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Abstract
This paper presents a simple but robust visual tracking al-
gorithm based on representing the appearances of objects
using affine warps of learned linear subspaces of the image
space. The tracker adaptively updates this subspace while
tracking by finding a linear subspace that best approximates
the observations made in the previous frames. Instead of
the traditional L2-reconstruction error norm which leads
to subspace estimation using PCA or SVD, we argue that a
variant of it, the uniformL2-reconstruction error norm, is
the right one for tracking. Under this framework, we pro-
vide a simple and a computationally inexpensive algorithm
for finding a subspace whose uniformL2-reconstruction er-
ror norm for a given collection of data samples is below
some threshold, and a simple tracking algorithm is an im-
mediate consequence. We show experimental results on a
variety of image sequences of people and man-made objects
moving under challenging imaging conditions, which in-
clude drastic illumination variation, partial occlusion and
extreme pose variation.

1 Introduction
The main challenge in designing a robust visual tracking
algorithm is the inevitable variation in the images of the
tracked object over time. Various factors can be responsible
for such variation, e.g., changes in the viewpoint, changes
in illumination, changes to the shape (deformations, articu-
lations) or reflectance of the object, or partial occlusion of
the target. Therefore, an important theme in visual tracking
research is the design of a flexible model or representation
which can adapt to appearance changes.

Typically, this requires the problem to be formulated
in probabilistic terms, and the most recent and successful
works on visual tracking, e.g., [12, 14, 7, 15], are all along
this line. Various pixel statistics (e.g., using color or inten-
sity values) are computed from the image sequence accord-
ing to the probabilistic model deemed appropriated for the
problem (commonly a Gaussian model). The dynamic evo-
lution of the model is reflected by the different probability
densities estimated from each frame. The CONDENSA-
TION technique [11] is widely-used in visual tracking for

tackling probability density estimation of this sort. Robust
head tracking was demonstrated to be feasible in [2, 15] by
using the aforementioned probabilistic techniques. Some-
what differently, appearance-based techniques offer another
approach with less recourse to probability theory. In these
approaches [10, 3], the appearance of the target is modelled
using a linear subspace. The subspace is usually computed
by applying Principal Component Analysis (PCA) to a col-
lection of training images. Modelling images using a sub-
space has been shown to be effective in many different prob-
lems in computer vision [13]. However, comparing with
the probabilistic approaches, subspace-based techniquesare
more rigid in the sense that they generally allow only lim-
ited number of ways to update its appearance model [4, 9],
e.g. updating the covariance matrix.

This paper proposes a robust and adaptive appearance
model for tracking complex natural objects based on the
subspace technique. Within the subspace framework, up-
dating the model becomes how to define a subspaceL that
bestapproximatesa given set of data{x1, · · · , xN}, the ob-
servations from the previous frames. What constitute a good
approximation depends on the underlying metric one uses
to define the quality of the approximation. The traditional
L2 reconstruction error norm (whered2(L, xi) is the usual
squaredL2 distance betweenxi and the subspaceL)

Error2(L, {x1, · · · , xN}) =

N∑

i=1

d2(L, xi) (1)

leads immediately to the well-known linear techniques of
Principle Component Analysis (PCA) and Singular Value
Decomposition (SVD), and a (point-based) tracking algo-
rithm based on updating linear subspaces using this tech-
nique has appeared in [4]. Our main contribution is the ob-
servation that for appearance-based tracking, the uniform
L2 reconstruction error norm

Error∞(L, {x1, · · · , xN}) = max
i

d2(L, xi) (2)

may be a more appropriate metric in defining linear approx-
imations. We show that, based on this error norm, a simple
algorithm can be designed to update the linear subspace.
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Our algorithm is entirely appearance-based in that no any
other values besides the image intensity values entered into
the computation. Nor is there any complicated probabilistic
estimation or non-linear optimization in the algorithm. The
unexpected surprise is how robust the tracker can be made
against illumination variation, pose changes and partial oc-
clusion starting with such a simple principle. Except the
two-frame based tracker, which is not known to be robust,
it is difficult to imagine another tracker that is simpler, both
conceptually and implementation-wise. One of the main
foci of this paper is to explain in detail how such a simple
tracker can work at all.

