Visual Tracking Using Learned Linear Subspaces
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Abstract tackling probability density estimation of this sort. Rebu

This paper presents a simple but robust visual tracking al- head tracking was d(_amonstrated t.o. b? feaS|b!e in [2, 15] by
using the aforementioned probabilistic techniques. Some-

gorithm based on representing the appearances of objects . .
using affine warps of learned linear subspaces of the imageWhat differently, appearance-based techniques offehanot

space. The tracker adaptively updates this subspace Wh“eapproach with less recourse to probability theory. In these

tracking by finding a linear subspace that best approximates ap.proaches [10, 3], the appearance of thg target is modelled
the observations made in the previous frames. Instead ofUSiNg a I_mear gupspace. The subspace 'S usually computed
the traditional L?-reconstruction error norm which leads by applying Principal Component Analysis (PCA) to a col-

to subspace estimation using PCA or SVD, we argue that alection of training images. Modelling .images u;ing a sub-
variant of it, the uniformZ2-reconstruction error norm, is ~ SP2C€ has been shown to be effective in many different prob-

the right one for tracking. Under this framework, we pro- I(ra]ms inbcg_rppgter visionh[13]. I;oweveg corgparir?g with
vide a simple and a computationally inexpensive algorithmt € probabilistic approaches, subspace-based techraqeies

for finding a subspace whose unifofi-reconstruction er- more rigid in the sense that they generally allow only [im-
ror norm for a given collection of data samples is below ited ””mb?r of ways to'update Its appearance model [4, 9],
some threshold, and a simple tracking algorithm is an im- e.g_l._rL]J_pdatlng the covariance rt?attrlx. d adanti

mediate consequence. We show experimental results on a S Paper proposes a robust and adaptive appearance

variety of image sequences of people and man-made object@‘i)deI for tracr:]kipg C‘”C&?'ﬁ?‘ nzturalbobjectsfbased OE the
moving under challenging imaging conditions, which in- subspace technique. Within the subspace framework, up-

clude drastic illumination variation, partial occlusiomd dating the model becomes how to define a subspatit

extreme pose variation. bestapproxmatea given set of datéry, -+ ,zn}, '_[he ob-
) servations from the previous frames. What constitute a good
1 Introduction approximation depends on the underlying metric one uses

to define the quality of the approximation. The traditional
L? reconstruction error norm (whet® (L, x;) is the usual
squared.? distance between; and the subspack)

The main challenge in designing a robust visual tracking
algorithm is the inevitable variation in the images of the
tracked object over time. Various factors can be respoasibl
for such variation, e.g., changes in the viewpoint, changes N

in illumination, changes to the shape (deformations, atic Error®(L,{z1,--- ,an}) = Zd2(L,.’L‘i) D
lations) or reflectance of the object, or partial occlusién o i=1

the target. Therefore, an important theme in visual tragkin leads immediately to the well-known linear techniques of

research is the design of a flexible model or representationl:,ril,]ciple Component Analysis (PCA) and Singular Value
which can adapt to appearance changes. Decomposition (SVD), and a (point-based) tracking algo-
_ Typically, this requires the problem to be formulated i pased on updating linear subspaces using this tech-
in probabilistic terms, and the most recent and successfulmque has appeared in [4]. Our main contribution is the ob-

W(_)rk_s on V'S!Ja' tra_cklng, €g, [12, 14, 7’_ 15], are all_along servation that for appearance-based tracking, the uniform
this line. Various pixel statistics (e.g., using color otein- 1.2 reconstruction error norm

sity values) are computed from the image sequence accord-

ing to the probabilistic model deemed appropriated for the Error™(L,{zy, - ,xn}) = maxd*(L,z;) (2)
problem (commonly a Gaussian model). The dynamic evo- !

lution of the model is reflected by the different probability may be a more appropriate metric in defining linear approx-
densities estimated from each frame. The CONDENSA- imations. We show that, based on this error norm, a simple
TION technique [11] is widely-used in visual tracking for algorithm can be designed to update the linear subspace.



