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Abstract. Fowlkes et al. [7] recently introduced an approximation to
the Normalized Cut (NCut) grouping algorithm [18] based on random
subsampling and the Nyström extension. As presented, their method
is restricted to the case where W , the weighted adjacency matrix, is
positive definite. Although many common measures of image similarity
(i.e. kernels) are positive definite, a popular example being Gaussian-
weighted distance, there are important cases that are not. In this work,
we present a modification to Nyström-NCut that does not require W to
be positive definite. The modification only affects the orthogonalization
step, and in doing so it necessitates one additional O(m3) operation,
where m is the number of random samples used in the approximation. As
such it is of interest to know which kernels are positive definite and which
are indefinite. In addressing this issue, we further develop connections
between NCut and related methods in the kernel machines literature. We
provide a proof that the Gaussian-weighted chi-squared kernel is positive
definite, which has thus far only been conjectured. We also explore the
performance of the approximation algorithm on a variety of grouping
cues including contour, color and texture.

1 Introduction

Among the methods for image segmentation developed in recent years, those
based on pairwise grouping arguably show the most promise. By the term “pair-
wise” we mean that the grouping operation is based on measures of similarity
or dissimilarity between pairs of pixels. In contrast, “central” grouping methods
proceed by comparing all the pixels to a small number of prototypes or cluster
centers; examples include k-means and EM clustering with Gaussian mixture
models. Central grouping methods tend to be computationally cheaper, but have
difficulty dealing with irregularly-shaped clusters and gradual variation within
groups. Moreover, they are sensitive to initialization and require model-selection
(i.e. specification of the number of groups). Generally speaking, pairwise group-
ing methods either eliminate or simplify these problems. Some of the approaches
that have been proposed for grouping pairwise data include spectral graph par-
titioning [18,19,13], deterministic annealing [15], and stochastic clustering [8].
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The drawback, of course, is that approaches based on pairwise data in prin-
ciple require measurements between all possible pairs of pixels. Consequently,
the number of pairs considered is often restricted by placing a threshold on the
number of connections per pixel, e.g. by specifying a cutoff radius. This discour-
ages the use of long-range connections and this can result in over-segmentation
of homogeneous regions. A promising solution to this problem for the case of
spectral graph theoretic methods was recently proposed by Fowlkes et al. [7].
Their method, based on the Nyström approximation for the integral eigenvalue
problem, works by solving a grouping problem on a small set ofm randomly sam-
pled pixels and then extending the solution to the complete set of pixels. Using
this approach, they produced high-quality segmentations of image sequences in
a fraction of the time required to compute the exact solution.

Though not explicitly stated, Fowlkes et al. assume that the function used
for computing the simlarity between pairs of pixels is positive definite, i.e. that
the weight matrix comprised of all the pairwise similarities is a Gram matrix.
While this assumption is generally taken for granted in kernel based methods
(e.g. [17]), the same cannot necessarily be said for similarity measures used in
the computer vision literature. In the present work, we show that this restriction
can be lifted by modifying the orthogonalization step used in [7], which requires
positive definiteness. This proposed change necessitates an additional O(m3)
operation; as such it is desirable to know when this alternative is necessary.
To this end we discuss the application of the Nyström method to a number of
commonly used similarity functions, both positive definite and indefinite (i.e.
neither positive definite nor negative definite).

The organization of this paper is as follows. We begin by reviewing in Sec-
tion 2 the spectral graph theoretic pairwise grouping algorithm used in this work,
namely Normalized Cuts (NCut) [18]. Next we review the Nyström extension in
Section 3, focusing on its application to NCut. In Section 4 we discuss the issues
of definiteness and indefiniteness of commonly used kernels used for measuring
pairwise similarity and provide our modification to the method of [7]. Experi-
mental results and discussion are provided in Sections 5. Some properties of the
approximation are discussed in Section 6 and finally we conclude in Section 7.