This paper is organized as follows. In the next section,
we detail our tracking algorithm. Our main focus will be
on the algorithmic aspect of updating the linear subspace.
In the third section, we compare our algorithm with several
well-known subspace-based tracking algorithms in the liter-
ature. The experimental results are reported in section four.
We conclude this paper with a short summary and remark
on future work.

2 Tracking Algorithm
In this section, we detail our tracking algorithm. Schemat-
ically, our algorithm is very simple. We assume that the
tracking window has been initialized in the first frame. At
each frame, the tracker maintains an up-to-date appearance
model, and the tracking task becomes a detection problem.

To estimate the location of the target in the current frame,
we sampleS windows {w1, · · · , wS} of different sizes
and orientations near the target’s location in the previous
frame1. The image content of each window is rectified to
an image of fixed size. By rasterizing the rectified images
in the usual way, theS windows can be viewed as a col-
lection of points{x1, · · · , xS} in some vector spaceIRK.
Henceforth, we call this vector spaceIRK the image space
2. At any frame, the tracker’s appearance model is repre-
sented as a linear subspaceL in IRK. TheL2-distance be-
tween eachxi andL is computed and the state of the target
at current frame is defined to be the windowwi such that
its correspondingxi minimizes the distance toL among all
{x1, · · · , xs}. The main focus of this paper is to study how
should the subspaceL adapt to change as time goes on, and
to this we will turn our attention next.

2.1 Subspace Update
Under the subspace framework, the most reasonable update
strategy is to search for a linear subspaceL that best approx-

1Assuming rectangular windows, there are five parameters that define
any windows in the image : the location of its center, its widthand height
and angular orientation. Based on the window configuration in the previ-
ous frame, we sample the current collection of windows using a Gaussian
distribution.

2In our experiment, the images are rectified to size19x19 with K =

361

imates a collection of data samples{x1, · · · , xN}. The data
samples are the observations (tracking results) from the pre-
vious frames. To define the quality of approximation, we
use the uniform reconstruction error normError∞ intro-
duced in Equation 2. Suppose a pair of input parameters
(N, δ) has been specified. HereN denote the number of
previous frames whose tracking results we retain, andδ > 0
is a threshold parameter. We define the subspaceL to beany
subspace such that the uniform reconstruction error norm
betweenL and{x1, · · · , xN} is less than the thresholdδ3:

Error∞(L, {x1, · · · , xN}) < δ. (3)

This definition ofL is exceedingly general and the solution
is generally not unique. However, one immediate conse-
quence is that as along asδ is greater than zero, there ex-
ists at least oneL that satisfies the inequality in Equation 3,
namely, the subspaceL spanned by the entire collection of
samples{x1, · · · , xN}. In particular, the magnitude ofδ
will generally determine the minimal possible dimensionL
with smallerδ requiring larger dimension ofL. The non-
uniqueness of the solution appears troubling at first; how-
ever, the great advantage of this is that we only need to find
one suchL, and it is precisely the non-uniqueness of the so-
lutions that allows us to design a simple and computation-
ally inexpensive algorithm to find just one suchL. Having a
computationally inexpensive update algorithm is necessary
if the tracking algorithm is expected to run in real-time.

Clearly, Equation 3 is very different from a typi-
cal approach where the data samples are almost always
linearly fitted with the least reconstruction error norm
Error2(L, {x1, · · · , xN}), and the unique optimal sub-
spaceL is define as:

arg min
L

Error2(L, {x1, · · · , xN}). (4)

There are three reasons why we prefer Equation 3 to Equa-
tion 4. First, the major difference between the two equations
is that Equation 3 allows for explicit control on the approx-
imation quality of the subspaceL for eachxi while Equa-
tion 4 does not. In particular, an optimal solutionL may be
computed using PCA or SVD techniques, but one does not
know how well it approximates each sample. For instance,
when the external environment (lighting, pose variation or
occlusion) starts to change significantly, the first few frames
of such change will invariably be considered asoutliers for
the approximation using Equation 4. An optimalL com-
puted via Equation 4 may not approximate these samples
well and one immediately runs into the serious danger of
losing the target. However, Equation 3 will in effect for the
dimension ofL to increase in order to preserve the inequal-
ity. In this way, the tracker reacts to environmental changes

