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Abstract

Depth from triangulation has traditionally been treated in
a number of separate threads in the computer vision litera-
ture, with methods like stereo, laser scanning, and coded
structured light considered separately. In this paper, we
propose a common framework, spacetime stereo, that uni-
fies many of these previous methods. Viewing specific tech-
niques as special cases of this general framework leads to
insights regarding the solutions to many of the traditional
problems of individual techniques. Specifically, we discuss
a number of innovative possible applications such as im-
proved recovery of static scenes under variable illumina-
tion, spacetime stereo for moving objects, structured light
and laser scanning with multiple simultaneous stripes or
patterns, and laser scanning of shiny objects. To suggest the
practical utility of the framework, we use it to analyze one
of these applications—recovery of static scenes under vari-
able, but uncontrolled, illumination. Based on our analysis,
we show that methods derived from the spacetime stereo
framework can be used to recover depth in situations in
which existing methods perform poorly.

1. Introduction
A representation of three dimensional scene geometry is re-
quired for many tasks in computer vision, robotic naviga-
tion, computer graphics, and rapid prototyping. A variety
of techniques have been proposed for acquiring the geome-
try of objects. This paper concerns itself with methods that
obtain depth via triangulation. Within this general family,
a number of methods have been proposed including stereo
vision [12, 25], laser scanning [4, 16, 11, 10], and coded
structured light [3, 14, 26, 13]. Although a deep relation-
ship exists between these methods, as illustrated in the clas-
sification of figure 1, they have been developed primarily
in independent threads of the academic literature, and are
usually discussed as if they were separate techniques. This
paper presents a general framework called spacetime stereo
for understanding and classifying methods of depth from
triangulation. By viewing each technique as an instance of
a more general framework, solutions to many of the tradi-
tional limitations within each sub-space become apparent.

Depth from triangulation makes use of at least two
known scene viewpoints. Corresponding features from the
different viewpoints are identified, and rays are intersected
to find the 3D position of each feature. Determining the cor-
rect correspondence between viewpoints is the fundamental
challenge, and it is in this area that the various methods can
be distinguished.

Most previous surveys classify triangulation techniques
into activeandpassivemethods [4, 9, 21, 29]. Active tech-
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Figure 1: Most existing depth from triangulation techniques
are specific instances of the more general class of spacetime
stereo reconstruction. Because these methods have been de-
veloped largely independently, they have often been artificially
constrained to a small range of variation. Understanding that
all these techniques lie in a continuum of possible methods
can lead to previously unexplored modifications and hybrids.

niques, such as laser scanning and structured light, inten-
tionally project illumination into the scene in order to con-
struct easily identifiable features in order to minimize the
difficulty involved in determining correspondence. In con-
trast, passive stereo algorithms attempt to find matching im-
age features between a pair of general images about which
nothing is known a priori. This classification has become
so pervasive that we believe it is artificially constraining the
range of techniques proposed by the research community.

This paper proposes a different classification of algo-
rithms for depth from triangulation. We characterize meth-
ods by the domain in which corresponding features are lo-
cated. Techniques such as traditional laser scanning and
passive stereo typically identify features purely in thespa-
tial domain, i.e. correspondence is found by determining
similarity of pixels in the image plane. Methods such as
coded structured light and temporal laser scanning make
use of features which lie predominantly in thetemporal do-
main. That is, features with similar appearance over time
are likely to correspond. Most existing methods locate fea-
tures wholly within either the spatial or temporal domains.
However it is possible, and this paper will argue desirable,



to locate features within both the space and time domains
using the general framework ofspacetime stereo.

The remainder of this paper proposes a new framework
for triangulation methods built around identifying corre-
sponding features in both the space and time domains.
This framework of spacetime stereo allows a deeper un-
derstanding of the relationship between existing techniques
that were previously considered separately. In addition, the
new framework suggests extensions to existing techniques
to permit greater flexibility, accuracy, or robustness. We
propose a number of these extensions, and describe new
systems to which they may be applied. This unified frame-
work and discussion are the primary contributions of this
work.