2 Review of Normalized Cuts

Let the symmetric matrix W ∈ IRN×N denote the weighted adjacency matrix
for a graph G = (V,E) with nodes V and edges E. We will refer to the function
used to compute Wij as a kernel; examples of kernels and their properties are
discussed in Section 5. Let A and B represent a bipartition of V , i.e. A ∪ B =
V and A ∩ B = ∅. Let cut(A,B) denote the sum of the weights between A
and B: cut(A,B) =

∑
i∈A,j∈B Wij . The degree of the ith node is defined as

di =
∑

j Wij and the volume of a set as the sum of the degrees within that set:
vol(A) =

∑
i∈A di and vol(B) =

∑
i∈B di. The Normalized Cut between sets A

and B is then given as follows:
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NCut(A,B) = cut(A,B)
(

1
vol(A)

+
1

vol(B)

)
=

2 · cut(A,B)
vol(A)‖vol(B)

where ‖ denotes the harmonic mean.
We wish to find A and B such that NCut(A,B) is minimized. Appealing

to spectral graph theory [4], Shi and Malik [18] showed that an approximate
solution may be obtained by thresholding the eigenvector corresponding to the
second smallest eigenvalue of the normalized Laplacian L, which is defined as

L = D−1/2(D −W )D−1/2 = I −D−1/2WD−1/2

where D is the diagonal matrix with entries Dii = di. The matrix L is positive
semidefinite, even when W is indefinite. Its eigenvalues lie on the interval [0, 2]
so the eigenvalues of D−1/2WD−1/2 are confined to lie inside [−1, 1] (see [4]).
Finally, extensions to multiple groups are possible via recursive bipartitioning
or through the use of multiple eigenvectors.

3 Review of the Nyström Approximation to NCut

Since N is quite large for typical images (e.g. 2562), finding the eigenvectors
of L is computationally intensive. One approach to dealing with this difficulty
is to connect only to those pixels that are nearby in the image. This makes L
sparse and permits the use of an efficient eigensolver (e.g. Lanczos). However, this
discourages the use of long-range connections and the approximation properties
are not easily understood. The Nyström approximation provides an alternative
approach based on random sampling.

The application of the Nyström approximation to NCut proceeds as follows.
First, choose m samples at random from the full set of N pixels. For simplicity
in notation, reorder the samples so that these m come first and the remaining
n = N −m samples come next. Now partition the weight matrix W as

W =
[
A B
BT C

]
(1)

with A ∈ IRm×m, B ∈ IRm×n, C ∈ IRn×n, and N = m + n, with m 	 n. Here
A represents the subblock of weights amongst the random samples, B contains
the weights from the random samples to the rest of the samples, and C contains
the weights between all of the remaining samples. Assuming m	 n, C is huge.
The Nyström extension implicitly approximates C using BTA−1B. The quality
of the approximation of the full weight matrix

Ŵ =
[
A B
BT BTA−1B

]
(2)

can be quantified as the norm of the Schur complement ‖C − BTA−1B‖. The
size of this norm is governed by the extent to which C is spanned by the rows of
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B. Thus, rather than set the majority of entries inW to zero to produce a sparse
approximation, the Nyström method provides (implicitly) an approximation to
the entire weight matrix based on a subset of rows/columns.

Fowlkes et al. [7] show that Ŵ can be diagonalized in an efficient manner.
Let A1/2 denote the symmetric positive definite square root of A, define S =
A+A−1/2BBTA−1/2 and diagonalize it as S = UΛUT . If the matrix V is defined
as

V =
[
A
BT

]
A−1/2UΛ−1/2 (3)

then one can show that Ŵ is diagonalized by V and Λ, i.e. Ŵ = V ΛV T and
V TV = I. We assume that pseudoinverses are used in place of inverses as nec-
essary when there is redundancy in the random samples.

To apply this approximation to NCut, it is necessary to compute the row
sums of Ŵ . This is possible without explicitly evaluating the BTA−1B block
since

d̂ = Ŵ1 =
[

A1m +B1n

BT 1m +BTA−1B1n

]

=
[

ar + br

bc +BTA−1br

]
(4)

where ar, br ∈ IRm denote the row sums of A and B, respectively, and bc ∈ IRn

denotes the column sum of B.
With d̂ in hand, the blocks of D̂−1/2Ŵ D̂−1/2 that are needed to approximate

its leading eigenvectors are given as

Aij ← Aij√
d̂id̂j

, i, j = 1, . . . ,m

and

Bij ← Bij√
d̂id̂j+m

, i = 1, . . . ,m, j = 1, . . . , n

to which we can apply equation (3) as before.