3One important point we do not address in this paper is the ‘noisy com-
ponent’ ofL introduced by enforcing the inequality. This will be the topic
of a forthcoming paper.
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more swiftly than the solution based on Equation 4. Second,
the uniqueness of the solution for Equation 4 may seem to
be a blessing at first. However, PCA or SVD require find-
ing eigenvalues and eigenvectors, and this can be expensive
when the image space turns out to be large. With the free-
dom provided by Equation 3, the non-uniqueness of the so-
lutions allows us to design a fast and inexpensive algorithm
for finding just one such subspace. Finally, Equation 3 nat-
urally lends itself to a simple (approximate) solution, and
this we will describe next.

Because of the natural temporal coherence among the
neighboring frames, one expects that for each batch ofk-
consecutive frames{x1, · · · , xk} in the video sequence, the
target images will not deviate from the mean of the obser-
vations from thesek-frames by more than an amountδ for
someδ (if not, just subdivide thek-consecutive frames into
two smaller batches). If the mean is taken as one of the basis
vector ofL, it is clear that, for this batch ofk consecutive
frames,L satisfies Equation 3. The general construction is
then straightforward. For a givenN observations from the
previous frames,{x1, · · · , xN} and a positive integerk, we
form a D = N/k dimensional vector space by breaking
the sequence ofN images intoD batches of sizek. See
Figure 3A. For each batchi, we compute its meanmi and
the subspaceL is defined as the subspace spanned by these
batch means,{m1, · · · ,mD}. In this modified form, our
algorithm takes in the twointegral parameters(N, k) with
N the number of previous frames retained in the tracker’s
memory andk is the size of the batch whose mean is used
to form the basis vector ofL 4. Note that the basis vectors
{m1, · · · ,mD} are not orthonormal and in order to com-
pute the distance betweenL andxi, we need to have an or-
thonormal basis ofL. Therefore, the computationally non-
trivial part of our update algorithm becomes updating the
orthonormal basis or an incremental Gramm-Schmidt pro-
cess. Note also that only the batch means are retained in the
memory. All previous observations can be discarded.

2.2 Updating Orthogonal Basis
The problem is the following. Suppose the current sub-
spaceL kept by the tracker has a basis of batch means
{m1, · · · ,mD}. Let U denote an orthonormal basis of
L. The update consists of computing a batch mean
mD+1, adding this newly computed mean to the collection
{m1, · · · ,mD}, and deleting the oldest meanm1 to form
the new collection of batch means{m2, · · · ,mD,mD+1}.
The updated subspaceL′ is spanned by these new collection
of means and an orthonormal basisU ′ of L′ has to be com-
puted.U ′ can be computed from{m2, · · · ,mD,mD+1} by
applying the Gramm-Schmidt process. The most expensive
part of the Gramm-Schmidt process is the computation of

4Henceforth,N andk will always denote the two parameters of our
tracking algorithm. The dimension ofL will be denoted byD.

the inner products between theD(D+1)
2 pairs of vectors in

{m2, · · · ,mD,mD+1}. Any other coefficient appearing in
the Gramm-Schmidt process is a suitable linear combina-
tion of some of these inner products. Note that the two sets
{m1, · · · ,mD} and{m2, · · · ,mD,mD+1} differ by only
two elements, namelym1 andmD+1. Therefore, the inner
products computed for{m1, · · · ,mD} can be retained for
the next update computation. The only new inner-products
we need to evaluate are theD inner products between the
new batch meanmD+1 and{m2, · · · ,mD} and between
mD+1 and itself.

This shows that this part of the update can be made com-
putationally inexpensive. In fact, with today’s processor
speed, a full Gramm-Schmidt{m1, · · · ,mD}, with small
D (sayD < 25, which is always the case for our experi-
ments reported below), does not produce any noticeable ef-
fect on the tracker’s performance. For the reader’s conve-
nience, we summarize both the tracking and subspace up-
date algorithms in Figures 1 and 2.

