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Abstract This paper presents a practical method for finding
the provably globally optimal solution to numerous prob-
lems in projective geometry including multiview triangula-
tion, camera resectioning and homography estimation. Un-
like traditional methods which may get trapped in local min-
ima due to the non-convex nature of these problems, this ap-
proach provides a theoretical guarantee of global optimality.
The formulation relies on recent developments in fractional
programming and the theory of convex underestimators and
allows a unified framework for minimizing the standard L2-
norm of reprojection errors which is optimal under Gaussian
noise as well as the more robust L1-norm which is less sen-
sitive to outliers. Even though the worst case complexity of
our algorithm is exponential, the practical efficacy is empiri-
cally demonstrated by good performance on experiments for
both synthetic and real data. An open source MATLAB tool-
box that implements the algorithm is also made available to
facilitate further research.
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1 Introduction

Projective geometry is one of the success stories of com-
puter vision. Methods for recovering the three dimensional
structure of a scene from multiple images and the projective
transformations that relate the scene and its images are now
the workhorse subroutines in applications ranging from spe-
cialized tasks like matchmove in filmmaking to consumer
products like image mosaicing on a digital camera user’s
home computer.

The key step in each of these methods is the solution
of an appropriately formulated optimization problem. These
optimization problems are typically highly non-linear and
finding their global optima in general has been shown to
be NP-hard (Freund and Jarre 2001). Methods for solving
these problems are based on a combination of heuristic ini-
tialization and local optimization to converge to a locally
optimal solution. A common method for finding the initial
solution is to use a direct linear transform (for example, the
eight-point algorithm of Longuet-Higgins 1981) to convert
the optimization problem into a linear least squares problem.
The solution then serves as the initial point for a non-linear
minimization method based on the Jacobian and Hessian of
the objective function, for instance, bundle adjustment. As
has been documented, the success of these methods criti-
cally depends on the quality of the initial estimate (Hartley
and Zisserman 2004).

In this paper we present the first practical algorithm
for finding the globally optimal solution to a variety of
problems in multiview geometry. The problems we address
include general n-view triangulation, camera resectioning
(also called cameras pose or absolute orientation) and the
estimation of general projections Pn !→ Pm, for n ≥ m. We
solve each of these problems under three different noise
models, including the standard Gaussian distribution and
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two variants of the bi-variate Laplace distribution. Our algo-
rithm is provably optimal, that is, given any tolerance ε, if
the optimization problem is feasible, the algorithm returns a
solution which is at most ε far from the global optimum. The
algorithm is a branch and bound style method based on ex-
tensions to recent developments in the fractional and convex
programming literature (Tawarmalani and Sahinidis 2001;
Benson 2002; Boyd and Vandenberghe 2004). While the
worst case complexity of our algorithm is exponential, we
will show in our experiments that for a fixed ε the runtime
of our algorithm scales almost linearly with problem size,
making this a very attractive approach for use in practice.

In summary, our main contributions are:

• A scalable algorithm for solving a class of multiview
problems with a guarantee of global optimality.

• In addition to using the standard L2-norm of reprojection
errors, we are able to handle the robust L1-norm for the
perspective camera model.

• Introduction of fractional programming to the computer
vision community.

1.1 Related Work

Recently there has been some progress made towards find-
ing the global solution to a few of the multiview optimiza-
tion problems. An attempt to generalize the optimal solu-
tion of two-view triangulation (Hartley and Sturm 1997) to
three views was done in Stewénius et al. (2005) based on
Gröbner basis. However, the resulting algorithm is numeri-
cally unstable, computationally expensive and does not gen-
eralize for more views or harder problems like resectioning.
In Kahl and Henrion (2005), linear matrix inequalities were
used to approximate the global optimum, but no guarantee of
actually obtaining the global optimum is given. Also, there
are unsolved problems concerning numerical stability. Ro-
bustification using the L1-norm was presented in Ke and
Kanade (2005b), but the approach is restricted to the affine
camera model. In Kahl and Hartley (2007), Ke and Kanade
(2005a), a wider class of geometric reconstruction problems
was solved globally, but with L∞-norm.

A preliminary version of this work was presented in the
conference paper (Agarwal et al. 2006). Also, our frame-
work of branch and bound has recently been extended to the
problems of (i) optimal triangulation of line and conic fea-
tures in Josephson and Kahl (2007) and (ii) autocalibration
in Chandraker et al. (2007).

1.2 Outline

We begin by formulating the problems we are interested in
solving in the next section. Then, an exposition on frac-
tional programming is given in Sect. 2. Contained therein is
an introduction to branch and bound algorithms (Sect. 3.1)

followed by details of the construction of lower bounds
(Sect. 3.2) and our branching strategy (Sect. 3.3). We jus-
tify in Sect. 4 the claim that a broad class of multiview
geometry problems with different noise models can be cast
in the unifying framework of fractional programming. Sec-
tion 5 presents two innovations crucial to expeditious con-
vergence that exploit the special properties of structure and
motion problems—a novel bounds propagation scheme to
restrict the branching process to a small, fixed number of di-
mensions independent of the problem size and an intuitive
initialization strategy based on reprojection error. Finally,
Sect. 6 presents the experimental results of the extensive
evaluation of our algorithm on a variety of synthetic and real
data sets over several different noise levels.

2 Problem Formulation

A perspective camera can be modelled as a linear map-
ping P3 !→ P2 from projective 3-space to a projective image
plane. In matrix notation, a 3D scene point, represented by
a homogeneous 4-vector X, and its projected image point,
represented by a homogeneous 3-vector x, are related by

λx = PX,

where λ is a scalar accounting for depth and P is the 3 × 4
camera matrix encoding intrinsic and extrinsic parameters
of the camera.

We consider the following two problems under three dif-
ferent noise models, namely the Gaussian and two variants
of the bivariate Laplacian.

1. Structure Estimation: Given N images of a point and the
corresponding camera matrices, estimation of the posi-
tion of the point in P3. This is also known as the triangu-
lation problem.