In order to evaluate the practical utility of this framework
we analyze the accuracy of depth recovery for a particular
class of scenes, those in which geometry is static but illumi-
nation undergoes uncontrolled variation. We call this con-
dition unstructured light, to distinguish it both from struc-
tured light methods in which lighting variation is strictly
calibrated, and from passive stereo in which lighting vari-
ation is typically ignored. In our experiments this varia-
tion is produced by the light and shadows from a hand held
flashlight, or using a hand-held laser pointer. The tradeoffs
between space and time are investigated by evaluating the
possible combinations of spatial and temporal processing.
In this case, it is shown empirically that purely temporal
processing, ortemporal stereois the best option. Based on
this analysis, we demonstrate results indicating that space-
time stereo can recover depth maps with greater accuracy
and robustness than traditional spatial-only stereo.

2. Spacetime Stereo
In this section, we introduce our spacetime stereo frame-
work for characterizing depth-from-triangulation algo-
rithms. We discuss traditional spatial stereo, temporal
stereo, and how they may be combined into a common
spacetime stereo framework. Finally, we categorize errors
in the spatial and temporal domains, showing the relation-
ships between the two. In the next section, we will discuss
previous work, classifying these methods in the spacetime
stereo framework based on whether they identify features in
the spatial or temporal domains.

2.1. Traditional (spatial) stereo

The spacetime stereo framework can most naturally be un-
derstood as a generalization of traditional passive stereo
methods that operate entirely within the spatial (image) do-
main. Traditional stereo depth reconstruction proceeds by
considering two viewpoints in known positions, and at-
tempting to find corresponding pixels in each of the two
images. This search for correspondence can proceed either
by searching for specific features such as corners in each of
the images, or more often via matching of arbitrary spatial
windows in the first image to corresponding regions along
the epipolar line in the second image. More specifically,
stereo minimizes a matching function, which in its simplest
form is ∥∥I1(Vs(x1))− I2(Vs(x2))

∥∥2
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Figure 2: Comparison of spatial (top) and temporal (bottom)
stereo. In spatial stereo, the epipolar line is searched for sim-
ilar spatial neighborhoods. In temporal stereo, the search is
for similar temporal variation.

whereI1 is the intensity in image 1,I2 is the intensity in im-
age 2, andV is a vector of pixels in a spatial neighborhood
close tox1 (or x2). This is the standard minimization of sum
of squared differences to find the best matching pixelx∗2.

There is a natural tradeoff in determining the size of the
neighborhood to use. If the neighborhood is too small (an
extreme case is a single pixel), there may be many pixels
along the epipolar line that match the pixel in the first image
equally well. If the neighborhood is larger, we often obtain
more disambiguating information (since we are matching
larger vectors). However, more information does not al-
ways become available. For example, regions of constant
color introduce no new information. Further, we increase
the chance that the spatial window will include depth dis-
continuities. In this situation, it becomes difficult or impos-
sible to find correct matches. Because of this tradeoff be-
tween finding a unique match (which may not be possible
if the neighborhood is too small) and avoiding discontinu-
ities and distortions (which can occur if the neighborhood
is too large), traditional stereo methods sometimes lack ro-
bustness and often can not return dense depth estimates.

2.2. Temporal stereo

In order to show how spacetime stereo reconstruction re-
lates to traditional spatial stereo, let us first consider a scene
with static geometry that is viewed for multiple frames
across time. In this newtemporalstereo setting, we match a
single pixel from the first image against the second image.
As previously discussed, a unique match is unlikely and the
size of the matching vector must be increased. Rather than
increasing this vector by considering a neighborhood in the
spatial direction, it is possible to increase the vector in the
temporal direction, as shown in figure 2.