Update Algorithm: Input (M , {x1, · · · , xk}, D)
M is the collection of local means{m1, · · · ,ms} main-
tained by the tracker and{x1, · · · , xk} is the most recent
batch of observations (tracking results).D is the maximal
allowable dimension of the subspace.
Output : U , an orthonormal basis of the subspaceL and a
newM

1. Compute the new local meanms+1 of the new batch
of observations{x1, · · · , xk}.

2. If s 6= D, (i.e. at the beginning stage of the track-
ing), form the new setM = {m1, · · · ,ms,ms+1} by
appendingms+1 to M . Otherwise, delete the oldest
elementm1 from M = {m2, · · · ,ms+1}.

3. Apply Gramm-Schmidt to the set of vectors inM to
obtain a new orthonormal basisU .

Figure 1: Subspace Updating Algorithm

2.3 Illumination, Pose and Occlusion
The main difficulty facing a visual tracking algorithm is the
inevitable variation in the images of the tracked object over
time. The three most important variations are the external
illumination variation, pose variation and the partial occlu-
sion of the target. The tracking task becomes challenging
when one or more of these three variations develops simul-
taneously. In this subsection, we provide some geometric
reasons and motivations that support our claim that the pro-
posed tracking algorithm can be made robust against these
three sources of variations.

A clear explanation is offered by a direct sum decompo-
sition of the subspaceL = L1 ⊕ L2. Consider Figure 3B.
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Tracking Algorithm: Input Parameter (Ω, N , k, S)
Ω = {ωx, ωy, ωw, ωh, ωθ} is the set of five parameters
for sampling windows on the screen andS is the number
of windows sampled for each frame.N is the number of
previous frames retained by the tracker andk is the batch
size.
Output : t, current state of the tracked object.
Internal Variable: D = N

k
is the (maximal) dimension

of the subspaceL. U is an orthonormal basis ofL, m
a local mean and is set to be the mean of previous30
observations.M is the set of batch means, and it is set to
be empty at beginning.t = (x, y, w, h, θ) the location of
the target, which is represented by a rectangular box on the
image at location(x, y) and of size(w, h) with (angular)
orientationθ. Initialization: The tracker is initialized by
some method. Letx1 be the observation at the first frame.
U is set to the unit vector x1

‖x1‖
. The initialization also

specifies the initialt.

1. Sample Windows: DrawS samples of windows
{W1, · · · ,WS} at various location of different orien-
tations and sizes according to a Gaussian distribution
centered att with diagonal variance specified byΩ.

2. Tracking: Rectified each windowWi to a19-by-19 im-
age and rasterize it to form a vectorxi in IR361.

3. Compute theL2 distance between eachxi and the lo-
cal meanm. Choose half of{xi} which has smaller
L2 distance tom. Among theseS

2 vectors, evaluate
their distance to the subspaceL using the orthonormal
basisU . This rejects half of the samples and therefore,
increases the speed of the tracker.

4. let xi be the vector in the previous step that gives the
minimal distance toL. The corresponding windowWi

is then the estimate of the target for the current frame.
t is setWi.

5. Subspace Update: For the interval ofk frames, col-
lect the observations{x1, · · · , xk} from thek previ-
ous frames and apply the Subspace Update Algorithm.
This updates bothM andU .

Figure 2: Tracking Algorithm

Each green circle represents the various batch means that
we used to constructL. For simplicity, we assume that as
current frame, the algorithm retains three batch means to
computeL, as illustrated in the figure. In the decomposition
L = L1 ⊕ L2, L1 is the one dimensional subspace formed
by the ‘radial vector’ that passes through the meanm (of
these three batch means), andL2 is the linear subspace that
models the affine space generated by the three batch means.
A basis ofL2 is represented by the two red arrows. The
key observation is in realizing that although it is not a real
image, each batchmi approximates well the real images
that make up its batch. In particular, the ray generated by
each batch mean approximates well the rays generated by
the neighboring real images. These rays are some of the
rays that make up the various illumination cones [1] of the
target. Note that by definition, a illumination cone is asso-
ciated only with one particular pose and therefore, the rays
generated by a sequence of observations from consecutive
frames swept through a cross-section of a collection of il-
lumination cones. This cross section can be approximated
well by the subspaceL because it contains the rays gener-
ated by the batch means. The subspaceL1 in the decom-
position ofL represents the average of these rays, and we
can identifyL1 as the component ofL that is relevant for
illumination variation.