Our algorithm is entirely appearance-based in that no anyimates a collection of data samplgs, , - - - , zny }. The data
other values besides the image intensity values entered int samples are the observations (tracking results) from tie pr
the computation. Nor is there any complicated probahilisti vious frames. To define the quality of approximation, we
estimation or non-linear optimization in the algorithm.eTh  use the uniform reconstruction error notrror> intro-
unexpected surprise is how robust the tracker can be madeluced in Equation 2. Suppose a pair of input parameters
against illumination variation, pose changes and partial o (N, 0) has been specified. Her€ denote the number of
clusion starting with such a simple principle. Except the previous frames whose tracking results we retain,;&and)
two-frame based tracker, which is not known to be robust, is a threshold parameter. We define the subspaodeany
it is difficult to imagine another tracker that is simplertibo  subspace such that the uniform reconstruction error norm
conceptually and implementation-wise. One of the main between and{z,--- ,zx} is less than the threshobd:
foci of this paper is to explain in detail how such a simple
tracker canpwoprk atall. P P Error®(L,{z1,---,2n}) <4. ®)

This paper is organized as follows. In the next section, This definition ofL is exceedingly general and the solution
we detail our tracking algorithm. Our main focus will be s generally not unique. However, one immediate conse-
on the algorithmic aspect of updating the linear subspace.quence is that as along ass greater than zero, there ex-

In the third section, we compare our algorithm with several jsts at least oné that satisfies the inequality in Equation 3,
well-known subspace-based tracking algorithms in the-lite  namely, the subspade spanned by the entire collection of
ature. The experimental results are reported in section fou samples{z,--- ,zx}. In particular, the magnitude &f
We conclude this paper with a short summary and remarkywill generally determine the minimal possible dimension
on future work. with smaller$ requiring larger dimension of. The non-

. . unigueness of the solution appears troubling at first; how-
2 Tracki ng Al gor ithm eveqr, the great advantage of trr)lri)s is that we ogly need to find
In this section, we detail our tracking algorithm. Schemat- one suchl, and it is precisely the non-uniqueness of the so-
ically, our algorithm is very simple. We assume that the lutions that allows us to design a simple and computation-
tracking window has been initialized in the first frame. At ally inexpensive algorithm to find just one suEhHaving a
each frame, the tracker maintains an up-to-date appearanceomputationally inexpensive update algorithm is necessar
model, and the tracking task becomes a detection problem.if the tracking algorithm is expected to run in real-time.

To estimate the location of the target in the current frame, ~ Clearly, Equation 3 is very different from a typi-
we sampleS windows {wy,--- ,ws} of different sizes  cal approach where the data samples are almost always
and orientations near the target's location in the previouslinearly fitted with the least reconstruction error norm
frame'. The image content of each window is rectified to Error?(L,{z1,--- ,zx}), and the unique optimal sub-
an image of fixed size. By rasterizing the rectified images spaceL is define as:
in the usual way, th& windows can be viewed as a col- . 2
lection of points{z;,--- ,zs} in some vector spaciRX. arg mpt Error™(L,{z1,- -, 2x}). “)
Henceforth, we call this vector spafit the image space
2. At any frame, the tracker’s appearance model is repre-
sented as a linear subspatén IR¥. The L2-distance be-
tween eachr; and L is computed and the state of the target
at current frame is defined to be the windaw such that 4, 4 qoes not. In particular, an optimal solutibrmay be

its corresponding; minimizes the distance tbamong all 45 ted using PCA or SVD techniques, but one does not
{z1,--+, x5} The main focus of this paper is to study how o how well it approximates each sample. For instance,
shou_Id the §ubspadeadapt t_o change as time goes on, and when the external environment (lighting, pose variation or
to this we will turn our attention next. occlusion) starts to change significantly, the first few feam
2.1 Subspace Update of such change will invariably be consideredoasliersfor

the approximation using Equation 4. An optimalcom-

Underth_e subspace fram(_ework, the most reasonable Updatﬁuted via Equation 4 may not approximate these samples
strategy is to search for a linear subspaabat bestapprox- e\ and one immediately runs into the serious danger of

LAssuming rectangular windows, there are five parameters #fated |O_Sing the target. _However3 Equation 3 will in effect_ for the
any windows in the image : the location of its center, its widltl height dimension ofL to increase in order to preserve the inequal-