2. Transformation Estimation: Given the position of N

points in the projective space Pn and their images in the
space Pm, estimation of the projective transformation P

that maps these points from Pn to Pm. When n = 3 and
m = 2, that is, the transformation is a 3 × 4 camera ma-
trix, the problem is also known as camera resectioning.

Let P = [p1 p2 p3]& denote the 3×4 camera where pi is
a 4-vector, (u, v)& image coordinates, X 3D homogeneous
coordinates, then the reprojection residual vector for one im-
age is given by

r =
(

u − p&
1 X

p&
3 X

,v − p&
2 X

p&
3 X

)&
. (2.1)



Int J Comput Vis (2008) 79: 271–284 273

Fig. 1 A contour plot of the L2 error for a three-view triangulation
problem in which there are three local minima for the L2 cost function

Under a Gaussian noise model, the objective function to
minimize is the sum-of-squared residuals which becomes

N∑

i=1

‖ri‖2
2, (2.2)

where N is the number of residual terms in the problem.
Other noise models will also be considered later on.

Minimizing the sum-of-squares objective function (2.2)
is known to be a troublesome non-convex optimization prob-
lem for both structure and transformation estimation (Hart-
ley and Zisserman 2004). Already the seemingly simple
two-view triangulation problem have several local minima
(Hartley and Sturm 1997). This phenomena causes difficul-
ties for local optimization techniques such as Newton-based
methods since they may get stucked in local minima.

As an example, consider the following three-view trian-
gulation problem (first published in Kahl and Hartley 2007)
in which there are three local L2 minima, all lying in front of
all three cameras. In this example, all points lie in the plane
z = 0, so we may simplify the problem to a 2-dimensional
triangulation problem. Adding a third dimension makes no
significant difference to the example.

Let P0 be represented by the camera matrix P0 =[ −3 1 −8
−1 −3 −6

]
. The centre of this camera is at the point

(−3,−1,1)&. We obtain two other cameras P1 and P2 by
rotating around the origin by ±120◦.

Now, for all i = 0, . . . ,2, let xi = (3,1)&; this is sim-
ply the point with non-homogeneous coordinate 3 in the im-
age. It is easily seen that all points of the form (x,−1,1)&

map to the same point (3,1)& in the P0 image. These points
lie along the line y = −1, which is therefore the ray corre-
sponding to the image point x0 = (3,1)& for the P0 cam-
era. The rays corresponding to the points measured in the
other images lie on lines rotated by ±1200 around the ori-
gin. The three rays form a triangle. Since this configuration
has three-fold symmetry, if there is to be a single minimum
to the cost function, then it could only be the origin, which
is the symmetry centre. It is easily seen that the origin is not

the global optimum. One might suspect that the local optima
are at the vertices of the triangle. However, the best L2 so-
lutions do not lie exactly at the vertices of the triangle. The
contour plot (sublevel-set plot) of the L2 error (of a slightly
perturbed problem) is shown in Fig. 1.

3 Fractional Programming

In its most general form, fractional programming seeks to
minimize/maximize the sum of p ≥ 1 fractions subject to
convex constraints. Our interest from the point of view of
multiview geometry, however, is specific to the minimiza-
tion problem

(F1) min
x

p∑

i=1

fi(x)

gi(x)
subject to x ∈ D,

where fi : Rn → R and gi : Rn → R are convex and con-
cave functions, respectively, and the domain D ⊂ Rn is a
convex, compact set. Further, it is assumed that both fi and
gi are positive with lower and upper bounds over D. Even
with these restrictions the above problem is NP-complete
(Freund and Jarre 2001), but we demonstrate that practical
and reliable estimation of the global optimum is still pos-
sible for the multiview problems considered through itera-
tive algorithms that solve an appropriate convex optimiza-
tion problem at each step.

For the purposes of the development of the Branch and
Bound algorithm, let us assume that we have available to us
upper and lower bounds on the functions fi(x) and gi(x),
denoted by the intervals [ li , ui ] and [Li,Ui ], respectively.
Let Q0 denote the 2p-dimensional rectangle [ l1, u1 ]×· · ·×
[ lp, up ]×[ L1,U1 ]×· · ·×[Lp,Up ]. Introducing auxiliary
variables t = (t1, . . . , tp)& and s = (s1, . . . , sp)&, consider
the following alternate optimization problem:

(F2) min
x,t,s

p∑

i=1

ti

si

subject to fi(x) ≤ ti , gi(x) ≥ si ,

x ∈ D, (t, s) ∈ Q0.

We note that the feasible set for problem (F2) is a convex,
compact set and that (F2) is feasible if and only if (F1) is.
Indeed the following holds true (Benson 2002):

Theorem 3.1 (x∗, t∗, s∗) ∈ Rn+2p is a global, optimal so-
lution for (F2) if and only if t∗i = fi(x

∗), s∗
i = gi(x

∗), i =
1, . . . , p and x∗ ∈ Rn is a global optimal solution for (F1).

Thus, Problems (F1) and (F2) are equivalent, and hence-
forth we shall restrict our attention to Problem (F2).
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Fig. 2 This figure illustrates the operation of a branch and bound algorithm on a one dimensional non-convex minimization problem. Figure (a)
shows the function #(x) and the interval l ≤ x ≤ u in which it is to be minimized. Figure (b) shows the convex relaxation of #(x) (indicated in
yellow/dashed), its domain (indicated in blue/shaded) and the point for which it attains a minimum value. q∗

1 is the corresponding value of the
function #. This value is the best estimate of the minimum of #(x) is used to reject the left subinterval in Figure (c) as the minimum value of
the convex relaxation is higher than q∗

1 . Figure (d) shows the lower bounding operation in the right sub-interval in which a new estimate q∗
2 of the

minimum value of #(x)

3.1 Branch and Bound Theory

Branch and bound algorithms are non-heuristic methods for
global optimization in non-convex problems. They maintain
a provable upper and/or lower bound on the (globally) op-
timal objective value and terminate with a certificate prov-
ing that the solution is ε-suboptimal (that is, within ε of the
global optimum), for arbitrarily small ε.