4 Nyström-NCut for Indefinite Kernels

In diagonalizing D̂−1/2Ŵ D̂−1/2, Fowlkes et al. assume that A is positive semidef-
inite in order to compute A1/2, the positive semidefinite square root of A. Pos-
itive definite kernels correspond to a dot products in a “feature space” that is
protentially of much higher dimensionality than the input space. This geomet-
ric intuition is the essence of the kernel trick [16], which serves as the basis for
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kernel-based methods such as support vector machines (SVM) and kernel prin-
cipal components analysis (KPCA). As such, in the kernel-machines literature,
the term “kernel” is often used synonymously with “positive definite kernel.”
The same assumption cannot be made in general for similarity functions used
in grouping in the computer vision literature. To be sure, Gaussian-weighted
Mahalanobis distance between feature vectors, one of the most common similar-
ity measure used in grouping, is positive definite, as are several other popular
choices. However, there are a number of similarity measures one can use that
only satisfy the fairly weak requirements that W is symmetric and Wij is “big”
if pixels i and j are similar and “small” if they are not. It is therefore important
that both cases be properly addressed.

Equation (3) can be thought of as a “one-shot” combined Nyström eigenvec-
tor approximation and orthogonalization operation. By keeping these two steps
separate, we will show that the positive definiteness requirement can be circum-
vented.1 Starting from the approximation of W in Equation (2), let A = UΛUT

denote the diagonalization of A. We may then write Ŵ as

Ŵ =
[

U
BTUΛ−1

]
Λ
[
UT Λ−1UTB

]
where the block BTUΛ−1 represents the Nyström extension. As Williams and
Seeger [20] noted, this is equivalent to the expression for the projection of a test
point onto the feature-space eigenvectors in Kernel PCA. Although this extension
appears to give us an approximate diagonalization, the extended eigenvectors are
not orthogonal.

We carry out the orthogonalization step as follows. Let ŪT = [UT Λ−1UTB]
and define Z = ŪΛ1/2 so that Ŵ = ZZT . Let FΣFT denote the diagonalization
of ZTZ. Then the matrix V = ZFΣ−1/2 contains the leading orthonormalized
eigenvectors of Ŵ , i.e. Ŵ = V ΣV T with V TV = I. As before, a pseudoinverse
can be used in place of a regular inverse when A has linearly dependent columns.

Thus the approximate eigenvectors are produced in two steps: first we use
the Nyström extension to produce Ū and Λ and then we orthogonalize Ū to
produce V and Σ. Although this “two-step” approach is applicable in general,
the additional O(m3) step it requires for the orthogonalization takes extra time
and leads to an increased loss of significant figures. Therefore it is expedient
to know when the one-shot method can be applied, i.e. when a given kernel is
positive definite.

5 Experiments and Discussion

In this section we discuss a number of kernels, both positive definite and indefi-
nite, and show examples of their use.
1 Since the normalized Laplacian is positive semidefinite even when W is not, it is
tempting to try to apply Nyström to L instead of D−1/2WD−1/2. Unfortunately,
the Nyström method finds the leading eigenvectors, and the eigenvectors of L we
need are the trailing ones.
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Gaussian weighted distance. Perhaps the most commonly used measure of
similarity between pixels is Gaussian weighted Mahalanobis distance between
feature vectors xi and xj :

Wij = e− 1
2 (xi−xj)T Σ−1(xi−xj)

This kernel is positive definite and therefore admits the use of the one-shot
Nyström method. Fowlkes et al. [7] used this kernel on feature vectors containing
position, color, and optical flow. Most of the works cited in the introduction use
this kernel (among others); as such, additional experimental results will not be
provided here.

Histogram comparison using the χ2 test. The χ2 test is a simple and
effective means of comparing two histograms. It has been shown to be a very
robust measure for color and texture discrimination [15]. Given two normalized
histograms hi(k) and hj(k) define

χ2
ij =

1
2

K∑
k=1

(hi(k)− hj(k))2

hi(k) + hj(k)

where it is understood that any term in the sum for which hi(k) = 0 and
hj(k) = 0 is replaced by zero.

We can then define the similarity between a pair of histograms as Wij =
e−χ2

ij/α. This kernel is widely conjectured to be positive definite (see e.g. [3])
but to our knowledge no proof of this has been published. The appendix A
contains our proof that Gaussian-weighted χ2 is positive definite.

An example of Nyström-NCut on a color image of a tiger is shown in Figure
1. In this example, we computed a local color histogram inside a 5×5 box around
each pixel using the color quantization scheme of [14]. Finally, since the weight
matrix is positive definite, we used the one-shot Nyström method. We note that
the same technique can be applied to texture using the “textons” of Malik et al.
[11], i.e. vector-quantized filter responses.