On the other hand, by going to its complement,L2, we
immediately see thatL2 models the pose variation. Using
the idea of appearance manifold [13], the local linearity that
can model small pose variation is precisely represented by
the affine space generated by the three batch means. For
instance, to model local linearity, one can compute the prin-
ciple components for the set of three batches shown in Fig-
ure 3B. Note that the affine space generated by these princi-
ple components will always be contained in the affine space
generated by the batch means. In particular, theL2 compo-
nent ofL which models this affine space, can be considered
as relevant for pose variation. Although our discussion is
rather informal, these simple geometric reasons do provide
some validity for expecting our tracking algorithm to be ro-
bust against pose and illumination variation.

The idea of dealing with occlusion does not seem to have
a straightforward explanation using the geometry of the im-
age space. However, the important issue in dealing with
the development of occlusions using our framework is how
quickly the model can adjust itself to the occlusion. One
can reason that, again using the idea of appearance man-
ifold, when the occlusion starts developing, the trajectory
of the tracking sequence jumps from one appearance mani-
fold to another. If the model does not adapt swiftly and its
linearity is still modelling the local linearity of the previous
appearance manifold, then one can expect the tracker to lose
its target quickly. As we explained before, under our frame-
work, it is the metric normError∞ that is responsible for
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Figure 3: Left(A) Each batch is represented by a yellow
oval and the corresponding batch mean is denoted by the
red arrow. Right(B) Each circle represents a batch mean
and currently the subspaceL is spanned by the three batch
means which are denoted by the three vertices of the triangle
in the figure. The two red arrows represent a basis of the
affine space generated by the three batch means.

the swift adaptation of our appearance model.

2.4 Remarks and Discussion
The computational complexity of the algorithm is domi-
nated by the number of windows generated from the Gaus-
sian sampling. Using200 to 300 samples, our tracker runs
comfortably in real-time on a1.8-GHz Pentium machine in
the experiments we reported below. The most prominent
feature of our algorithm is its simplicity: the tracking al-
gorithm simply takes the means of the tracking results over
a constant interval and uses these batch means to form the
linear subspace. No prior model learned off-lined is used
by the algorithm. The algorithm operates on the pixel in-
tensity values only, and there is no sophisticated probability
estimates, non-linear optimization or filtering of images as
frequently seen in the tracking literature. The unexpected
surprise is the robustness of the tracking algorithm given
its simplicity and parsimonious starting representation (the
single first frame).

One criticism with the proposed tracker concerns the
usual problem of drift. In fact, without any prior model
and learning everything on-line, it is impossible to guaran-
tee a drift-less tracking algorithm. Our point is clear. We
adhere our appearance model as close to the current obser-
vation as possible. This makes the use of the uniform norm
particularly apparent. In this way, we are locally greedy
and hope that the drift can be prevented as much as possi-
ble. One possible method for enhancing the tracker’s ability
against drift is to always include the observation made in the
first frame in the appearance model. Among all the track-
ing results made along the video sequence, only the first
observation is unquestionably the appearance of the tracked
object. Observations made in the subsequent frames will in-

variably be associated with non-zero probabilities that they
are not the tracked object. Therefore, it makes sense to in-
clude the only trustworthy result in the appearance model
permanently. In our implementation, the orthonormal basis
always contains the normalized initial image (a unit vec-
tor in the image space). Our results show that with this
small enhancement, the tracker’s ability against drift canbe
greatly improved.

There are two important free parameters in our algo-
rithm, N , the number of previous frames retained by the
tracker andk the size of the interval used to update the sub-
space. In this paper, we did not address of problem of as-
signing the correct values for these two parameters. In the
experiments we reported below, we letk range from3 to
6 andN range from80 to 150. We leave the problem of
adaptive determination the values ofN andk for future re-
search. However, one fact is clear.N should not be too
large as to incorporate almost all the observations made till
current frame. There is an argument to be made that the
best appearance model that can be used to predict the ap-
pearance of the target at the next frame should not contain
the observations made way back in the sequence. Incorpo-
rating too much (or too old) information will contaminate
the current appearance model with useless information, and
one runs into the danger of diminishing the discriminative
power of the appearance model.