We will restrict our treatment to minimization problems
as that is the case we will encounter in pertinent structure
and motion problems.

Consider a non-convex, scalar-valued objective function
#(x), for which we seek a global optimum over a rectangle
Q0 as in Problem (F2). For a rectangle Q ⊆ Q0, let #min(Q)

denote the minimum value of the function # over Q. Also,
let #lb(Q) be a function that satisfies the following condi-
tions:

(L1) #lb(Q) computes a lower bound on #min(Q) over the
domain Q, that is, #lb(Q) ≤ #min(Q).

(L2) The approximation gap #min(Q) −#lb(Q) uniformly
converges to zero as the maximum half-length of sides
of Q, denoted |Q|, tends to zero, that is

∀ε > 0, ∃δ > 0 s.t. ∀Q ⊆ Q0,

|Q| ≤ δ ⇒#min(Q) −#lb(Q) ≤ ε.

An intuitive technique to determine the ε-suboptimal so-
lution would be to divide the whole search region Q0 into
a grid with cells of sides δ and compute the minimum of
a lower bounding function #lb defined over each grid cell,
with the presumption that each #lb(Q) is easier to compute
than the corresponding #min(Q). However, the number of
such grid cells increases rapidly as δ → 0, so a clever proce-
dure must be deployed to create as few cells as possible and
“prune” away as many of these grid cells as possible (with-
out having to compute the lower bounding function for these
cells).

Branch and bound algorithms iteratively subdivide do-
main into rectangles and employ clever strategies to “prune”
away as many rectangles as possible to restrict the search re-
gion.

The branch and bound algorithm begins by comput-
ing #lb(Q0) and the point q∗ ∈ Q0 which minimizes
#lb(Q0). If #(q∗) − #lb(Q0) < ε, the algorithm termi-
nates. Otherwise Q0 is partitioned as a union of subrec-
tangles Q0 = Q1 ∪ · · · ∪ Qk for some k ≥ 2 and the
lower bounds #lb(Qi) as well as points qi (at which these
lower bounds are attained) are computed for each Qi . Let
q∗ = arg min{qi }ki=1

#(qi). We deem #(q∗) to be the current
best estimate of #min(Q0). The algorithm terminates when
#(q∗) − min1≤i≤k #lb(Qi) < ε, else the partition of Q0 is
refined by further dividing some subrectangle and repeating
the above. The rectangles Qi for which #lb(Qi) > #(q∗)
cannot contain the global minimum and are not considered
for further refinement. A graphical illustration of the algo-
rithm is presented in Fig. 2.

Computation of the lower bounding functions is referred
to as bounding, while the procedure that chooses a rectangle
and subdivides it is called branching. The choice of the rec-
tangle picked for refinement in the branching step and the
actual subdivision itself are essentially heuristic. We con-
sider the rectangle with the smallest minimum of #lb as the
most promising to contain the global minimum and subdi-
vide it into k = 2 rectangles. Algorithm 1 uses the above-
mentioned functions to present a concise pseudocode for the
branch and bound method. Further detailed descriptions of
the bounding and branching procedures are given in the next
two subsections.

Although guaranteed to find the global optimum (or a
point arbitrarily close to it), the worst case complexity of
a branch and bound algorithm is exponential. However, we
will show in our experiments that the special properties of-
fered by multiview problems lead to fast convergence rates
in practice.
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Algorithm 1 Branch and Bound
Require: Initial rectangle Q0 and ε > 0.

1: Bound : Compute #lb(Q0) and minimizer q∗ ∈ Q0.
2: S = {Q0} //Initialize the set of candidate rectangles
3: loop
4: Q′ = arg minQ∈S #lb(Q) //Choose rectangle with

lowest bound
5: if #(q∗) −#lb(Q

′) < ε then
6: return q∗ //Termination condition satisfied
7: end if
8: Branch : Q′ = Ql ∪ Qr

9: S = (S/{Q′}) ∪ {Ql,Qr} //Update the set of candi-
date rectangles

10: Bound : Compute #lb(Ql) and minimizer ql ∈ Ql .
11: if #(ql) < #(q∗) then
12: q∗ = ql //Update the best feasible solution
13: end if
14: Bound : Compute #lb(Qr) and minimizer qr ∈ Qr .
15: if #(qr) < #(q∗) then
16: q∗ = qr //Update the best feasible solution
17: end if
18: S = {Q |Q ∈ S,#lb(Q) < #(q∗) } //Discard rectan-

gles with high lower bounds
19: end loop

3.2 Bounding

The goal of the Bound procedure is to provide the branch
and bound algorithm with a bound on the smallest value the
objective function takes in a domain. The computation of the
function #lb must possess three properties—crucial to the
efficiency and convergence of the algorithm: (i) it must be
easily computable, (ii) must provide as tight a bound as pos-
sible and (iii) must be easily minimizable. Precisely these
features are inherent in the convex envelope of our objective
function, which we define below.

Definition 3.1 (Convex Envelope) Let f : S → R, where
S ⊂ Rn is a non-empty convex set. The convex envelope of
f over S (denoted convenvf ) is a convex function such that
(i) convenvf (x) ≤ f (x) for all x ∈ S and (ii) for any other
convex function u, satisfying u(x) ≤ f (x) for all x ∈ S, we
have convenvf (x) ≥ u(x) for all x ∈ S.

Finding the convex envelope of an arbitrary function may
be as hard as finding the global minimum. To be of any ad-
vantage, the envelope construction must be cheaper than the
optimal estimation.

