUT  INVARIANT RGB: ALL RGB: BEST 3 INVARIANT INTEGRATED SURFACE

Figure 12:Comparison of photometric stereo methods. Five red sphétesncreasing
specular re ectance are each observed under four illun@inalirections, and these images
are used to recover the surface. From left to right, each hmws: i) an input RGB image,
i) the corresponding specular invarignfrom Eq. 13, iii) surfaces integrated from the
surface normals estimated by three photometric stereoadsttand iv) cross-sections of
the surfaces overlaid on the true shape.

Using the two-channel specular invariant images, the senformals of each
sphere were estimated using the photometric stereo metmdided above. As
a means of comparison, we implemented two alternative R&d#d photomet-
ric techniques. The rst method uses all four RGB images asslimes Lamber-
tian re ectance (Barsky and Petrou, 2001). The second ndetissumes Lamber-
tian+specular re ectance and reconstructs the surfacenbgsing the three “least
specular' RGB measurements at each pixel (Barsky and Re2ii8; Coleman
and Jain, 1982). The results are shown in Figs. 12 and 13. dtwered sur-
faces, including cross-sections overlaid on the true stapadisplayed in Fig. 12.
Quantitative results are shown in Fig. 13, with the bottonthat gure display-
ing the angular difference between the true and estimatddcgunormals as a
function of increasing specularity. These results dematestthat the invariant-
based reconstruction is largely independent of the specelactance, whereas
both the four-image and three-image RGB methods are affdntdt. The four-
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Figure 13:Comparison of photometric stereo methods. Left: RelatiRDBs (in deci-
bels) of the ve red spheres of Fig. 12 as a function of halfdan Right: Mean-square
angular error in the recovered surface normals as a funcfimtreasing specularity using
both the proposed specular invariants and existing RGB oalsth

image method (Barsky and Petrou, 2001) assumes Lambegtiectance and its
performance degrades monotonically as gloss increasesylate the three-image
RGB method (Barsky and Petrou, 2003; Coleman and Jain, J88®)rms well

for the high-gloss (narrow specular lobe) spheres, it perfoless well when the
angular support of the specular lobe is large relative tcsdparation of the light
source directions.

Figure 14 shows the results of applying the invariant-badextometric stereo
method to two natural objects (a pear and a pumpkin.) Sineedmputation of
the specular invariant is purely local, the method requir@spatial coherence in
the image, and it performs well for surfaces with arbitraytaire. This is not true
for alternative photometric stereo techniques that relyxplicit diffuse/specular
separation (e.g., (Schliins and Wittig, 1993)), sincedmesthods generally require
some form spatial coherence in the spectral re ectance offace.

5.4.2 Sensitivity to llluminant Color

Photometric stereo also provides an opportunity to quativitly evaluate the sen-
sitivity of the proposed invariants to perturbations intheasured illuminant color.
This compliments the qualitative analysis presented irt. 4e2. To measure sensi-
tivity, we repeated the photometric reconstruction procedn Fig. 13 using invari-
ants computed with perturbed source vectors. When the s@entor is perturbed
from its true value, the specular invariant images are comated by specular
effects, and the reconstruction error in the Lambertisseldgphotometric stereo
result is expected to increase.

Figure 15 shows the result of this experiment using the réergpfrom the
second row of Fig. 12. Depicted is the angular mean-squaoe én degrees)
resulting from perturbations of the unit source vector.c8isource vectors are are
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Figure 14: Invariant-based photometric stereo applied to naturdhsas. Left: Input
RGB images show signi cant specular re ectance and textBsecomputing the specular
invariant, the specular effects are removed, enablingratewecovery of shape. Middle,
Right: Surfaces recovered by integrating the estimatefdsainormals.

of unit length, the domain of the error function is the unihepe, and the gure
shows the stereographic projection of this error functientered at the true source
color (indicated by+). Concentric circles in Fig. 15 correspond to angular seurc
perturbations o6 , 10 and15, and the diagonal black line is the projection of
the dichromatic plane, which is the plane spanned by theisdiffvector of the
homogeneous surface and the true source vector.