Intervening contour. To integrate contour information into a pairwise region
based grouping framework, it is convenient to construct a kernel that indicates
points are dissimilar if they lie on oposite sides of an intervening contour [10].
We consider a distance between each pair of pixels that takes into account all
possible paths across the image. Each path between a pair is assigned a distance
equal to the maximum contour energy encountered along the path. The distance
rij between the pair is then taken to be the minimum energy over all paths and
the similarity between two pixels is e−r2

ij/α. It is not known whether this kernel
is positive definite.

This cue captures the Gestalt notion of closure. If two points are separated
by a closed contour then they will have low similarity while if there is a path
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(a) (c)

(b)

Fig. 1. Segmentation of tiger image based on Gaussian weighted χ2-distance between
local color histograms. The image size is 128 × 192 and the histogram window size is
5× 5. Color quantization was performed as in [14] with 8 bins. Since the e−χ2

ij kernel
is positive definite, we can use the one-shot method of [7]. (a) Original image shown
with m = 100 random samples used in approximation. (b) Nyström-NCut eigenvectors
2 through 7, sorted in ascending order by eigenvalue. (c) Segment-label image obtained
via k-means clustering on the eigenvectors as described in [7].

connecting two points that doesn’t cross an edge then they will have high simi-
larity.

The problem of finding this minimum over all paths has the same structure as
the classic shortest path problem and is easily solved by application of Dijkstra’s
algorithm [5]. Since the problem is sparse it is possible to achieve a running time
of O(m · (N logN)) where m is the number of samples and N is the number
of pixels. An illustration of this method applied to a sample image is shown in
Figure 2.

One Minus Squared Distance. A simple choice of kernel for expressing sim-
ilarity between pixels is the following,

Wij = 1− r2
ij

α
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Fig. 2. Segmentation using intervening contour. Original image of synthetic shapes
with noise is shown at lower left. At top, the horizontal and vertical boundary energy
is shown; this is computed by squaring the x and y components of the smoothed gra-
dient. The connection weight between a pair of pixels is based on the contour energy
encountered along all paths between the pair of pixels; see text for details. The segmen-
tation label map, obtained via k-means on the Nyström-NCut eigenvectors, is shown
at lower right.

where r2
ij represents the squared distance between feature vectors at i and j.

This kernel is in general indefinite2; moreover, it takes on negative values.3 Nev-
ertheless, this kernel makes intuitive sense and, empirically, NCut works well
with it. An example using the two-step Nyström method with this kernel on
color and proximity is shown in Figure 3.

2 In Multidimensional Scaling (MDS) [6] one applies a “centering operation” to a
squared distance matrix to isolate the positive semidefinite component corresponding
to the inner products between the embedded coordinates. This centering operation
(not repeated here) is more complicated than the one-minus transformation used
in this kernel, and though interesting in its own right, is beyond the scope of the
current discussion.

3 In principle this means the degree could be negative, viz. if enough negative entries
conspire in a single row of W to dominate the positive entries. In such cases, one
could do clipping, however in our experiments we found that this was unnecessary.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Segmentation of Firetruck image using 2nd degree polynomial kernel. The fea-
ture vector for each pixel contains RGB color values and (x, y) coordinates. The form of
the kernel isWij = 1−r2

ij/α where r2
ij represents the Mahalanobis distance between fea-

ture vectors at pixels i and j. Since this kernel is indefinite, we applied Nyström-NCut
using the proposed two-step method. (a) Original image. (b-h) Segments obtained via
k-means clustering on Nyström-NCut eigenvectors as in Figure 1.

6 Properties of the Approximation

Since the Nyström method only requires us to diagonalize anm×mmatrix to find
the leading eigenvectors of D̂−1/2Ŵ D̂−1/2, this approach can be very efficient.
A key question is how well a given set of samples allows us to approximate
these eigenvectors. Fowlkes et al. [7] provide empirical results on a large set of
natural images to show that roughly 100 samples do a good job when using
color and proximity. In this section we wish to shed some light on the geometric
interpretation of the use of BTA−1B as an approximation to C.