There are three reasons why we prefer Equation 3 to Equa-
tion 4. First, the major difference between the two equation
is that Equation 3 allows for explicit control on the approx-
imation quality of the subspadk for eachz; while Equa-

and angular orientation. Based on the window configuratictié previ- ity. In this way, the tracker reacts to environmental change
ous frame, we sample the current collection of windows usingasSian
distribution. 30ne important point we do not address in this paper is theyrams-

2|n our experiment, the images are rectified to sig&19 with K = ponent’ of L introduced by enforcing the inequality. This will be theiop
361 of a forthcoming paper.



more swiftly than the solution based on Equation 4. Second,the inner products between tf%ng) pairs of vectors in
the uniqueness of the solution for Equation 4 may seem to{ms, --- ,mp,mp+1}. Any other coefficient appearing in
be a blessing at first. However, PCA or SVD require find- the Gramm-Schmidt process is a suitable linear combina-
ing eigenvalues and eigenvectors, and this can be expensivdon of some of these inner products. Note that the two sets

when the image space turns out to be large. With the free-{m,--- ,mp} and{ma,--- ,mp,mpy1} differ by only
dom provided by Equation 3, the non-uniqueness of the so-two elements, namebhy:; andmp;. Therefore, the inner
lutions allows us to design a fast and inexpensive algorithm products computed fofm,,--- ,mp} can be retained for

for finding just one such subspace. Finally, Equation 3 nat- the next update computation. The only new inner-products

urally lends itself to a simple (approximate) solution, and we need to evaluate are tti2 inner products between the

this we will describe next. new batch meamnp; and {ma,--- ,mp} and between
Because of the natural temporal coherence among thenp; and itself.

neighboring frames, one expects that for each batckr of This shows that this part of the update can be made com-

consecutive framegey, - - - , 21 } in the video sequence, the putationally inexpensive. In fact, with today’s processor

target images will not deviate from the mean of the obser- speed, a full Gramm-Schmidtn,,--- ,mp}, with small

vations from thesé-frames by more than an amounfor D (sayD < 25, which is always the case for our experi-

somed (if not, just subdivide thé:-consecutive frames into  ments reported below), does not produce any noticeable ef-

two smaller batches). If the mean is taken as one of the basidect on the tracker’s performance. For the reader’s conve-

vector of L, it is clear that, for this batch df consecutive  nience, we summarize both the tracking and subspace up-

frames,L satisfies Equation 3. The general construction is date algorithms in Figures 1 and 2.

then straightforward. For a giveN observations from the

previous frames{z,, - - -,z } and a positive integér, we Update Algorithm: Input (M, {z1,- - , 21}, D)

form a D = N/k dimensional vector space by breaking jy is the collection of local mean&my, - - ,m,} main-

the sequence ol images intoD batches of siz&. See  tained by the tracker anfly, - - , 24} is the most recent

Figure 3A. For each batch we compute its meam; and  patch of observations (tracking resultd). is the maximal

the subspacé is defined as the subspace spanned by these,|jowable dimension of the subspace.

batch means{m,--- ,mp}. In this modified form, our  output : 7, an orthonormal basis of the subspdcand a

algorithm takes in the twontegral parameterg N, k) with new M

N the number of previous frames retained in the tracker’s

memory andk is the size of the batch whose mean is used 1. Compute the new local mean,, of the new batch

to form the basis vector of *. Note that the basis vectors of observationgzq, - - -,z }.

{ma,---,mp} are not orthonormal and in order to com- 2. If s # D, (i.e. at the beginning stage of the track-
pute the distance betwednandz;, we need to have an or- ing), form the new sedM = {my,--- ,my, mqy1} by
thonormal basis of.. Therefore, the computationally non- appendingn,,; to M. Otherwise, delete the oldest
trivial part of our update algorithm becomes updating the elementn; from M = {mg,--- ,mey1}.

orthonormal basis or an incremental Gramm-Schmidt pro- 5
cess. Note also that only the batch means are retained in the
memory. All previous observations can be discarded.