The qualitative analysis from Sect. 4.2 reveals that thewdpe invariant is
more sensitive to source perturbations within the dichtmrglane than it is to
perturbations away from the plane. This effect is also akeskin Fig. 15, where a
10 perturbation within the plane causes the error to incregseehrly a factor of
two, while the same angular perturbation in the orthogoiraiction induces only
a 25% increase.

While this experiment provides some insight into the seritsitof the pro-
posed invariants, one must be cautious about the conchisina draws. Since
photometric stereo is an active illumination techniqueg typically has the op-
portunity to directly measure the source color. When thihéscase, the noise in
the source estimate will be much smaller than 1be error considered here. For
other applications (stereo, optical ow, etc.) in which g@urce color is dif cult to
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Figure 15:Sensitivity of a photometric stereo reconstruction witkpect to errors in es-
timated source color. The eld of surface normals of a sptieym Fig. 12 is recovered
using invariant-based photometric stereo with sourceovestperturbed from truth, and
the angular MSE in the normal eld is recorded. Shown is a canplot of the stereo-
graphic projection of this error (in degrees) as a functibthe angular perturbation to the
source vector. Concentric circles are cones of source rsedisplaced by , 10 and15
from the true vector«), and the diagonal line is the projection of the dichromptane
for this homogeneous surface. The angular MSE for the trueceovector is3:98 . The
reconstruction is more sensitive to source perturbatiattimthe dichromatic plane than
those orthogonal to it.

measure or is time-varying, one would need to rely on exgstimage-based meth-
ods for illuminant estimation as discussed in Sect. 2. Aaigsburce errors may
be larger in this case—some empirical studies suggest thatseof 10 are not
uncommon Barnard et al. (2002b,a)—and these errors wikn@wery strongly
on the particular materials and illuminants that are presethe scene, the sen-
sitivity functions of the camera being used, and the colarstancy algorithm(s)
being employed.

5.5 Photometric/Geometric Reconstruction

In addition to the applications presented thus far, theidpemvariant can be used
to improve the performance of a broad class of Lambertigedaeconstruction
systems in the presence of specular, non-Lambertian sgtfddis includes meth-
ods that combine both geometric and photometric conssrambbtain accurate
surface shape (Jin et al., 2004; Lim et al., 2005; Zhang €2@03). To provide an
example, we use the passive photometric stereo algorittserided by Lim et al.

(2005). This method begins with an approximate, piece-wigear reconstruction
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Figure 16:Comparison of shape from combined photometric and geoenadristraints.
Left: three RGB frames of a specular cylinder moving undexdwiew and illumination.
Right frame: result of simultaneous tracking and photome&construction (Lim et al.,
2005) using both the conventional grayscale (left) and gpemvariant (right) sequences.

obtained by tracking a small number of features across avégguence under
(possibly varying) directional illumination. Then, anrdgive method based on un-
calibrated Lambertian photometric stereo simultaneoushes the reconstruction

and estimates the unknown illumination directions.

Figure 16 compares the results obtained from an image seglat consists
of a moderately specular cylinder moving under xed illumiion and viewpoint.
The shape is estimated by applying the same algorithm to thetltonventional
grayscale sequence({)) and the specular invariant sequengg,f) ) computed
from the same RGB data. The right-most surface in Fig. 16 shinat the re-
construction obtained using the specular invariant islpestindrical, while that
computed from the conventional grayscale sequence isedgwarrupted by spec-
ular re ections.

5.6 Material-based Segmentation

Sections 5.1-5.5 demonstrate the utility of the proposestidpr invariants for
a variety of visual tasks. This section demonstrates anicgigins of the sec-
ond invariant, generalized hue, which is independent o ltie¢ specular re ec-
tions and diffuse shading in an image. We consider its agiplic to the prob-
lem of material-based segmentation, although other pategiplications include
lighting-insensitive tracking and recognition.
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Input RGB Conventional Grayscale Specular Invariant

Conventional Hue Generalized Hue

Figure 17:Generalized hue for material-based segmentation. Eaa plaows a pseudo-

colored representation that is computed from the RGB imagbaetop-left. The general-

ized hue image on the bottom-right is useful for segmemdigcause it depends only on
the spectral re ectance of the surfaces. The same is nofarneeconventional hue image

(bottom-left) unless the illuminant is white.