In Tawarmalani and Sahinidis (2001), it was shown that
the convex envelope for a single fraction t/s, where t ∈
[ l, u ] and s ∈ [L,U ], is given as the solution to the fol-

lowing Second Order Cone Program (SOCP):

convenv
[

t

s

]
= min

r,r ′,s′
r

subject to r, r ′, s′ ∈ R,
∥∥∥∥

2λ
√

l

r ′ − s′

∥∥∥∥ ≤ r ′ + s′,

∥∥∥∥
2(1 − λ)

√
u

r − r ′ − s + s′

∥∥∥∥ ≤ r − r ′ + s − s′,

λL ≤ s′ ≤ λU,

(1 − λ)L ≤ s − s′ ≤ (1 − λ)U,

r ′ ≥ 0, r − r ′ ≥ 0,

where we have substituted λ= u−t
u−l for ease of notation, and

r, r ′, s′ are auxiliary scalar variables.
It is easy to show that the convex envelop of a sum is

always greater (or equal) than the sum of convex envelopes.
That is, if f = ∑

i ti/si then convenvf ≥ ∑
i convenv ti/si .

It follows that in order to compute a lower bound on Prob-
lem (F2), one can compute the sum of convex envelopes for
ti/si subject to the convex constraints. Hence, this way of
computing a lower bound #lb(Q) amounts to solving a con-
vex SOCP problem which can be done efficiently (Sturm
1999).

In summary, in order to compute a lower bound #lb(Q)

on the rectangle Q = [ l1, u1 ]×···×[ lp, up ]×[ L1,U1 ]×
· · · × [Lp,Up ], the following SOCP is solved:

min
x,r,r ′,s,s′,t

p∑

i=1

ri

subject to x ∈ Rn, r, r ′, s, s′, t ∈ Rp,
∥∥∥∥

2λi

√
li

r ′
i − s′

i

∥∥∥∥ ≤ r ′
i + s′

i ,

∥∥∥∥
2(1 − λi)

√
ui

ri − r ′
i − si + s′

i

∥∥∥∥ ≤ ri − r ′
i + si − s′

i ,

λiLi ≤ s′
i ≤ λiUi,

(1 − λi)Li ≤ si − s′
i ≤ (1 − λi)Ui,

r ′
i ≥ 0, ri − r ′

i ≥ 0,

li ≤ ti ≤ ui, Li ≤ si ≤ Ui,

fi(x) ≤ ti , gi(x) ≥ si for i = 1, . . . , p.

This construction of convex envelopes satisfies condi-
tions (L1) and (L2), cf. Benson (2002), and therefore is
well-suited for our branch and bound algorithm.
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3.3 Branching

There are three issues that must be addressed within the
branching phase—the rectangle to branch on, the dimension
of the chosen rectangle to split along and the point at which
to split the chosen dimension.

The choice of rectangle to be partitioned is essentially
heuristic: we consider the rectangle with the smallest min-
imum of #lb as the most promising to contain the global
minimum and subdivide it first.

Branch and bound algorithms can be slow, in fact, the
worst case complexity grows exponentially with problem
size. Thus, one must devise a sufficiently sophisticated
branching strategy to expedite the convergence.

A general branching strategy applicable to fractional pro-
grams (Benson 2002) is to branch along p dimensions cor-
responding to the denominators si of each fractional term
ti/si in Problem (F2). This limits the practical applicability
to problems containing 10–12 fractions (Schaible and Shi
2003). However, we demonstrate in Sect. 5.1 that for our
class of problems, it is possible to restrict the branching to a
small and fixed number of dimensions regardless of the num-
ber of fractions, which substantially enhances the number of
fractions our algorithm can handle.

After a choice has been made of the rectangle to be fur-
ther partitioned, there are two issues that must be addressed
within the branching phase—namely, deciding the dimen-
sions along which to split the rectangle and where along a
chosen dimension to split the rectangle. We pick the dimen-
sion with the largest interval and employ a simple spatial di-
vision procedure, called α-bisection (see Algorithm 2) for a
given scalar α, 0 < α ≤ 0.5. It can be shown (Benson 2002)
that the α-bisection leads to a branch-and-bound algorithm
which is convergent.

Algorithm 2 α-bisection

Require: A rectangle Q ⊂ R2p

1: j = arg maxi=1,...,p(Ui − Li)

2: Vj = α(Uj − Lj )

3: Ql = [ l1, u1 ] × · · · × [ lp, up ] ×[ L1,U1 ] × · · · ×
[Lj ,Vj ] × · · · × [Lp,Up ]

4: Qr = [ l1, u1 ] × · · · × [ lp, up ] ×[ L1,U1 ] × · · · ×
[Vj ,Uj ] × · · · × [Lp,Up ]

5: return (Ql,Qr)

In Benson (2002), it is shown that the α-bisection leads
to a branch-and-bound algorithm which is convergent.

4 Applications to Multiview Geometry

In this section, we elaborate on adapting the theory devel-
oped in the previous section to common problems of mul-

tiview geometry. In the standard formulation of these prob-
lems based on the Maximum Likelihood Principle, the ex-
act form of the objective function to be optimized depends
on the choice of noise model. The noise model describes
how the errors in the observations are statistically distrib-
uted given the ground truth. The most common noise model
is the Gaussian distribution which has a very thin tail, that
is, the probability of large deviation decreases to zero very
rapidly. In practice, however, large errors occur more often
than predicted by the Gaussian distribution, for instance, due
to erroneous localization of interest points or just bad cor-
respondences. There are two ways of getting around this
problem. The first is to robustify the cost function by re-
ducing the penalty for large deviations and the second is to
consider noise models with thicker tails (Huber 1981). The
latter choice then translates into a modified likelihood func-
tion. We will consider the Gaussian and two variants of the
Laplacian noise model.

In the Gaussian noise model, assuming an isotropic dis-
tribution of error with a known standard deviation σ , the
likelihood for two image points—one measured point x and
one true x′—is

p(x|x′) = (2πσ 2)−1 exp(−‖x − x′‖2
2/(2σ

2)). (4.1)

Thus maximizing the likelihood, assuming iid noise, is
equivalent to minimizing

∑
i ‖xi − x′

i‖2
2, which we inter-

pret as a combination of two vector norms—the first for the
point-wise error in the image and the second that cumulates
point-wise errors. We call this the (L2,L2)-formulation.