22 Updating Orthogonal Basis Figure 1: Subspace Updating Algorithm
The problem is the following. Suppose the current sub-

spaceL kept by the tracker has a basis of batch means2 3 |||umination, Pose and Occlusion
{my,---,mp}. LetU denote an orthonormal basis of
L. The update consists of computing a batch mean
mp41, adding this newly computed mean to the collection
{my,--- ,mp}, and deleting the oldest meam, to form

the new collection of batch meafs,, -+ ,mp,mpy1}.

The updated subspaééis spanned by these new collection

. Apply Gramm-Schmidt to the set of vectorsiifi to
obtain a new orthonormal badia

The main difficulty facing a visual tracking algorithm is the
inevitable variation in the images of the tracked objectrove
time. The three most important variations are the external
illumination variation, pose variation and the partial loec
sion of the target. The tracking task becomes challenging
when one or more of these three variations develops simul-
of means and an orthonormal babiisof L’ has to be com- taneously. In this subsection, we provide some gzometric

!
puteld..U tchanct;)e com;thﬁd f(rj?'[' 12, ’_T_ED’ mDthl} bY reasons and motivations that support our claim that the pro-
applying the ramm-Schmidt process. 1he mos expgnsweposed tracking algorithm can be made robust against these
part of the Gramm-Schmidt process is the computation of

three sources of variations.
“Henceforth, N and & will always denote the two parameters of our _A clear explanation is offered by a dire_Ct sum decompo-
tracking algorithm. The dimension d@f will be denoted byD. sition of the subspacé = L; & L,. Consider Figure 3B.




Tracking Algorithm: Input Parameter (2, N, k, 5)
Q = {ws,wy,wy,wh,wy} is the set of five parameters
for sampling windows on the screen afds the number
of windows sampled for each frameV is the number of
previous frames retained by the tracker anis the batch
size.

Output : ¢, current state of the tracked object.

Internal Variable: D = % is the (maximal) dimension
of the subspacd.. U is an orthonormal basis aof, m

a local mean and is set to be the mean of previddis
observations.M is the set of batch means, and it is set to
be empty at beginningt = (z,y,w, h,0) the location of

Each green circle represents the various batch means that
we used to construdt. For simplicity, we assume that as
current frame, the algorithm retains three batch means to
computel, as illustrated in the figure. In the decomposition

L = L; ® Lo, Ly is the one dimensional subspace formed
by the ‘radial vector’ that passes through the mearfof
these three batch means), anglis the linear subspace that
models the affine space generated by the three batch means.
A basis of L, is represented by the two red arrows. The
key observation is in realizing that although it is not a real
image, each batch,; approximates well the real images
that make up its batch. In particular, the ray generated by
each batch mean approximates well the rays generated by
the neighboring real images. These rays are some of the
rays that make up the various illumination cones [1] of the
target. Note that by definition, a illumination cone is asso-

the target, which is represented by a rectangular box on theciated only with one particular pose and therefore, the rays

image at location(z,y) and of size(w, h) with (angular)
orientationd. Initialization: The tracker is initialized by
some method. Let; be the observation at the first frame.
U is set to the unit VeCtO'h%u- The initialization also
specifies the initiat.

1. Sample Windows: DrawS samples of windows
{Wy,---,Wg} at various location of different orien-
tations and sizes according to a Gaussian distribution
centered at with diagonal variance specified Ib¥

. Tracking: Rectified each windoW; to a19-by-19 im-
age and rasterize it to form a vectorin IR35".

. Compute the.? distance between eaalh and the lo-
cal meanm. Choose half ofx;} which has smaller
L? distance tom. Among these§ vectors, evaluate
their distance to the subspataising the orthonormal
basisU. This rejects half of the samples and therefore,
increases the speed of the tracker.

. letz; be the vector in the previous step that gives the
minimal distance td.. The corresponding windoW’;
is then the estimate of the target for the current frame.
tis setW,.

. Subspace Update: For the intervalkoframes, col-
lect the observation$zy, - -- ,zx} from the k previ-
ous frames and apply the Subspace Update Algorithm.
This updates both/ andU.