Figure 17 shows an RGB image of a dichromatic scene undeprumiource
color (N = 1) along with a series of pseudo-colored representatioraseatlto
the invariants presented in Sect. 4. The top row shows ctiovah grayscale and
specular invariant images, and in the latter, the spectizots (most notably on the
green apples, the pumpkin, and the red pepper) are largalinated. The bottom-
right of Fig. 17 shows the generalized hue image given by Egh&h is invariant
to diffuse shading in addition to specular re ections, ahdrefore depends only
on the spectral re ectance. The fact that the generalizedwithin each region is
relatively constant suggests that it is a useful repretientéor segmentation. The
same is not true for the conventional hue image (shown ondtterb-left) because
the illuminant is not white.

6 Conclusion

This paper presents photometric invariants that are difieen color subspaces.
They can be ef ciently computed from a single image of a dichatic scene and
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can be applied in cases of both monochromatic and mixed itlation environ-
ments. Two important features of these invariants are thathey are free of
specular re ectance effects; and 2) they preserve the sdifshading information
in an image. The latter means that they can be used directlyafmbertian-based
photometric analysis including shape from shading andgshetric stereo.

The invariants are computed point-wise and therefore phaceestriction on
scene texture. Additionally, while they require knowledrehe effective source
color(s), they place no restrictions on the angular distrdn of incident light.

The utility of these invariants is demonstrated by theitigbio improve the
performance of a wide variety of vision algorithms, inchuglithose for binocular
stereo, motion estimation, and photometric reconstractibhey are directly ap-
plicable in cases where the source color is measured or krenwehin these cases,
they are shown to allow many Lambertian-based algorithmiset@applied more
successfully to a much broader class of surfaces.

An important next step is to explore applications in uncolfgd environments,
where illumination spectra cannot be measured or are timgnea By combining
the proposed invariants with existing methods for illunminastimation and robust
Lambertian-based vision algorithms, they may prove to leéuliin these cases as
well.

References

Ahmed, A. and Farag, A. (2006). A New Formulation for ShamsrirShading
for Non-Lambertian SurfacesProc. IEEE Conf. Computer Vision and Pattern
Recognition pages II: 1817-1824.

Bakshi, S. and Yang, Y.-H. (1994). Shape from shading for-laombertian sur-
faces. InProc. IEEE Int. Conf. Image Processingplume 2, pages 130-134.

Barnard, K., Cardei, V., and Funt, B. (2002a). A comparisbrcamputational
color constancy algorithms. I: Methodology and experirsemith synthesized
data.|[EEE Trans. Pattern Analysis and Machine Intelligent&(9).

Barnard, K., Martin, L., Coath, A., and Funt, B. (2002b). Argmarison of com-
putational color constancy algorithms. Il. Experimentshwimage data.lEEE
Trans. Image Processing1(9):985-996.

Barron, J. L. and Klette, R. (2002). Quantitative color oaki ow. In Proc. Inter-
national Conference on Pattern Recognitimolume 4, pages 251-255, Wash-
ington, DC, USA. IEEE Computer Society.

32



Barsky, S. and Petrou, M. (2001). Colour photometric ster8omultaneous
reconstruction of local gradient and colour of rough testlisurfaces. In
Proc. IEEE Int. Conf. Computer Visippages 600—-605.

Barsky, S. and Petrou, M. (2003). The 4-source photomegies technique for
three-dimensional surfaces in the presence of highlights shadows. IEEE
Trans. Pattern Analysis and Machine Intelligen2&(10):1239-1252.

Bhat, D. and Nayar, S. (1998). Stereo and specular re ectimn. Journal of
Computer Vision26(2):91-106.

Birch eld, S. and Tomasi, C. (1998). Depth discontinuitmspixel-to-pixel stereo.
In Proc. IEEE Int. Conf. Computer Visippages 1073-1080.

Black, M. J. and Anandan, P. (1993). A framework for the rolastimation of
optical ow. In Proc. IEEE Int. Conf. Computer Visippages 231-236.