3 Related Work
Needless to say, there are numerous tracking algorithms
proposed in the literature. The type of tracking algorithm
that is most similar to our work is the subspace-based al-
gorithm originated with the papers of Jepson and Black [3]
and Hager and Belhumeur [10]. In these pioneering papers,
the subspaces are always learned off-line from some train-
ing images. In [3], a single subspace is used to provide an
appearance model for tracking across different poses while
in [10], the subspace is used for illumination modelling.
Subsequent works along this line (e.g. [9]) has extended
these earlier works by incorporating the capability of updat-
ing the eigen-model. Staying within the eigen framework,
these subsequent works invariably focus their attention on
methods and ways that allow the covariance matrix to be
updated efficiently.

As we explained above, the fundamental difference be-
tween these earlier works and our is the metric used to
define the approximations. We mentioned that one of the
possible dangers of using the usualL2 reconstruction error
norm is that the model may not adapt to external change
sufficiently fast. In most of these earlier papers, a sepa-
rate mechanism is needed to deal with occlusion. In [3],
the occlusion is dealt with in a robust matching algorithm
that uses a non-linear optimization technique, and in [10],
it is dealt with using an Iterative Re-Weighted Least Square
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(IRLS) algorithm that assigns an importance weight to each
pixel, which down weight the pixels corresponding to the
occlusion. In our algorithm, there is no separate mechanism
for dealing with occlusion. We simply let the appearance
model adapt to the changing imaging condition quickly and
the usual pestering problem of how to deal with occlusion
for tracking ‘folds’ naturally under our appearance model.

Pixel-based algorithms (e.g. [12]) offer another ap-
proach. Here various statistics of each pixel are computed
at each frame and typically they are used in the tracking al-
gorithm through some types of EM or MAP estimation. Be-
cause the statistics are gathered at pixel level, special care is
needed to guard against external illumination changes. This
is usually done by passing the images through illumination
insensitive filters, such as the steerable filters of [8]. Here,
our appearance-based algorithm clearly offers an advantage
in that by incorporating illumination variation in the sub-
space as we explained earlier, this type of procedure can be
completely avoided. Our experiments show that even un-
der intense and drastic illumination variations, our simple
tracker can still perform robustly.

Contour-based tracking algorithms (e.g. [2, 15, 6]) oper-
ate on a domain that is somewhat different from ours. Since
these algorithms track the contour of the object, the actual
image content of the object is less important for this type
of tracker, i.e. pose variation generally does not offer too
much difficulty. However, because these algorithms operate
directly with pixels, special attention is always needed to
guard against both the illumination change and occlusion.

4 Experiments and Results
We have implemented the proposed method in C++ under
the Microsoft Windows environment. Our current imple-
mentation runs at 30 frames/sec comfortably with 320x240
video input without any code optimization on a standard
Dell P4 1.8 MHz machine. The tracking area is described
by a rectangle window modelled by a5 dimensional state
vectorS = [x, y, w, h, θ], where(x, y) represents the po-
sition of the tracking window,(w, h) represents the width
and height of the tracking window, andθ represents the2D
rotation angle of the tracking window. Currently the pa-
rameters are initialized manually. For specific classes of
objects (e.g., faces), the tracker could be initialized by the
results of a detector. In order to demonstrate the robust-
ness and efficacy of our approach, we have tested the track-
ing algorithm on many real-world sequences. These se-
quences contain many difficult scenarios which a real-world
tracker would likely to encounter, including changes in ap-
pearance, large pose variations, significant lighting varia-
tion and shadowing, partial occlusion, tracking object partly
leaving field of view, large scale changes, cluttered back-
grounds, and quick motion resulting in motion blur. We list
the most difficult and representative four video sequences

in the following subsections. Figures 4-7 show several
key frames from these sequences and the rectified track-
ing window is shown in the upper left corner. The com-
plete tracking results for these four sequences and com-
parisons with other tracking algorithms as well as other
video tracking sequences are available for downloading at
http://vision.ucsd.edu/kriegman-grp/research/.