More specifically, we minimize a matching function,∥∥I1(Vt(x1, t0))− I2(Vt(x2, t0))
∥∥2
. (2)

This is analogous to equation 1, except that now instead of a
spatial neighborhood we consider a temporal neighborhood
Vt around some central timet0.

Under some conditions, a temporal matching vector is
preferable to the traditional spatial vector, such as if the
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Figure 3: Distortions in temporal stereo caused by a moving
object. The matching vector is drawn in 2D with one spatial
dimension and one time dimension. Rows in the matching
vectors represent moments in time. Although the highlighted
time instant is in direct correspondence, the temporal neigh-
borhood has been subjected to distortion.

lighting in a static scene is changing over time. In this case a
long sequence can be used to construct a temporal matching
vector. This vector may contain much more disambiguat-
ing information than a spatial matching vector, since the
tradeoff in terms of spatial window size is no longer in-
volved. On the other hand, temporal matching can fail for
dynamic scenes, since the same image pixel may no longer
correspond in different frames to the same object. We will
discuss this issue at the end of the section, showing how
problems caused by large temporal windows are analogous
to problems due to increased neighborhood size in spatial
stereo matching.

2.3. Spacetime stereo

In general, there is no reason to restrict the matching vec-
tor to lie entirely along either the spatial or temporal axes.
The matching vector can be constructed from an arbitrary
spatio-temporal region around the pixel in question. In the
case of rectangular regions, a window of sizeN×M×T
can be chosen, whereN andM are the spatial sizes of the
window, andT is the dimension along the time axis. In our
general framework, we would seek to optimize the match-
ing function,∥∥I1(Vst(x1, t0))− I2(Vst(x2, t0))

∥∥2
. (3)

It is clear that there is no mathematical distinction between
the spatial and temporal axes.

This framework of generalized spacetime stereo is the
main contribution of this paper. In section 3 we will clas-
sify many previous methods as particular instances of this
more general framework. Seeing these techniques as part of
a continuum rather than as isolated techniques can lead to
previously unexplored modifications and hybrids.

2.4. Spatial and temporal domain errors

Matching errors can arise in both the spatial and temporal
domains, and there is a natural tradeoff in determining the
size of the neighborhood to use. In this subsection, we will
discuss the relationship between errors in the spatial and
temporal domains.

I1 I2

I1 I2

Matching vectors

Figure 4: Near a depth discontinuity, the spatial windows used
by traditional stereo can contain multiple objects, as in this
example. This often results in incorrect reconstructed depths.

In spatial stereo matching, regions of constant texture
(e.g. solid white objects) create difficulties, since increas-
ing the size of the matching vector does not introduce new
information to disambiguate likely matches. Similarly, in
temporal stereo, scenes with constant illumination over time
do not introduce any new information. Spatial matching
will perform best on objects textured with high spatial fre-
quency, and temporal matching will perform best when the
scene illumination has high temporal frequency.

In spatial stereo a patch in the scene will create identical,
undistorted images on both cameras only if it is correctly
oriented at constant depth with respect to the two spatial
viewpoints. A planar patch with other orientations will in
general be subject to an arbitrary projective warp (homog-
raphy) between the two views. Analogously, in the temporal
domain, moving objects will not have constant depth over
time and will produce a similar distortion in the time direc-
tion, as shown in figure 3.

Lastly, in spatial stereo matching, depth discontinuities
between objects create matching neighborhoods with two
separate regions that cannot be simultaneously matched.
Typically, one region is on the foreground, and one on the
background, as shown in figure 4. When a temporal match-
ing vector is used, moving objects cause the same sort of
discontinuity. If an object moves, leaving a view of the
background, a discontinuity will exist in the temporal vec-
tor, as shown in figure 5. At first, the vectors do indeed
match; at some point, a discontinuity creates a new region
and the vectors no longer match, a situation analogous to
the spatial case.