Blanz, V. and Vetter, T. (2003). Face recognition based tingta 3D morphable
model. IEEE Trans. Pattern Analysis and Machine Intelligen2(9).

Boykov, Y., Veksler, O., and Zabih, R. (1998). Markov randatals with ef cient
approximations. IfProc. IEEE Conf. Computer Vision and Pattern Recognition
pages 648-655.

Brainard, D. H. and Freeman, W. T. (1997). Bayesian colostaty. J. Optical
Society of America Al4:1393-1411.

Brelstaff, G. and Blake, A. (1988). Detecting specular itien using lambertian
constraints. IrProc. IEEE Int. Conf. Computer Visippages 297-302.

Coleman, E. and Jain, R. (1982). Obtaining 3-dimensionapstof textured and
specular surfaces using four-source photom&gmputer Vision, Graphics and
Image Processingl8(4):309-328.

Davis, J., Yang, R., and Wang, L. (2005a). BRDF Invariante&tdJsing Light
Transport ConstancyProc. IEEE Int. Conf. Computer Visiod.

Davis, J. E., Yang, R., and Wang, L. (2005b). Brdf invariatetreso using light
transport constancy. fCCV '05: Proceedings of the Tenth IEEE International
Conference on Computer Vision (ICCV'05) Volum@ages 436—443, Washing-
ton, DC, USA. IEEE Computer Society.

Finlayson, G. and Schaefer, G. (2001). Constrained dicaticroolour constancy.
In Proc. European Conf. Computer Visiorolume 1, pages 342—-358.

33



Finlayson, G. D. (1996). Color in perspectiviEEE Trans. Pattern Analysis and
Machine Intelligencel8:1034-1036.

Finlayson, G. D., Hordley, S. D., and Hubel, P. M. (2001). cZddy correlation: a
simple, unifying framework for color constanclEEE Trans. Pattern Analysis
and Machine Intelligenge23:1209-1221.

Gershon, R. (1987)The use of color in computational visioRhD thesis, Univer-
sity of Toronto.

Grossberg, M. D. and Nayar, S. K. (2003). High dynamic ramgenfmultiple
images: Which exposures to combine? Piroc. IEEE Workshop on Color and
Photometric Methods in Computer Vision (CPMCV)

Healey, G. (1989). Using color for geometry-insensitivgrsentation.J. Optical
Society of America £6(6):920-937.

Hertzmann, A. and Seitz, S. (2003). Shape and material byjgbea a photometric
stereo approach. IRroc. IEEE Conf. Computer Vision and Pattern Recognition

Hordley, S. and Finlayson, G. (2006). Reevaluation of cotmistancy algorithm
performanceJ. Optical Society of America,23(5):1008-1020.

Hordley, S. D., Finlayson, G. D., and Drew, M. S. (2002). Remg shadows from
images. InProc. European Conf. Computer Visigrages 823—-836.

Ikeuchi, K. (1981). Determining surface orientations oé&ar surfaces by us-
ing the photometric stereo methollEEE Trans. Pattern Analysis and Machine
Intelligence 3(6):661—-669.

Jin, H., Cremers, D., Yezzi, A., and Soatto, S. (2004). Shedlight on stereo-
scopic segmentation. Iroc. IEEE Conf. Computer Vision and Pattern Recog-
nition.

Jin, H., Soatto, S., and Yezzi, A. J. (2005). Multi-view sterreconstruction of
dense shape and complex appearaite.J. Comput. Vision63(3):175-189.

Kim, J., Kolmogorov, V., and Zabih, R. (2003). "visual cap®ndence using
energy minimization and mutual information”.

Klinker, G., Shafer, S., and Kanade, T. (1988). The measan¢mwi highlights in
color images.nt. Journal of Computer Visiqr2(1):7-32.

34



Koudelka, M., Magda, S., Belhumeur, P., and Kriegman, DO{20 Image-based
modeling and rendering of surfaces with arbitrary BRDFsPioc. IEEE Conf.
Computer Vision and Pattern Recognitjgrages 568-575.

Lee, H. C., Breneman, E. J., and Schulte, C. P. (1990). Mogl&ht relfection for
computer color visionlEEE Trans. Pattern Analysis and Machine Intelligence
12(4):402-409.