4.1 Tracking a Woman’s Face
The first video sequence shown in Figure 4 is a young
woman walking in a cluttered office environment with1750
frames. The long sequence demonstrates the stability of
our proposed algorithm. The challenge of this video se-
quence includes large pose variation during walking, sig-
nificant lighting variation and shadowing when she turns on
the desk lamp, and the partial occlusion when she drinks
coffee and walks behind a cubical wall. In addition, the
cluttered background and shaky motion from a handheld
camera also increase the tracking difficulty.

4.2 Tracking a Man’s Face
Figure 5 shows some difficult tracking frames in the Dudek
Sequence from the University of Toronto, which originally
appeared in [12]. The sequence contains lots of activities
which cause significant appearance changes, such as a hand
totally occluding the face for a short time, and taking the
glasses on and off, etc..

4.3 Tracking A Man’s Face with Occlusion
and Pose Variation

Figure 6 shows the result of tracking a man’s face while it
is partially occluded by a book. The pose of the man’s face
varies simultaneously with the development of occlusion.

4.4 Tracking a Human Face under Lighting
Changes

The last video sequence shown in Figure 7 is from Boston
University, where it shows the capability of our tracker in
keeping good result when both pose and lighting condition
varied. The sequence can be downloaded from the public
website [5].

5 Summary and Conclusions
In this paper, we have introduced a technique for learning
on-line a representation of the appearances of an object that
is being tracked. By representing the appearances as a linear
subspace and choosing to satisfy a constraint using a well-
chosen metric, the resulting tracker is both simple and fast.
As demonstrated in eight challenging video sequences, the
method can robustly track an object in the presence of large
viewpoint changes, partial occlusion, drastic lighting varia-
tion, changes to the shape of the object (facial expressions,
adding glasses), shaky cameras, and motion blur.
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Face partly leaving field of view, significant lighting variation and large pose variation

Partial occlusion by the coffee mug

Partial occlusion by walking behind a wall separating two office cubicles.

Figure 4: Sequence of tracking a woman’s face. Each row represents a set of 5 key frames of a particular event. The image in
the upper left corner is the first frame of the video. The upperleft corner of each displayed frame shows the cropped image.

Figure 5: Demonstration of tracking a man’s face. The tracking results of some difficult frames are selected for this figure.

Figure 6: Demonstration of tracking a man’s face while it undergoes pose change and occlusion. 5 key frames are displayed.
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Figure 7: Demonstration of tracking a man’s face under lighting variation. The tracking results of some difficult framesare
selected in this figure. The wire loop on the head is part of theoriginal sequence.

Within a larger context, one intermediate goal of a
tracker might be to learn all appearances of an object on-
line, i.e., the appearance manifold. By constructing a sub-
space using only some of the most recent images in a video,
one basically arrives at a representation which is an embed-
ding of a small neighborhood of the appearance manifold
in a low dimensional linear subspace. Rather than using
the neighborhood of the manifold, we instead use the linear
subspace as the representation. Note that if the neighbor-
hood were very small, the subspace would just be a subset
of the tangent space to the appearance manifold, but here
the neighborhood is larger, and so the dimension of the sub-
space must be larger. As a consequence of only learning a
neighborhood of the appearance manifold, the representa-
tion does not contain all appearances of the object. Yet for
tracking, the viewing parameters generally change contin-
uously, and so representing a neighborhood of appearances
is sufficient for effective tracking. Though not revealed in
our experiments, a potential challenge remains which is a
long term drift of the tracking window off the tracked object
since our local representation may become corrupted with
the background or occluding objects. One potential way to
mitigate this problem is to enhance the representation with
an approximation to the global appearance manifold cou-
pled with our local representation. For example, one knows
a priori that the image used to initialize the tracker is al-
ways a valid image on the appearance manifold, and like-
wise a sparse sampling of representative images from the
entire tracking sequence could be retained. How to effec-
tively, efficiently, and quickly sample, represent, utilize and
integrate such information in capturing the global appear-
ance structure of an object remain open challenges.
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