3. Previous methods
Several well-investigated categories of research are in fact
special cases of the general spacetime stereo framework dis-
cussed above. These include traditional stereo, time-coded
structured light, and laser stripe scanning. While this pa-
per does not attempt an exhaustive survey of existing meth-
ods, a classification of the algorithms discussed is given in
figure 1. Note that the well-defined categories of existing
research determine feature correspondence purely within
either the spatial or temporal domains, and the realm of
spatio-temporal processing remains largely unexplored.

This paper is not alone in proposing that spatio-temporal
information may be useful. Zhang et al. have simultane-
ously developed methods similar to ours, focusing on re-
covery of dynamic scenes rather than on constructing an
organizing framework [32]. Other applications have been
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Figure 5: Temporal stereo errors because of temporal depth
discontinuities from motion. Initially, the two views do match,
but as the box moves, they no longer do so. This situation is
analogous to that in spatial stereo matching.

explored as well. For example, Shechtman et al. suggest
that a spatio-temporal framework will be useful for increas-
ing the resolution of video sequences [28].

3.1. Stereo

Traditional stereo matching is a well studied problem in
computer vision. A number of good surveys exist [12, 25].
As discussed in section 2.1, traditional stereo matches vec-
tors in the spatial or image domain to determine correspon-
dence. In passive stereo methods, no attempt is made to
create easy features for correspondence, and the vectors or
spatial neighborhoods matched are arbitrary. Active stereo
methods project a high-frequency static pattern onto the ob-
ject to aid in determining good correspondences, improving
performance in areas of little texture [18, 19, 8].

Another common depth estimation technique is photo-
metric stereo [30]. In this approach, multiple light source
positions are used with a fixed camera. Variations in shad-
ing allow surface normals, and thus surfaces to be esti-
mated. Although this method seems similar in that it makes
use of lighting variations, it is a fundamentally different
method since it obtains shape from shading, rather than us-
ing triangulation. Hybrid technologies that combine both
methods have been proposed [33].

Some researchers have encoded camera motion as a tem-
poral sequence, and applied volumetric processing [5]. Al-
though the method of epipolar analysis is well known, and
uses similar terminology to this work, it is not directly re-
lated. The “spatio-temporal volumes” of that work encode
camera position, rather than time, making it more closely
related to multibaseline stereo and structure from motion.
Similarly, our framework is not directly related to recent re-
search which provides unifying theories for multiperspec-
tive [27] and multiocular [2] stereo.

3.2. Time-coded structured light

Time-coded structured light methods determine depth by
triangulating between projected light patterns and an ob-
serving camera viewpoint. A recent survey of these meth-
ods is by Batlle et al. [3]. The projector illuminates a static
scene with a temporally varying pattern of light stripes. The
patterns are arranged such that every projected column of
pixels can be uniquely identified. Thus, the depth at each
camera pixel is determined based on the particular pattern
observed. That is, the matching vector is temporal and is
matched against a known database of projected patterns and
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Figure 6: Structured light scanning. A set of known temporal
patterns is projected onto the object. These patterns induce a
temporal matching vector, shown below.

their associated depths, as shown in figure 6. Although the
example in this figure is simplistic, a wide variety of pro-
jected patterns are possible, and much of the work in this
area has focused on designing optimum patterns in terms of
either minimum sequence length or robustness, such as the
gray coding used by Inokuchi et al. [14].

From the above description, we can see that structured
light is a special case of spacetime stereo, with matching
in the temporal domain. The matching error metric can be
written as ∥∥I1(Vt(x1, t0))−P2(Vt(x2, t0))

∥∥2
, (4)

which is similar to equation 2 except that we have replaced
the second imageI2 with known projected patternsP2. This
is functionally equivalent to having avirtual second camera
collocated with the projector. The virtual camera has the
same viewpoint as the lightsource, so the virtual image it
captures can be assumed identical to the projected light. By
making conceptual use of a second camera, depth recovery
in structured light systems can be described in terms of cor-
respondence between images, similar to traditional stereo.