The exact definition of the Laplace noise model depends
on the particular definition of the multivariate Laplace dis-
tribution (Kotz et al. 2001). In the current work we choose
two of the simpler definitions. The first one is a special case
of the multivariate exponential power distribution giving us
the likelihood function:

p(x|x′) = (2πσ)−1 exp(−‖x − x′‖2/σ). (4.2)

An alternative view of the bivariate Laplace distribution
is to consider it as the joint distribution of two iid uni-
variate Laplace random variables, where x = (u, v)& and
x′ = (u′, v′)& which gives us the following likelihood func-
tion

p(x|x′) = 1
2σ

e− 1
σ |u−u′| 1

2σ
e− 1

σ |v−v′|

= (4σ 2)−1 exp(−‖x − x′‖1/σ). (4.3)

Maximizing the likelihoods in (4.2) and (4.3) the set of
pixels {i} is equivalent to minimizing

∑
i ‖xi − x′

i‖2 and∑
i ‖xi − x′

i‖1, respectively. Again, in our interpretation of
these expressions as a combination of two vector norms, we
denote these minimizations as (L2,L1) and (L1,L1), re-
spectively.
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Table 1 Different cost-functions of reprojection errors. In the notation
(Lp,Lq), the first norm Lp corresponds to the image norm used and
the second one Lq to the norm of the residual vector

Gaussian Laplacian I Laplacian II

∑
i ‖xi − x′

i‖2
2

∑
i ‖xi − x′

i‖2
∑

i ‖xi − x′
i‖1

(L2,L2) (L2,L1) (L1,L1)

We summarize the classification of overall error un-
der various noise models in Table 1. In this notation the
(L2,L∞)-case of the problems has recently been solved in
polynomial time (Kahl and Hartley 2007).

4.1 Triangulation

The primary concern in triangulation is to recover the 3D
scene point given measured image points and known cam-
era matrices in N ≥ 2 views. Let P = [p1 p2 p3]& denote
the 3 × 4 camera where pi is a 4-vector, (u, v)& image co-
ordinates, X = (U,V,W,1)& the extended 3D point coor-
dinates, then the reprojection residual vector for this image
is given by

r =
(

u − p&
1 X

p&
3 X

,v − p&
2 X

p&
3 X

)&
(4.4)

and hence the objective function to minimize becomes∑N
i=1 ‖ri‖q

p for the (Lp,Lq)-case. In addition, one can re-
quire that p&

3 X > 0 which corresponds to the 3D point being
in front of the camera. We now show that by defining ‖r‖q

p

as an appropriate ratio f/g of a convex function f and a
concave function g, the problem in (4.4) can be identified
with the one in (F2).

(L2,L2). The norm-squared residual of r can be written
‖r‖2

2 = ((a&X)2 + (b&X)2)/(p&
3 X)2 where a, b are 4-

vectors dependent on the known image coordinates and
the known camera matrix. By setting f = ((a&X)2 +
(b&X)2))/(p&

3 X) and g = p&
3 X, a convex-concave ratio

is obtained. It is straightforward to verify the convexity of
f via the convexity of its epigraph:

epif = {(X, t) | t ≥ f (X)}

=
{
(X, t) |

1
2
(t + p&

3 X) ≥
∥∥∥∥

(
a&X, b&X,

1
2
(t − p&

3 X)

)∥∥∥∥

}
,

which is a second-order convex cone (Boyd and Vanden-
berghe 2004).

(L2,L1). Similar to the (L2,L2)-case, the norm of r can
be written ‖r‖2 = f/g where f =

√
(a&X)2 + (b&X)2

and g = p&
3 X. Again, the convexity of f can be es-

tablished by noting that the epigraph epif = {(X, t) |
t ≥ ‖(a&X, b&X)‖} is a second-order cone.

(L1,L1). Using the same notation as above, the L1-norm
of r is given by ‖r‖1 = f/g where f = |a&X| + |b&X|
and g = p&

3 X.

In all the cases above, g is trivially concave since it is
linear in X.

4.2 Camera Resectioning

The problem of camera resectioning is the analogous coun-
terpart of triangulation whereby the aim is to recover the
camera matrix given N ≥ 6 scene points and their corre-
sponding images. The main difference compared to the tri-
angulation problem is that the number of degrees of freedom
has increased from 3 to 11.

Let p = (p&
1 ,p&

2 ,p&
3 )& be a homogeneous 12-vector of

the unknown elements in the camera matrix P . Now, the
squared norm of the residual vector r in (4.4) can be rewrit-
ten in the form ‖r‖2

2 = ((a&p)2 + (b&p)2)/(X&p3)
2, where

a, b are 12-vectors determined by the coordinates of the im-
age point x and the scene point X. Recalling the deriva-
tions for the (L2,L2)-case of triangulation, it follows that
‖r‖2

2 can be written as a fraction f/g with f = ((a&p)2 +
(b&p)2)/(X&p3) which is convex and g = X&p3 concave
in accordance with Problem (F2). Similar derivations show
that the same is true for camera resectioning with (L2,L1)-
norm as well as (L1,L1)-norm.

4.3 Projections from Pn to Pm

Our formulation for the camera resectioning problem is very
general and not restricted by the dimensionality of the world
or image points. Thus, it can be viewed as a special case of
a Pn !→ Pm projection with n = 3 and m = 2.

When m = n, the mapping is called a homography. Typ-
ical applications include homography estimation of planar
scene points to the image plane, or inter-image homogra-
phies (m = n = 2) as well as the estimation of 3D homo-
graphies due to different coordinate systems (m = n = 3).
For projections (n > m), camera resection is the most com-
mon application, but numerous other instances appear in the
computer vision field (Wolf and Shashua 2002).