Figure 2: Tracking Algorithm

generated by a sequence of observations from consecutive
frames swept through a cross-section of a collection of il-
lumination cones. This cross section can be approximated
well by the subspacé because it contains the rays gener-
ated by the batch means. The subsphgen the decom-
position of L represents the average of these rays, and we
can identify L; as the component df that is relevant for
illumination variation.

On the other hand, by going to its complemeh4, we
immediately see thak, models the pose variation. Using
the idea of appearance manifold [13], the local linearitt th
can model small pose variation is precisely represented by
the affine space generated by the three batch means. For
instance, to model local linearity, one can compute the-prin
ciple components for the set of three batches shown in Fig-
ure 3B. Note that the affine space generated by these princi-
ple components will always be contained in the affine space
generated by the batch means. In particular,/theompo-
nent of L which models this affine space, can be considered
as relevant for pose variation. Although our discussion is
rather informal, these simple geometric reasons do provide
some validity for expecting our tracking algorithm to be ro-
bust against pose and illumination variation.

The idea of dealing with occlusion does not seem to have
a straightforward explanation using the geometry of the im-
age space. However, the important issue in dealing with
the development of occlusions using our framework is how
quickly the model can adjust itself to the occlusion. One
can reason that, again using the idea of appearance man-
ifold, when the occlusion starts developing, the trajector
of the tracking sequence jumps from one appearance mani-
fold to another. If the model does not adapt swiftly and its
linearity is still modelling the local linearity of the prious
appearance manifold, then one can expect the tracker to lose
its target quickly. As we explained before, under our frame-
work, it is the metric normError>° that is responsible for
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variably be associated with non-zero probabilities thayth
are not the tracked object. Therefore, it makes sense to in-
clude the only trustworthy result in the appearance model
permanently. In our implementation, the orthonormal basis
always contains the normalized initial image (a unit vec-
tor in the image space). Our results show that with this
small enhancement, the tracker’s ability against driftlsan

Radi al Conponent .
Lighting Variation grea’tly Improved'
Basis Vectors There are two important free parameters in our algo-
[ . . . .
Qigin rithm, N, the number of previous frames retained by the

Qigin

tracker and: the size of the interval used to update the sub-
space. In this paper, we did not address of problem of as-
esigning the correct values for these two parameters. In the
experiments we reported below, we lerange from3 to
6 and N range from80 to 150. We leave the problem of
eadaptive determination the valuesdfandk for future re-
search. However, one fact is cleaN should not be too
large as to incorporate almost all the observations made til
current frame. There is an argument to be made that the
best appearance model that can be used to predict the ap-
pearance of the target at the next frame should not contain
the observations made way back in the sequence. Incorpo-
rating too much (or too old) information will contaminate
the current appearance model with useless information, and
one runs into the danger of diminishing the discriminative

power of the appearance model.

Figure 3: Left(A) Each batch is represented by a yellow
oval and the corresponding batch mean is denoted by th
red arrow. Right(B) Each circle represents a batch mean
and currently the subspadeis spanned by the three batch

means which are denoted by the three vertices of the triang|
in the figure. The two red arrows represent a basis of the
affine space generated by the three batch means.

the swift adaptation of our appearance model.

2.4 Remarksand Discussion

The computational complexity of the algorithm is domi-
nated by the number of windows generated from the Gaus-
sian sampling. Using00 to 300 samples, our tracker runs
comfortably in real-time on &.8-GHz Pentium machine in
. " 3 Related Work

the experiments we reported below. The most prominent
feature of our algorithm is its simplicity: the tracking al- Needless to say, there are numerous tracking algorithms
gorithm simply takes the means of the tracking results over proposed in the literature. The type of tracking algorithm
a constant interval and uses these batch means to form théhat is most similar to our work is the subspace-based al-
linear subspace. No prior model learned off-lined is used gorithm originated with the papers of Jepson and Black [3]
by the algorithm. The algorithm operates on the pixel in- and Hager and Belhumeur [10]. In these pioneering papers,
tensity values only, and there is no sophisticated proityabil the subspaces are always learned off-line from some train-
estimates, non-linear optimization or filtering of images a ing images. In [3], a single subspace is used to provide an
frequently seen in the tracking literature. The unexpectedappearance model for tracking across different poses while
surprise is the robustness of the tracking algorithm givenin [10], the subspace is used for illumination modelling.
its simplicity and parsimonious starting representatitve (  Subsequent works along this line (e.g. [9]) has extended
single first frame). these earlier works by incorporating the capability of upda