Lee, H.-S. (1986). Method for computing the scene-illuminghromaticity from
specular highlightsJ. Optical Society of America,8(10):1694-1699.

Lehmann, T. M. and Palm, C. (2001). Color line search fonilluant estimation
in real-world scenesl]. Optical Society of America,A8(11):2679-2691.

Li, Y., Lin, S., Lu, H., Kang, S. B., and Shum, H.-Y. (2002). Mbaseline stereo
in the presence of specular re ections. IBPR '02: Proceedings of the 16
th International Conference on Pattern Recognition (ICBR'Volume 3page
30573, Washington, DC, USA. IEEE Computer Society.

Lim, J., Ho, J., Yang, M.-H., and Kriegman, D. (2005). Pasgsitiotometric stereo
from motion. InProc. IEEE Int. Conf. Computer Vision

Lin, S., Li, Y., Kang, S. B., Tong, X., and Shum, H.-Y. (2002)iffuse-specular
separation and depth recovery from image sequenceECV '02: Proceed-
ings of the 7th European Conference on Computer VisionHHarpages 210—
224, London, UK. Springer-Verlag.

Lu, J. and Little, J. (1999). Re ectance and shape from irsaggng a collinear
light source.Int. Journal of Computer Visiqr82(3):1-28.

Magda, S., Kriegman, D., Zickler, T., and Belhumeur, P. @0®Beyond Lambert:
Reconstructing surfaces with arbitrary BRDFs.Proc. IEEE Int. Conf. Com-
puter Vision pages Il: 391-398.

Mallick, S. P., Zickler, T. E., Belhumeur, P. N., and Kriegm®. J. (2006). Spec-
ularity Removal In Images and Videos: A PDE Approach.Phoc. European
Conf. Computer Visian

Narasimhan, S. G., Ramesh, V., and Nayar, S. K. (2003). Asatdspho-
tometric invariants: Separating material from shape ahdnihation. In
Proc. IEEE Int. Conf. Computer Visiprolume 2, pages 1387-1394.

Nayar, S., Fang, X., and Boult, T. (1997). Separation of cd@ components
using color and polarizatiorint. Journal of Computer Visigr21(3):163—186.

35



Nayar, S., Ikeuchi, K., and Kanade, T. (1990). Determiningpe and re ectance
of hybrid surfaces by photometric samplindeEE J. of Robotics and Automa-
tion, 6(4):418-431.

Nayar, S. K. and Bolle, M. (1996). Re ectance based objecbgaition. Int.
Journal of Computer VisigrnL7(3):219-240.

Park, J. B. (2003). Ef cient color representation for imagggmentation under
nonwhite illumination. INSPIE, Volume 526%ages 163-174.

Ragheb, H. and Hancock, E. (2001). Separating lamberti@hspecular re-
ectance components using iterated conditional modePrtit. British Machine
Vision Conferencgepages 541-522.

Rosenberg, C., Hebert, M., and Thrun, S. (2001). Color emst using KL-
divergence. IrProc. IEEE Int. Conf. Computer Visippages 239-247.

Sapiro, G. (1999). Color and illumination votindEEE Trans. Pattern Analysis
and Machine Intelligenge21:1210-1215.

Sato, Y. and lkeutchi, K. (1994). Temporal-color space ysiglof re ection. J.
Optical Society of America,A1(11):2990-3002.

Schlins, K. and Wittig, O. (1993). Photometric stereo fon+h.ambertian surfaces
using color information. IrProc. Int. Conf. on Image Analysis and Processing
pages 505-512.

Shafer, S. (1985). Using color to separate re ection congmts COLOR research
and applications10(4):210-218.

Silver, W. (1980). Determining shape and re ectance usingtiple images. Mas-
ter's thesis, MIT.

Tagare, H. and deFigueiredo, R. (1991). A theory of photamstereo for a class
of diffuse non-lambertian surfacefEEE Trans. Pattern Analysis and Machine
Intelligence 13(2):133-152.