5 Multiview Fractional Programming

In this section, we present some important aspects of our im-
plementation which extend the traditional methods to solve
fractional programs by exploiting properties specific to the
structure of multiview geometry problems. In fact, these de-
velopments form the basis for the excellent convergence
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Fig. 3 The dotted (red) lines
indicate the lower and upper
bounds on the denominator g1
while the dashed (blue) lines
indicate bounds on the
denominator g2. The shaded
gray region represents the
induced bounds on the variables
U and V . Any linear function of
U and V restricted to the
domain represented by the gray
polygon will attain its extremal
values at two vertices of this
simplex, as illustrated by the
thick black points for some
linear function g3(U,V )
represented by the solid (green)
lines

rates our implementation achieves, as opposed to an ex-
ponential search in several dimensions that a naïve imple-
mentation of existing fractional programming techniques re-
sults in.

5.1 Bounds Propagation

Consider a fractional program with k fractions. Traditional
approaches to fractional programming require branching in
at least k dimensions corresponding to the denominators for
the algorithm to converge correctly. For a triangulation prob-
lem, k is the number of cameras and for a resectioning prob-
lem, it is the number of points. A branching dimension in a
traditional branch and bound algorithm is the denominator
of the reprojection error term corresponding to each point
(for resectioning) or camera (for triangulation). It is evident
that the search space of a branch and bound algorithm that
branches in k dimensions can be untenably large even for
medium-sized problems. Contemporary literature (Schaible
and Shi 2003) documents reasonable results for practical
problems with k at most 10 to 12.

However, we can do much better with the realization that
for all problems presented in Sect. 4, the denominator is a
linear function in the unknowns. To elucidate the concept,
let us assume the problem is one of triangulating the location
of a (homogeneous) point X = (U,V,1)& ∈ R3 so that the
branching entity (the denominator g(X)) is a linear function

in two variables U and V . Please refer to Fig. 3 for an illus-
tration. Each bounding constraint restricts the denominator
to lie in a particular half space in R2, thus, a pair of lower
and upper bounds on two linearly independent denominators
g1 and g2 restrict the feasible values to a convex quadrilat-
eral on the 2D plane. Further, U and V are linear in g1 and
g2 and so are the denominators of all the other fractions in
the triangulation problem corresponding to views 3, . . . , k.
So, the convex polygon that represents the bounds on the
denominators g1 and g2 induces bounds on the denomina-
tors of all the fractions in the triangulation problem.

Extending the analogy to the case of triangulation in
three dimensions, the unknown point coordinates X =
(U,V,W,1)& are linear in gi(X) = p&

3iX for i = 1, . . . , k.
Suppose k > 3 and bounds are given on three denomina-
tors, say g1, g2, g3 which are not linearly dependent. These
bounds then define a convex polytope in R3. This polytope
constrains the possible values of U,V and W which in turn
induce bounds on the other denominators g4, . . . , gk . The
bounds can be obtained by solving a set of linear equations
each time branching is performed.

(R1) for i = 1, . . . , k,

mingi(x) maxgi(x)

Lj ≤ gj (x) ≤ Uj , Lj ≤ gj (x) ≤ Uj ,

j = 1,2,3.
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Thus, it is sufficient to branch on three dimensions in the
case of triangulation. Similarly, in the case of camera resec-
tioning, the denominator has only three degrees of freedom
and more generally, for projections Pn !→ Pm, the denomi-
nator has n degrees of freedom.

The choice of the n dimensions to be used for bounds
propagation is, in our opinion, a matter of implementation
preferences. A simple heuristic is to branch on the dimen-
sion along which the rectangle to be split is the widest and
incorporate the same as one of the n dimensions used in the
subsequent step of propagating bounds. This might, in prin-
ciple, avoid issues with committing once and for all to some
choice of n particular denominators as the ones branched
upon, such as the case when two or more faces of the bound-
ing constraints polytope are nearly parallel. However, in
both our synthetic and real experiments, we have observed
no such (numerical) instabilities.

As a practical note, we must point out that as the num-
ber of fractions increases, bounds propagation becomes the
time critical step of the algorithm. However, the gains ac-
crued in reduced dimensionality of the search space more
than outweighs any cost involved in solving the large LP
which constitutes the bounds propagation step.

5.2 Initialization

Besides bounds propagation, another component of the al-
gorithm crucial to a rapid convergence is the initialization.
In the construction of the algorithm, we assumed that initial
bounds are available on the numerator and the denominator
of each of the fractions. This initial rectangle Q0 in R2k is
the starting point for the branch and bound algorithm.

It is clear that the size of this initial search region will
affect the runtime of the search algorithm. However it is not
clear how the user should specify the bounds that define the
initial region, especially since they depend on the problem
geometry and are not straightforward to guess intuitively.

What is intuitive, however, is the notion of reprojection
error (in pixels) and it is easy for the user to specify a rea-
sonable upper bound on the worst reprojection error. This
upper bound can then be used to construct bounds on the
numerator and denominator by solving a set of simple opti-
mization problems.

Let γ be an upper bound on the reprojection error in pix-
els (specified by the user), then we can bound the denom-
inators gi(x) by solving the following set of optimization
problems:

for i = 1, . . . , k,

mingi(x) maxgi(x)

fj (x)

gj (x)
≤ γ,

fj (x)

gj (x)
≤ γ, j = 1, . . . , k. (5.1)

Depending on the choice of error norm, the above opti-
mization problems will be instances of linear programming
(for L1 − L1) or quadratic programming (for L2 − L1 and
L2 − L2). We will call this γ -initialization.

If the user-specified reprojection error is too small to lead
to a feasible solution or so large that the SOCP solver is
mired in numerical errors, the algorithm defaults to initial
bounds which are wide enough for usual problem scales and
known to be small enough to be numerically stable. This
situation arises sometimes in our experiments, but we have
found that the search space shrinks rapidly even with ex-
tremely liberal default values for the initial bounds.