One criticism with the proposed tracker concerns the ing the eigen-model. Staying within the eigen framework,
usual problem of drift. In fact, without any prior model these subsequent works invariably focus their attention on
and learning everything on-line, it is impossible to guaran methods and ways that allow the covariance matrix to be
tee a drift-less tracking algorithm. Our point is clear. We updated efficiently.
adhere our appearance model as close to the current obser- As we explained above, the fundamental difference be-
vation as possible. This makes the use of the uniform normtween these earlier works and our is the metric used to
particularly apparent. In this way, we are locally greedy define the approximations. We mentioned that one of the
and hope that the drift can be prevented as much as possipossible dangers of using the usiidlreconstruction error
ble. One possible method for enhancing the tracker’s gbilit norm is that the model may not adapt to external change
against drift is to always include the observation madeén th sufficiently fast. In most of these earlier papers, a sepa-
first frame in the appearance model. Among all the track- rate mechanism is needed to deal with occlusion. In [3],
ing results made along the video sequence, only the firstthe occlusion is dealt with in a robust matching algorithm
observation is unquestionably the appearance of the wlacke that uses a non-linear optimization technique, and in [10],
object. Observations made in the subsequent frames will in-it is dealt with using an Iterative Re-Weighted Least Square



(IRLS) algorithm that assigns an importance weight to eachin the following subsections. Figures 4-7 show several
pixel, which down weight the pixels corresponding to the key frames from these sequences and the rectified track-
occlusion. In our algorithm, there is no separate mechanisming window is shown in the upper left corner. The com-
for dealing with occlusion. We simply let the appearance plete tracking results for these four sequences and com-
model adapt to the changing imaging condition quickly and parisons with other tracking algorithms as well as other
the usual pestering problem of how to deal with occlusion video tracking sequences are available for downloading at
for tracking ‘folds’ naturally under our appearance model. http://vision.ucsd.edu/kriegman-grp/research/

Pixel-based algorithms (e.g. [12]) offer another ap- )
proach. Here various statistics of each pixel are computeg4-1 ~ Tracking a Woman’s Face
at each frame and typically they are used in the tracking al- The first video sequence shown in Figure 4 is a young
gorithm through some types of EM or MAP estimation. Be- woman walking in a cluttered office environment witfit0
cause the statistics are gathered at pixel level, spegiziga frames. The long sequence demonstrates the stability of
needed to guard against external illumination changes Thi our proposed algorithm. The challenge of this video se-
is usually done by passing the images through illumination quence includes large pose variation during walking, sig-
insensitive filters, such as the steerable filters of [8].eler nificant lighting variation and shadowing when she turns on
our appearance-based algorithm clearly offers an advantagthe desk lamp, and the partial occlusion when she drinks
in that by incorporating illumination variation in the sub- coffee and walks behind a cubical wall. In addition, the
space as we explained earlier, this type of procedure can be&luttered background and shaky motion from a handheld
completely avoided. Our experiments show that even un-camera also increase the tracking difficulty.
der intense and drastic illumination variations, our sienpl )
tracker can still perform robustly. 4.2 TrackingaMan's Face

Contour-based tracking algorithms (e.g. [2, 15, 6]) oper- Figure 5 shows some difficult tracking frames in the Dudek
ate on a domain that is somewhat different from ours. SinceSequence from the University of Toronto, which originally
these algorithms track the contour of the object, the actualappeared in [12]. The sequence contains lots of activities
image content of the object is less important for this type Which cause significant appearance changes, such as a hand
of tracker, i.e. pose variation generally does not offer too totally occluding the face for a short time, and taking the
much difficulty. However, because these algorithms operateglasses on and off, etc..

directly with pixels, special attention is always needed to . , . .
guard against both the illumination change and occlusion. 43 Tracking A Man’s Face with Occlusion

] and Pose Variation
4 Experimentsand Results Figure 6 shows the result of tracking a man’s face while it