It should be noted that the second camera need not be vir-
tual. Using an additional real camera has a number of bene-
fits, including improving the robustness of correspondence
determination to variations in object reflectance [8], and
generating high quality ground truth stereo test images [26].

Recently, researchers have begun to investigate struc-
tured light systems that make use of both space and time.
One such system uses primarily temporal coding, adding a
small spatial window to track the motion of stripe bound-
aries in the image plane [13, 23]. Another uses a primarily
spatial coding, adding a small temporal window to better
locate stripe boundaries [31].

3.3. Laser stripe scanning

A typical laser scanner has a single camera and a laser that
sweeps across a scene. Many geometries have been pro-
posed, but for the purposes of this discussion all behave
similarly. A plane of laser light is generated from a sin-
gle point of projection and is moved across the scene. At
any given time, the camera can see the intersection of this
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Figure 7: Temporal processing of laser scan data. The peak
intensity in the temporal matching vector indicates the time at
which the laser stripe crosses a pixel, in turn indicating the
pixel’s depth.

plane with the object. Both spatial and temporal domain
laser scanners have been built. Informative surveys have
been provided by Besl [4] and Jarvis [16].

Most commercial laser scanners function in the spatial
domain. The laser sheet has an assumed Gaussian cross
section, and the location of this Gaussian feature is known
in the laser frame of reference. Given a known laser posi-
tion, the epipolar line in the camera image is searched for
a matching Gaussian feature [24]. This match determines
corresponding viewing rays, and thus a depth value. Since
the feature set lies only on one line in image space, rather
than densely covering the image plane, only a single stripe
of depth values is recovered. This process is repeated many
times with the laser positioned such that the stripe of fea-
tures is in a new location.

The search for a laser stripe is conceptually similar to
sparse feature matching in that we are looking for features
with a known signature in the spatial domain, and match-
ing these features between views. Spatial laser scanning is
subject to some of the same difficulties that complicate tra-
ditional stereo matching. In particular, no good match is
possible in the neighborhood of a depth discontinuity.

Laser scanners that function in the temporal domain have
also been built [1, 17]. As the laser sweeps past each pixel,
the time at which the peak intensity is observed is recorded
and used to establish correspondence, as shown in figure 7.
Curless and Levoy [10] provide an analysis of the bene-
fits that temporal correlation provides over the traditional
spatial approach in the context of laser scanning. More-
over, they show that the optimal matching uses feature vec-
tors that are not strictly aligned with the time axis, but are
“tilted” in spacetime.

It should be noted that systems qualitatively similar to
laser scanners can be built by replacing the laser stripe with
any well defined, and uniquely identifiable light pattern. For
instance, Bouguet and Perona [7] generate a planar shadow
using a calibrated lamp and hand-held stick.

As with coded structured light, laser scanning can be
framed as standard stereo matching by replacing the cali-
brated laser optics with a second calibrated camera. With
this modification, the laser stripe functions as the high fre-
quency texture desirable for stereo matching. Multi-camera
implementations have been built that find correspondence
in both the spatial [6, 11, 20] and temporal [22] domains.

4. Applications

Using the spacetime stereo methodology proposed in the
previous sections, we now discuss a number of specific

possible extensions and improvements to existing methods.
While this is intended primarily as a thought exercise to il-
lustrate the utility of the spacetime stereo framework, sec-
tion 5 will present a practical implementation of the first
application, as preliminary proof of the practical utility of
the spacetime stereo framework.

Static scenes under variable illumination: Consider a
static scene in the presence of uncontrolled but variable il-
lumination, i.e. unstructured light. Existing methods do
not make use of all available information to recover scene
geometry in this case. Traditional stereo makes good use
of any naturally occurring spatial features, but ignores the
temporal domain. Active methods such as laser scanning
and structured light use temporal information, but require
very specific and highly calibrated features in order to de-
termine correspondence. It is possible to design a hybrid
of these methods that makes use of both naturally occurring
featuresand the temporal domain.