As a further note on the implementation, while tight
bounds on the denominators are crucial for the performance
of the overall algorithm, the bounds on the numerators are
not. Therefore, we set the numerator bounds to preset val-
ues.

5.3 Coordinate System Independence

All three error norms (see Table 1) are independent of the
coordinate system chosen for the scene (or source) points.
In the image, one can translate and scale the points without
effecting the norms. For all problem instances and all three
error norms considered, the coordinate system can be chosen
such that the first denominator g1 is a constant equal to one.
Thus, there is no need to approximate the first term in the
cost-function with a convex envelope, since it is a convex
function already.

6 Experiments

Both triangulation and estimation of projections Pn !→ Pm

have been implemented for all three error norms in Table 1
in the Matlab environment using the convex solver SeDuMi
(Sturm 1999) and the code is publicly available.1 The op-
timization is based on the branch and bound procedure as
described in Algorithm 1 and α-bisection (see Algorithm 2)
with α = 0.5. To compute the initial bounds, γ -initialization
is used (see Sect. 5.2) with γ = 15 pixels for both real and
synthetic data. The branch and bound terminates when the
difference between the global optimum and the underesti-
mator is less than ε = 0.05. In all experiments, the Root
Mean Squares (RMS) errors of the reprojection residuals are
reported regardless of the computation method. In addition
to the methods based on fractional programming, the results
are also compared to that of bundle adjustment initialized
with a linear method (Hartley and Zisserman 2004).

1See http://www.maths.lth.se/matematiklth/personal/fredrik/
download.html.
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Fig. 4 Triangulation with
forward motion. Figure (a)
compares the reprojection error
of the three algorithms with
bundle adjustment. Note the
degradation in performance of
bundle adjustment with
increasing noise in the image,
further demonstrated in
Figure (b) which plots the mean
3D error for the four algorithms.
Figure (c) shows percentage
number of times the (L2,L2)
algorithm found a better
solution than bundle adjustment

6.1 Synthetic Data

We demonstrate the various aspects of our algorithm such
as scalability, runtime and termination using extensive sim-
ulations on synthetic data. Our data is generated by creating
random 3D points within the cube [−1,1]3 and then pro-
jecting to the images. The image coordinates are corrupted
with iid Gaussian noise with different levels of variance. In
all graphs, the average of 200 trials are plotted. In the first
experiment, we employ a weak camera geometry for trian-
gulation, whereby three cameras are placed along a line at
distances 5, 6 and 7 units, respectively, from the origin. In
Figs. 4(a) and (b), the reprojection errors and the 3D errors
are plotted, respectively. The (L2,L2) method (see Sect. 4
for notation), on the average, results in a much lower er-
ror than bundle adjustment, which can be attributed to bun-
dle adjustment being enmeshed in local minima due to the
non-convexity of the problem. The graph in Fig. 4(c) depicts
the percentage number of times (L2,L2) outperforms bun-
dle adjustment in accuracy. It is evident that higher the noise
level, the more likely it is that the bundle adjustment method
does not attain the global optimum.

In the next experiment, we simulate outliers in the data in
the following manner. Varying numbers of cameras, placed
10o apart and viewing toward the origin, are generated in a
circular motion of radius 2 units. In addition to Gaussian
noise with standard deviation 0.01 pixels for all image
points, the coordinates for one of the image points have been

Fig. 5 (a) and (b) show reprojection and 3D errors, respectively, for
triangulation with one outlier. Despite a higher reprojection error, the
L1-algorithms work better bundle adjustment in terms of 3D error
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perturbed by adding or subtracting 0.1 pixels. This point
may be regarded as an outlier. As can seen from Figs. 5(a)
and (b), the reprojection errors are lowest for the (L2,L2)

and bundle methods, as expected. However, in terms of 3D-
error, the L1 methods perform best and already from two
cameras one gets a reasonable estimate of the scene point.

In the third experiment, six 3D points in general position
are used to compute the camera matrix. Note that this is a
minimal case, as it is not possible to compute the camera
matrix from five points. The true camera location is at a dis-
tance of two units from the origin. The reprojection errors
are graphed in Fig. 6. Results for bundle adjustment and the
(L2,L2) methods are identical and thus, likelihood of lo-
cal minima is low. No errors on the estimated quantities are
given since it is not meaningful to compare (homogeneous)
camera matrices.

Fig. 6 Reprojection errors for camera resectioning

To demonstrate scalability, Table 2 reports the runtime of
our algorithm over a variety of problem sizes for resection-
ing. The tolerance, ε, here is set to within 1 percent of the
global optimum, the maximum number of iterations to 500
and mean and median runtimes are reported over 200 trials.
The algorithm’s excellent runtime performance is demon-
strated by almost linear scaling in runtimes. As can be seen,
both median and mean runtime scale almost linearly with
the size of the problem, making this an attractive algorithm
for use in practice.

Finally, we demonstrate the effect of the optimality toler-
ance, ε, on the time it takes the branch and bound algorithm
to converge. Five cameras were used for the triangulation
experiment, placed in a circular arc of radius 1, looking to-
wards the origin, with an angular separation of 10◦ between
adjacent cameras. The points to be triangulated are gener-
ated in the cube [−0.5,0.5]3 and Gaussian noise of standard
deviation 1% of image size is added to the image coordi-
nates. Six points in general position are used for the resec-
tioning experiments with similar additive noise.

The mean and median times over 200 trials for the trian-
gulation and resectioning experiments are recorded in Fig. 7
as ε is varied from 0.01 to 0.1.