As we saw in Section 3, the quality of the approximation depends on the
extent to which the rows of C are spanned by the rows of B. This is true forW in
general. When W is positive semidefinite, we can say more. In particular, we can
express the blocks A and B as A = XTX and B = XTY where X ∈ IR(m+n)×m

and Y ∈ IR(m+n)×n; in the parlance of the kernel-machines literature [16], the
columns of X and Y represent the empirical feature mapping. Let X = QR,
with Q ∈ IR(m+n)×m, QTQ = I, and upper-triangular R ∈ IRm×m denote the
QR decomposition of X. In other words, Q represents an orthonormal basis for
the space spanned by the columns of X. Then the matrix BTA−1B simplifies as
follows:

BTA−1B = Y TX(XTX)−1XTY

= Y TQR(RTQTQR)−1RTQTY

= Y TQRR−1R−TRTQTY

= Y TQQTY

= (QTY )T (QTY )
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Recall that the exact values of C are given by Y TY , i.e. the inner products
between the columns of Y . The quantity (QTY )T (QTY ) represents the inner
products of the columns of Y after projecting them onto the subspace spanned by
X. Thus if Y is spanned well by X then Y TQQTY will be a good approximation
to Y TY .

7 Conclusion

In this paper we have introduced a modification to the Nyström approximation to
Normalized Cuts (Nyström-NCut) that does not require the measure of similarity
between pairs of pixels to be a positive definite function. The proposed change
involves separating the steps of the Nyström extension and orthogonalization.
As this necessitates an additional O(m3) operation, where m is the number of
samples used in the approximation, it is important to know whether a kernel
is positive definite in order not to waste computation and sacrifice numerical
precision unnecessarily. In light of this, we examined a number of kernels, both
positive definite and indefinite, and showed image segmentation results using
both versions of Nyström-NCut. In the process we have provided what we believe
is the first proof that the Gaussian weighted χ2 kernel is positive definite. Finally,
we provided some geometrical insight into the nature of the approximation for
the case of positive definite kernels.

Acknowledgments. We wish to thank Olivier Chapelle and Gianluca Donato
for helpful discussions. This research was supported in part by NSF Grant no.
DMS 0100472 and Office of Naval Research grant no. N00014-01-1-0890, as part
of the MURI program.

A Proof of Positive Definiteness of e−χ2
ij

We now prove that e−χ2
ij is positive definite. We begin by considering the χ2

ij

term by itself. Noting that (hi(k)−hj(k))2 = (hi(k)+hj(k))2− 4hi(k)hi(k), we
can rewrite χ2

ij as

χ2
ij = 1− 2

K∑
k=1

hi(k)hj(k)
hi(k) + hj(k)

We wish to show that the matrix Q with entries given by

Qij = 2
K∑

k=1

hi(k)hj(k)
hi(k) + hj(k)
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is positive definite. Consider the quadratic form cTQc for an arbitrary finite
nonzero vector c:

cTQc =
n∑

i,j=1

cicjQij

= 2
K∑

k=1

n∑
i,j=1

cicj
hi(k)hj(k)

hi(k) + hj(k)

= 2
K∑

k=1

n∑
i,j=1

cicjhi(k)hj(k)
∫ 1

0
xhi(k)+hj(k)−1dx

= 2
K∑

k=1

n∑
i,j=1

∫ 1

0
cihi(k)xhi(k)− 1

2 cjhj(k)xhj(k)− 1
2 dx

= 2
K∑

k=1

∫ 1

0

(
n∑

i=1

cihi(k)xhi(k)− 1
2

) n∑
j=1

cjhj(k)xhj(k)− 1
2


 dx

= 2
K∑

k=1

∫ 1

0

(
n∑

i=1

cihi(k)xhi(k)− 1
2

)2

dx

> 0

Thus Q is positive definite.
(Alternatively, one can show the positive definiteness of Q using properties

of Hadamard products as follows. We begin by noting that Q can be written as
a sum of K matrices of the form [

2xixj

xi + xj

]

where xi > 0. That is to say, Q is a sum of matrices of harmonic means be-
tween all pairs of entries in hi(k) over all k. Using ◦ to denote the Hadamard
(componentwise) product [2], this matrix can be rewritten as[

2xixj

xi + xj

]
= [2xixj ] ◦

[
1

xi + xj

]

The first matrix is positive definite since it is simply a constant times the outer
product of x with itself. The second matrix is also positive definite since it is a
Hilbert matrix [12]. By Schur’s theorem [2], the Hadamard product of two pos-
itive definite matrices is also positive definite. Finally, since the sum of positive
definite matrices is also positive definite [9], this establishes that Q is positive
definite.)

Returning now to e−χ2
ij , we note that it can be written as a positive constant

times eQij . Since the exponential of a positive definite function is also positive
definite [1], we have established that e−χ2

ij is positive definite.
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