In section 5, we analyze scenes of this class to discover
the optimal spatio-temporal matching window. Based on
this analysis, we show results on a few sample scenes. One
potential application of spatiotemporal stereo is to large ob-
jects like buildings, cities, and mountains that are beyond
the reach of existing active lighting methods, but often have
naturally occurring variable illumination in the form of sun-
light (with additional variation added by moving clouds).

Spacetime stereo for moving objects: The depth of mov-
ing objects has usually been recovered using spatial stereo.
The primary reason for this is the simplicity of treating each
time instant individually. However, as discussed previously,
it is meaningful and potentially beneficial to apply temporal
matching, even for scenes with moving objects.

The optimal spacetime matching window depends on the
speeds with which objects in the scene move. For static
scenes, a long temporal window will give optimal results.
For scenes with quickly moving objects, a short temporal
window is desirable to avoid the distortions shown in fig-
ure 3. When objects move at intermediate speed, it is likely
that a spacetime matching window with extent in both space
and time will be optimal.

Structured light with no precision projectors: Struc-
tured light systems typically make use of precise time-
varying lighting patterns. A relatively expensive projector,
synchronized with the camera, is required to produce cal-
ibrated time varying patterns. In contrast, “active” stereo
seeks to enhance spatial stereo matching using a static
pattern projected by an inexpensive slide projector. For
these systems, however, the ambiguities and limitations of
exclusively-spatial matching still apply.

Using the framework of spacetime stereo, the strengths
of these methods can be combined. For example, an im-
precise but time varying illumination pattern can be created
using an inexpensive motor to rotate a pattern in front of a
light source. Since the projected light is no longer known, a
second real camera is used. High-quality depth is recovered
not by establishing correspondence in the spatial domain as
in active stereo, but rather by correlating the temporal vari-
ation seen by the two cameras.



Laser scanning with multiple stripes: Laser scanning
systems have traditionally provided the highest quality
models; however, they have relatively slow acquisition
times. Researchers have attempted to increase the rate at
which models are acquired by sweeping the laser quickly
and using a high speed camera [17], but achieving high
speeds requires expensive customized hardware. Another
approach is to add additional laser stripes [15]. Unfor-
tunately, additional stripes introduce difficulties in unam-
biguously determining correspondence. This has typically
been addressed by making surface continuity assumptions.
Spacetime stereo allows these continuity assumptions to
be relaxed by introducing disambiguating information from
the time domain, so that a wider range of objects can be
recovered by fast scanning systems.

Laser scanning of somewhat specular objects:One dif-
ficulty in traditional laser scanning is with regard to specu-
lar objects. The laser stripe tends to reflect and create addi-
tional illumination on other parts of the surface, essentially
creating multiple laser stripes. These interreflections make
stripe peak detection ambiguous and interfere with proper
reconstruction. As before, this situation can be improved by
using a second real camera. In the case of a temporal match-
ing vector, the spurious laser stripes will then simply create
additional information in the time domain, and reconstruc-
tion will not be seriously compromised. Of course, if the
object is sufficiently specular, then view dependent effects
will become predominant, and performance will degrade.
However additional robustness for many objects, that ex-
hibit some specularity but are primarily Lambertian, should
be possible.

5. Results

The spacetime stereo framework naturally gives rise to the
question of optimal spatial-temporal window size. The best
spacetime window will be scene and lighting dependent;
however specific data sets and classes of scenes can be ana-
lyzed in terms of relative error.

We have chosen to investigate the class of scenes cor-
responding to the first potential application in the previous
section, in which scene geometry is static but illumination
varies in an unstructured manner. We choose this class be-
cause it includes scenes for which existing methods usually
perform poorly. Consider the case of textureless geometry
lit by uncontrolled natural illumination, such as sunlight.
Traditional stereo methods will often not be able to recover
any depth information in the textureless areas. On the other
hand, active methods are not usually applicable since the il-
lumination does not include the carefully controlled lighting
on which they depend.