6.2 Real Data

We have evaluated the performance on two publicly avail-
able data sets as well—the dinosaur and the corridor se-
quences. In Table 3, the reprojection errors are given for (1)

Fig. 7 (a) and (b) show trends
for the mean and median times,
respectively, over 200 trials, for
termination of the triangulation
algorithm as the optimality
tolerance, ε, is varied from 0.01
to 0.1. (c) and (d) show the
same for the resectioning
experiment
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Table 2 Mean and median runtimes (in seconds) for the three algorithms as the number of points for a resectioning problem is increased. MI is
the percentage number of times the algorithm reached 500 iterations

Points (L2,L2) (L2,L1) (L1,L1)

Mean Median MI Mean Median MI Mean Median MI

6 42.8 35.5 0.5 41.6 31.5 1.5 7.9 4.7 0.0

10 51.8 41.9 0.5 105.8 66.6 3.5 20.3 13.5 0.5

20 72.7 50.5 2.5 210.2 121.2 9.0 46.8 28.2 1.0

50 145.5 86.5 4.5 457.9 278.3 8.5 143.0 75.9 2.5

70 172.5 107.8 3.5 616.5 368.7 7.5 173.0 102.8 1.5

100 246.2 148.5 4.5 728.7 472.4 4.0 242.3 133.6 2.0

Table 3 Reprojection errors (in pixels) for triangulation and resectioning in the Dinosaur and Corridor data sets. “Dinosaur” has 36 turntable
images with 324 tracked points, while “Corridor” has 11 images in forward motion with a total of 737 points

Experiment Bundle (L2,L2) (L2,L1) (L1,L1)

Mean Std Mean Std Mean Std Mean Std

Dino (triangulation) 0.30 0.14 0.30 0.14 0.18 0.09 0.22 0.11

Corridor (triangulation) 0.21 0.16 0.21 0.16 0.13 0.13 0.15 0.12

Dino (resection) 0.33 0.04 0.33 0.04 0.34 0.04 0.34 0.04

Corridor (resection) 0.28 0.05 0.28 0.05 0.28 0.05 0.28 0.05

Table 4 Number of branch and bound iterations for triangulation and resectioning on the Dinosaur and Corridor datasets. More parameters are
estimated for resectioning, but the main reason for the difference in performance between triangulation and resectioning is that several hundred
points are visible to each camera for the latter

Experiment (L2,L2) (L2,L1) (L1,L1)

Mean Std Mean Std Mean Std

Dino (triangulation) 1.2 1.5 1.0 0.2 6.7 3.4

Corridor (triangulation) 8.9 9.4 27.4 26.3 25.9 27.4

Dino (resection) 49.8 40.1 84.4 53.4 54.9 42.9

Corridor (resection) 39.9 2.9 49.2 20.6 47.9 7.9

Table 5 Triangulation and resectioning runtimes (in seconds) for real datasets

Experiment Bundle (L2,L2) (L2,L1) (L1,L1)

Mean Std Mean Std Mean Std Mean Std

Dino (triangulation) 1.0 0.4 5.5 4.5 12.1 4.0 17.0 9.9

Corridor (triangulation) 1.0 0.6 18.7 17.7 51.0 47.3 46.4 51.6

Dino (resection) 4.0 3.0 273.1 192.3 640.0 554.1 312.8 304.9

Corridor (resection) 38.3 15.7 1433.5 348.0 1271.6 608.1 1122.7 565.0
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triangulation of all 3D points given pre-computed camera
motion and (2) resection of cameras given pre-computed 3D
points. Both the mean error and the estimated standard de-
viation are given. There is no difference between the bundle
adjustment and the (L2,L2) method. Thus, for these partic-
ular sequences, the bundle adjustment did not get trapped in
any local optimum. The L1 methods also result in low repro-
jection errors as measured by the RMS criterion. More in-
terestingly is perhaps the number of iterations and execution
times on a standard PC (3 GHz), see Tables 4 and 5, respec-
tively. We must point out that the implementations are (un-
optimized) MATLAB functions. In the case of triangulation,
a point is typically visible in a couple of frames. The differ-
ences in iterations and runtimes are most likely due to the
setup: the dinosaur sequence has a circular camera motion
and thereby a more well-posed camera geometry compared
to the forward-moving camera in the corridor sequence.

In the camera resection problem, more parameters have
to be estimated and therefore longer execution times com-
pared to the triangulation problem. However, the main rea-
son for the difference in performance is that the number of
visible points are in the order of several hundreds for each
camera.

7 Discussions

In this paper, we have demonstrated that several problems
in multiview geometry can be formulated within the unified
framework of fractional programming, in a form amenable
to global optimization. A branch and bound algorithm is
proposed that provably finds a solution arbitrarily close to
the global optimum, with a fast convergence rate in prac-
tice. Note that the worst case complexity is exponential. Be-
sides minimizing reprojection error under Gaussian noise,
our framework allows incorporation of robust L1 norms, re-
ducing sensitivity to outliers. Two improvements that exploit
the underlying problem structure and are critical for expedi-
tious convergence are: branching in a small, constant num-
ber of dimensions and bounds propagation.

It is inevitable that our solution times be compared with
those of bundle adjustment, but we must point out that it
is producing a certificate of optimality that forms the most
significant portion of our algorithm’s runtime. In fact, it is
our empirical observation that the optimal point ultimately
reported by the branch and bound is usually obtained within
the first few iterations.

A distinction must also be made between the accuracy of
a solution and the optimality guarantee associated with it.
An optimality criterion of, say ε = 0.95, is only a worst case
bound and does not necessarily mean a solution 5% away
from optimal. Indeed, as evidenced by our experiments, our

solutions consistently equal or better those of bundle ad-
justment in accuracy. In fact, it is our empirical observa-
tion that the optimal point ultimately reported by the branch
and bound is usually obtained within the first few iterations.
Thus, from a practitioner’s viewpoint, it is useful to set a
lower criterion for global optimality and use gradient de-
scent in the neighborhood of the resulting solution.

Needless to say, other segments of the computer vision
community can also benefit from our approach as it is gen-
eral enough to be applicable to any problem formulated as
a fractional program in a few independent dimensions. An-
other avenue for potential future work is the exploration of
other algorithms for achieving global optimality in special-
ized fractional programs. As faster and more reliable algo-
rithms are designed for achieving global optimality in frac-
tional programs, we can anticipate corresponding improve-
ments in our solution times.
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