Tan, P, Lin, S., and Quan, L. (2006). Separation of higllighections on textured
surfaces. IProc. IEEE Conf. Computer Vision and Pattern Recognition

Tan, R. T. and Ikeuchi, K. (2003). Separating re ection camgnts of textured
surface using a single image. Rroc. IEEE Int. Conf. Computer Visiopages
870-877.

36



Tan, R. T., Nishino, K., and lkeutchi, K. (2004). Color carsty through inverse-
intensity chromaticity spacel. Optical Society of America,R1(3):321-334.

Tian, Y. and Tsui, H. (1997). Shape recovery from a color ieffag non-lambertian
surfaces.J. Optical Society of America,A4(2):397-404.

Tominga, S. and Wandell, B. (1989). Standard surface-tamme model and illu-
minant estimationJ. Optical Society of America,/A(4):576-584.

Tominga, S. and Wandell, B. A. (2002). Natural scene-illuamit estimation using
sensor correlationProc. IEEE 90:42-56.

Tsumura, N., Ojima, N., Sato, K., Shiraishi, M., Shimizu, Nabeshima, H.,
Akazaki, S., Hori, K., and Miyake, Y. (2003). Image-basethstolor and tex-
ture analysis/synthesis by extracting hemoglobin and mreiaformation in the
skin. InProc. ACM SIGGRAPHpages 770-779.

Tu, P. and Mendonca, P. (2003). Surface reconstructiof&lenholtz reciprocity
with a single image pair. IfProc. IEEE Conf. Computer Vision and Pattern
Recognitionvolume 1, pages 541-547.

van de Weijer, J. and Gevers, T. (2004). Robust optical ownfrphotometric
invariants. InProc. IEEE Int. Conf. Image Processinpages 1835-1838.

Wann Jensen, H., Marschner, S., Levoy, M., and Hanraha@pP1j. A practical
model for subsurface light transport. Pioc. ACM SIGGRAPHyages 511-518.

Wolff, L. and Angelopoulou, E. (1994). Three-dimensiont@reo by photometric
ratios. J. Optical Society of America,A1:3069-3078.

Wolff, L. B. and Boult, T. E. (1991). Constraining object feees using a polariza-
tion re ectance modellEEE Trans. Pattern Analysis and Machine Intelligence
13(7):635-657.

Woodham, R. (1978). Photometric stereo: A re ectance maprtigjue for de-
termining surface orientation from image intesity. Rroc. SPIE volume 155,
pages 136-143.

Yang, R., Pollefeys, M., and Welch, G. (2003). Dealing wikttreless regions
and specular highlights-a progressive space carving selieing a novel photo-
consistency measure. IG6CV '03: Proceedings of the Ninth IEEE International
Conference on Computer Visiomage 576, Washington, DC, USA. IEEE Com-
puter Society.

37



Yoon, K. and Kweon, 1. (2006a). Correspondence search iptisence of spec-
ular highlights using specular-free two-band images.Ptac. Asian Conf. on
Computer Visionpages I1:761-770.

Yoon, K.-J. and Kweon, I. S. (2006b). Adaptive support-virtigpproach for cor-
respondence searcHEEE Trans. Pattern Analysis and Machine Intelligence
28(4):650-656.

Zhang, L., Curless, B., Hertzmann, A., and Seitz, S. M. (208®ape and motion
under varying illumination: Unifying structure from motipphotometric stereo,
and multi-view stereo. IProc. IEEE Int. Conf. Computer Visippages 618—
625.

Zheng, Q. and Chellappa, R. (1991). Estimation of illumingdirection, albedo,
and shape from shadinglEEE Trans. Pattern Analysis and Machine Intelli-
gence 13(7):680-702.

Zickler, T., Belhumeur, P., and Kriegman, D. (2002). Helfhtthgtereopsis: Ex-
ploiting reciprocity for surface reconstruction. Rroc. European Conf. Com-
puter Vision pages lll: 869-884.

Zickler, T. E., Ho, J., Kriegman, D. J., Ponce, J., and BelaumP. N. (2003).
Binocular helmholtz stereopsis. Rroc. IEEE Int. Conf. Computer Visippage
1411, Washington, DC, USA. IEEE Computer Society.

38