By analyzing error across the full range of possible
spacetime window sizes, we can select the best parame-
ters for reconstructing scenes in this class, which in this
case turns out to be purely temporal processing ortempo-
ral stereo. Based on our analysis, we present visual re-
sults showing that spacetime stereo is capable of recover-
ing depth with greater accuracy than traditional spatial-only
analysis.

Figure 8: Sample stereo pairs for the two scenes used in our
experiments. Note the specularities on the cat sculpture and
the regions of uniform texture on the wood blocks, both of
which make traditional spatial stereo matching difficult.

Experimental setup: We used two scenes to evaluate our
method, pictured in figure 8. One consists of blocks of
wood, while the other contains a sculpture of a cat and
a teapot. Stereo pairs were acquired using a single cam-
corder and mirrors to produce two viewpoints. The working
volume is approximately 50cm3, and the viewpoints have
a baseline separation of approximately 60 degrees. Each
viewpoint was manually calibrated using a target.

In addition, we have experimented with a variety of dif-
ferent lighting configurations. Figure 9 shows the cat scene
under three unstructured lighting conditions—moving a
flashlight manually across the objects, moving a hand in
front of a light source to cast a sequence of shadows, and
using a hand-held laser pointer to illuminate the scene with
a moving line. On the left, we show one frame from the
temporal sequence. On the right, we show the temporal
matching vector for a single pixel. The three lighting vari-
ations have very different intensity variation. On top, the
flashlight provides broad smooth lighting, and the pixel in-
tensity varies relatively smoothly over time. In the middle,
the pixel intensity diagram is binary or bi-level, with sharp
transitions corresponding to when shadows appear or dis-
appear. In the bottom row, the laser is narrow and much
brighter than the ambient lighting, so the pixel intensity is
mostly dark, with a few peaks corresponding to laser illumi-
nation. It remains a subject of future work to investigate the
specific advantages and disadvantages of various illumina-
tion variations, and how these may be combined optimally.
In this paper, we merely demonstrate that we are able to pro-
duce good reconstructions using spacetime stereo, under a
variety of illumination conditions.

Spatiotemporal matching: In order to characterize the
performance of spacetime stereo, we choose a single data
set and investigate all possible spatio-temporal window
sizes. In this section we present results of our analysis of
the sequence in which wooden blocks are illuminated by a
flashlight.

For each spacetime window we computed the average
depth error. Since ground truth is unavailable, we approx-
imate “truth” as the visually estimated best result obtained
from processing our other data sets of the same scene. Er-
ror is computed as the mean absolute Euclidean distance
between a given test reconstruction and “ground truth.” The
temporal order of frames in the video sequence was ran-
domly shuffled to negate any effects caused by the specific
path of flashlight motion. This also has the effect of in-



Figure 9: Stereo pairs for the cat-and-teapot scene under dif-
ferent kinds of lighting variations. On the left is one frame in
the image sequence. On the right is the variation in intensity
over time plotted for one pixel. Top: Moving a normal hand-
held flashlight about manually. Middle: Moving a hand in front
of a light source to cast a sequence of shadows. Bottom: Us-
ing a hand-held laser pointer to illuminate the objects. Note
the different characteristics of the temporal matching vector
in each case.
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Figure 10: Error as a function of spatio-temporal window size
for the wood-block scene illuminated with a flashlight.

creasing the temporal information available in short tempo-
ral windows, since it removes correlation between neigh-
boring frames.

In figure 10, we show the accuracy of reconstruction as
a function of both spatial and temporal window size. For
all spatial window sizes, we can see that increasing tempo-
ral window length is beneficial. Since the examined dataset
is of a static scene, this result confirms our expectations.
There are no adverse effects from increasing the tempo-
ral length, and new information becomes available that in-

creases the probability of finding the correct match. An-
other insight, confirmed by the graph, is that after only a
few frames of temporal information become available, it is
no longer desirable to use any spatial extent at all. The low-
est error was obtained using a spatial window of only a sin-
gle pixel. This corresponds to the fact that spatial windows
behave poorly near scene discontinuities.