We have implemented the proposed method in C++ underis partially occluded by a book. The pose of the man’s face
the Microsoft Windows environment. Our current imple- varies simultaneously with the development of occlusion.

rr.lentaFion runs at 30 frames/sec c.omfor'tably with 320x240 4.4 Tracking a Human Face under Lighting
video input without any code optimization on a standard

Dell P4 1.8 MHz machine. The tracking area is described Ch‘?mges o )

by a rectangle window modelled byZadimensional state ~ The last video sequence shown in Figure 7 is from Boston
vector S = [z,y,w, h, 0], where(z, y) represents the po- Umvgrsny, where it shows the capability qf our tracker in
sition of the tracking window(w, k) represents the width ~K€eping good result when both pose and lighting condition
and height of the tracking window, afidepresents theD varied. The sequence can be downloaded from the public

rotation angle of the tracking window. Currently the pa- Website [5].
rameters are initialized manually. For specific classes of :

objects (e.g., faces), the tracker could be initializedHmsy t S Summary and Conclusions

results of a detector. In order to demonstrate the robust-In this paper, we have introduced a technique for learning
ness and efficacy of our approach, we have tested the tracken-line a representation of the appearances of an object tha
ing algorithm on many real-world sequences. These se-is being tracked. By representing the appearances as a linea
quences contain many difficult scenarios which a real-world subspace and choosing to satisfy a constraint using a well-
tracker would likely to encounter, including changes in ap- chosen metric, the resulting tracker is both simple and fast
pearance, large pose variations, significant lightingavari As demonstrated in eight challenging video sequences, the
tion and shadowing, partial occlusion, tracking objectlgar method can robustly track an object in the presence of large
leaving field of view, large scale changes, cluttered back- viewpoint changes, partial occlusion, drastic lightingiaa
grounds, and quick motion resulting in motion blur. We list tion, changes to the shape of the object (facial expressions
the most difficult and representative four video sequencesadding glasses), shaky cameras, and motion blur.



Partial occlusion by walking behind a wall separating twiicefcubicles.

Figure 4: Sequence of tracking a woman'’s face. Each row septe a set of 5 key frames of a particular event. The image in
the upper left corner is the first frame of the video. The upgkicorner of each displayed frame shows the cropped image.

b

Figure 5: Demonstration of tracking a man’s face. The tnagkesults of some difficult frames are selected for this &gur

Figure 6: Demonstration of tracking a man’s face while ite&mpgbes pose change and occlusion. 5 key frames are displayed



Figure 7: Demonstration of tracking a man’s face under ilghvariation. The tracking results of some difficult franzee
selected in this figure. The wire loop on the head is part obtiginal sequence.

Within a larger context, one intermediate goal of a
tracker might be to learn all appearances of an object on-
line, i.e., the appearance manifold. By constructing a sub-
space using only some of the most recent images in a video, [3]
one basically arrives at a representation which is an embed-
ding of a small neighborhood of the appearance manifold
in a low dimensional linear subspace. Rather than using
the neighborhood of the manifold, we instead use the linear
subspace as the representation. Note that if the neighbor- 5
hood were very small, the subspace would just be a subset
of the tangent space to the appearance manifold, but here[s]
the neighborhood is larger, and so the dimension of the sub-
space must be larger. As a consequence of only learning a
neighborhood of the appearance manifold, the representa-[”]
tion does not contain all appearances of the object. Yet for
tracking, the viewing parameters generally change contin- g
uously, and so representing a neighborhood of appearanceé
is sufficient for effective tracking. Though not revealed in
our experiments, a potential challenge remains which is a [g]
long term drift of the tracking window off the tracked object
since our local representation may become corrupted with
the background or occluding objects. One potential way to
mitigate this problem is to enhance the representation with (10]
an approximation to the global appearance manifold cou-
pled with our local representation. For example, one knows
a priori that the image used to initialize the tracker is al-
ways a valid image on the appearance manifold, and like-
wise a sparse sampling of representative images from thg12)
entire tracking sequence could be retained. How to effec-
tively, efficiently, and quickly sample, represent, ugliand
integrate such information in capturing the global appear- [13]
ance structure of an object remain open challenges.

(2]

(4]

(11]

[14]
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