Beyond Pairwise Clustering

Sameer Agarwal, Jongwoo Lim, Lihi Zelnik-Manor
Pietro Perona, David Kriegman, Serge Belongie

UCSD & Caltech
The Clustering Problem
But what if pairwise information is not available?
k-Lines Clustering
k-Lines Clustering
k-Lines Clustering

Every pair of points define a line!
k-Lines Clustering
But Three Points...
Higher Order Clustering

Clustering in domains where affinities/distances are defined over general subsets of the data.
Examples

- Co-authorship graphs
- Illumination Invariant Clustering
- Motion Clustering
- Mixtures of models
- k-subspaces
Examples

- Co-authorship graphs
- **Illumination Invariant Clustering**
- Motion Clustering
- Mixtures of models
 - k-subspaces
Examples

- Co-authorship graphs
- Illumination Invariant Clustering
- Motion Clustering
- Mixtures of models
 - k-subspaces
Examples

- Co-authorship graphs
- Illumination Invariant Clustering
- Motion Clustering
- Mixtures of models
 - k-subspaces
Hypergraphs

• Generalizations of graphs
• Edges can contain any number of vertices
• Represented using multi-dimensional arrays
Related Work

- Multidimensional Scaling
- Data mining
- VLSI CAD
 - Multiscale heuristics
 - Graph approximations
Related Work

- Multidimensional Scaling
- Data mining
- VLSI CAD
 - Multiscale heuristics
 - Graph approximations
Why approximate?

1. Graph partitioning methods are more advanced
2. Combinatorially a simpler problem.
Clique Expansion

\[z = \{i, j, k, l\} \]

\[h(z) \]

\[g(i, j) = h(z) \]

\[g(i, j) = \mu \sum_{i, j \in z} h(z) \]
A Generative Model

\[h(z) = F(g(i_1, i_2), \ldots, g(i_k, i_{k-1})) \]

Properties of \(F \)

1. Positive
2. Symmetric
3. Monotonic
A Generative Model

\[F_p(x) = \lambda \|x\|_p \]

\[h(z) = \lambda \left(\sum_{i,j \in z} g^p(i, j) \right)^{1/p} \]

\[h^p(z) = \lambda^p \sum_{i,j \in z} g^p(i, j) \]
Lp Model

Examples

\[p = 1 : \quad h_{ijk} = \frac{1}{3} (g_{ij} + g_{jk} + g_{ki}) \]

\[p = 2 : \quad h_{ijk}^2 = \frac{1}{9} (g_{ij}^2 + g_{jk}^2 + g_{ki}^2) \]

\[p = \infty : \quad h_{ijk} = \frac{1}{3} \max(g_{ij}, g_{jk}, g_{ki}) \]
Clique Averaging

\[h(z) = \binom{k}{2}^{-1} \sum_{i,j \in z} g(i, j) \]

\[h = \lambda \Delta g \]
Clique Averaging

\[h(z) = \left(\binom{k}{2} \right)^{-1} \sum_{i,j \in z} g(i, j) \]

\[h = \lambda \Delta g \]

\[\Delta = \begin{bmatrix} \binom{n}{2} \\ \binom{n}{k} \end{bmatrix} \]

Sparse 0/1 matrix
Constant row sum
Constant column sum

Edge-hyperedge incidence
Duality

Clique Averaging

\[\lambda \Delta g = h \]

Clique Expansion

\[g^e(i,j) = \mu \sum_{i,j \in z} h(z) \]

\[g^e = \mu \Delta^\top h \]
Duality

Clique Averaging
\[\Delta g = \frac{1}{\lambda} h \]

Clique Expansion
\[\Delta g^e = \mu \Delta \Delta^\top h \]

\[\Delta \Delta^\top = \begin{bmatrix} \vdots \end{bmatrix} \begin{bmatrix} \vdots \end{bmatrix} = \begin{bmatrix} \vdots \end{bmatrix} \]

\(\Delta \Delta^\top \) is a low pass filter = Loss of information!
So we have a graph...
Normalized Cuts

\[Ncut(A, B) = \frac{cut(A, B)}{Assoc(A)} + \frac{cut(A, B)}{Assoc(B)} \]

\[cut(A, B) = \sum_{u \in A, v \in B} w(u, v) \]

\[assoc(A) = \sum_{u \in A, v} w(u, v) \]
Putting it all together...

1. Sample k-tuples in the data to construct a hypergraph H.

2. Construct approximate graph G from H.

Experiments
k-Lines

\[h(z) = e^{-\lambda^2 / \sigma} \]
k-Lines

<table>
<thead>
<tr>
<th></th>
<th>Percent Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERAGE</td>
<td>12.6</td>
</tr>
<tr>
<td>EXPAND</td>
<td>12.9</td>
</tr>
<tr>
<td>GIBSONS</td>
<td>17.3</td>
</tr>
<tr>
<td>GIBSONP</td>
<td>55.1</td>
</tr>
<tr>
<td>KHMETIS</td>
<td>18.0</td>
</tr>
<tr>
<td>CRANSAC</td>
<td>23.4</td>
</tr>
</tbody>
</table>

percent error
k-Lines
Yale Face Dataset

- 45 Images per person
- Varying illumination: $h(z) = e^{-\lambda_4/\sigma}$
- 10 Individuals
Faces
Face Clustering

<table>
<thead>
<tr>
<th>Method</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERAGE</td>
<td>4.2(6.3)</td>
<td>12.7(8.4)</td>
<td>17.4(4.0)</td>
<td>16.0(3.0)</td>
</tr>
<tr>
<td>EXPAND</td>
<td>11.8(3.4)</td>
<td>17.6(5.4)</td>
<td>21.8(5.4)</td>
<td>24.9(4.3)</td>
</tr>
<tr>
<td>GIBSONS</td>
<td>25.9(7.3)</td>
<td>42.2(3.8)</td>
<td>47.7(3.0)</td>
<td>51.5(2.1)</td>
</tr>
<tr>
<td>GIBSONP</td>
<td>67.4(2.3)</td>
<td>75.2(1.2)</td>
<td>79.7(0.8)</td>
<td>82.8(0.7)</td>
</tr>
<tr>
<td>KHMETIS</td>
<td>21.5(4.3)</td>
<td>41.9(6.8)</td>
<td>38.4(4.7)</td>
<td>58.3(3.3)</td>
</tr>
<tr>
<td>CRANSAC</td>
<td>16.2(9.5)</td>
<td>23.6(9.2)</td>
<td>35.1(7.9)</td>
<td>37.1(6.6)</td>
</tr>
</tbody>
</table>

percent error (std)
Future Work

- Low rank approximations to \(G \)
- Sampling bounds
- Better generative models
- Scaling it to VLSI CAD scale problems.
Summary

- A generative model based graph approximation.
- Provably better than Clique Expansion.
- Better empirical performance than existing algorithms.
Acknowledgments

- LLNL UCRP (DOE) No. W-7405-ENG-48
- NSF CAREER #0448615
- Alfred P. Sloan Research Fellowship
- Calit2
Questions?