For clarity, only four data sets were shown. Similar re-
sults were obtained in additional tests of six other spatial
window sizes. Furthermore, since a 1x1 spatial window
produced the best results, we verified that error continues
to decrease as the temporal window grows to span the en-
tire sequence.

Although an analysis of only one sequence is shown, we
believe that the conclusions generalize to similar scenes. In
particular, with static scene geometry and variable illumina-
tion it is desirable to use a purely temporal matching vector.

Comparison of Spatial and Temporal matching: To
show the utility of the spacetime stereo framework, we use
our conclusions from the preceding analysis and compare
purely spatial matching, as in standard stereo, with purely
temporal matching. Spatial matching is computed using a
13×13 window. Results were visually similar for other spa-
tial window sizes. Temporal matching uses a single pixel,
with a time neighborhood including the entire temporal se-
quence, as per equation 2. A hand drawn mask is used to
limit comparison to regions that are visible from both view-
points.

We first consider the same sequence, in which wood
blocks are illuminated with a flashlight. The top of figure 11
compares spatial matching (left), with temporal matching
(right). It is clear from our results that temporal matching is
superior to spatial stereo matching. Spatial stereo matching
is unreliable because the wooden blocks have large regions
of almost uniform texture. Hence, the results are uneven
and noisy. On the other hand, lighting variation creates tex-
ture in the time domain, making temporal matching robust.
To show that our results generalize to a variety of condi-
tions, we repeated the experiment using different geometry
and lighting. The bottom of figure 11 contains a compari-
son of spatial and temporal processing on the sequence in
which a sculpted cat is subjected to shadowing. The results
are similar: temporal matching produces better results than
spatial matching.

For scenes with motion, a different selection of space-
time window size will likely be optimal. We hypothesize
that there will be a tradeoff in the temporal domain between
obtaining additional information and introducing confound-
ing distortions. In that case, we would expect U-shaped er-
ror curves, in which accuracy first improves and then decays
as the temporal window size increases.

6. Conclusions and Future Work

This paper has introduced a new classification framework,
spacetime stereo, for depth from triangulation. Rather than
distinguish algorithms as active or passive, we classify al-
gorithms based on the spatial or temporal domain in which
they locate corresponding features. This classification uni-



Figure 11: Depth reconstruction (shading corresponds to esti-
mated depth) using spatial stereo matching with 13×13neigh-
borhoods (left), and temporal stereo (right). On top are the
wooden blocks with lighting variation by manually moving a
flashlight. Below is the cat and teapot scene with lighting vari-
ation from shadows. Note that traditional spatial stereo depth
estimates are uneven and noisy while temporal stereo is rela-
tively robust and accurate.

fies a number of existing techniques, such as stereo, struc-
tured light, and laser scanning into a continuum of pos-
sible solutions, rather than segmenting them into disjoint
methods. From this unified view a number of possible ex-
tensions and hybrid methods emerge, potentially allowing
for improved stereo recovery of moving scenes, structured
light scanning with multiple simultaneous systems, faster
and cheaper variants, and laser scanning of shiny objects.

As one preliminary demonstration of the utility of the
spacetime stereo framework, we have analyzed the perfor-
mance of various spatio-temporal matching windows on
scenes with unstructured but variable illumination. Based
on this analysis we have demonstrated depth recovery re-
sults that are superior to those obtainable using traditional
spatial-only stereo. In future work, we wish to extend our
analysis to determine optimal structured light patterns and
spacetime windows for scenes with moving objects.

In summary, we believe the framework proposed in
this paper provides a useful way of thinking about many
triangulation-based depth extraction methods, and the in-
sights from it will lead to new applications.
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