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Abstract

Ingredients are the core components that make a dish
what it is, besides the preparation process. Using the idea
of attribute-based classification, we seek to classify plates
of food to the correct cuisine by the country, using the in-
gredients as attributes for a plate of food. Because of the
important role that ingredients have in any plate of food,
this method can be generalized to any type of dishes with
any type of ingredients, and can learn new dishes not seen
in the training, as long as the ingredients can be speci-
fied to fit an attribute descriptor. Our dataset came from
online sources and includes three cuisines, each with two
dishes represented by 76 images. Even though our dataset
is limited, reasonable results and a mean accuracy of 82.9%
show that the method could be generalized to more cate-
gories.

1. Introduction
1.1. Context

Food is an indispensible part of our lives. In today’s
globalized market, food from different geographical regions
show remarkable variations in the choice of ingredients and
the ways to prepare them. Some cuisines have ingredi-
ent choices unimaginable to customers habituated to other
cuisines, but still present surprisingly tasty dishes. Besides
unique ingredients, even the same ingredients, depending
on the preparation process, may end up preserving different
fractions of the nutritional value and very different calories.

If restaurant networks provide a mobile app that can aim
at a photograph of a plate of food and report its cuisine,
the composing ingredients, and list other similar dishes, it
could be a good marketing strategy. In addition, restaurants
of a specific cuisine can also refer to other cuisines’ use
of ingredients to sparkle ideas for more creative dishes that
utilize similar ingredients in new ways.

One core component of such an application is to recog-
nize the cuisine and ingredients on a plate of food. Then the
information may later be used to compare cuisines and find

a network of common ingredients in the dishes.

1.2. Approach

An intuitive way that humans use to identify geographi-
cal cuisines, or even individual dishes, is by the types of in-
gredients that form the dish and how they appear in amount,
shape, and arrangement. We focus on the type of ingredi-
ents and their amount on a plate to approach the classifica-
tion, as they are the most fundamental components that any
entry-level cook would have to control in order to make a
dish what it is. Thus, our approach first tries to identify the
ingredients on the plate, then using the ingredients found,
it tries to classify which cuisine category the plate belongs
to, according to the type of the ingredients and the amount
present.

This ingredient-cuisine approach is a two-layer pro-
cess, and we take advantage of this structure by using the
attribute-based classifier [8]. We represent the ingredients
as attributes in the first layer, and the cuisine as the cate-
gories in the second layer. We will describe the approach in
further details in the subsequent sections.

In section 2, we discuss some of the existing works re-
lated to food recognition or classification. In sections 3
and 4, we explain the method and the implementation and
dataset we used. Then we present and analyze the results
in section 5. Finally, possibilities for future work are sug-
gested in section 6.

2. Related Work

As far as we know, there are no previous work aiming to
identify the cuisine on a plate of food. However, there are
some relevant food classification problems tha have been
explored and had similar technical challenges.

2.1. Identify ingredients on the dish

Color and texture are the most obvious properties that
human use to identify food. Bolle ef al. have successfully
classified produce using color, texture, and other features
[3]. A recently published food recognition work by Yang et
al. also identifies each ingredient on the plate before deter-



mining the category of the food, such as sandwich or salad
[12]. Therefore we also approach the problem by first iden-
tifying the ingredients on the dish before classifying the cui-
sine that the plate belongs to.

2.2. Feature descriptor for the cuisine

Yang et al.’s method first identified the ingredients, gave
each ingredient a probability label, and then used pairwise
local features among the ingredients to determine the food
category, by calculating the distance, orientation, and other
properties between each pair of ingredients [12]. The fea-
tures were used across 61 categories of food, where 7 cate-
gories were analyzed in more detail [12].

Identifying cuisines is different from identifying the spe-
cific food, because different cuisines may have different
typical arrangements on the plate that is recognizable with-
out necessarily knowing all the ingredients composing the
dish. For example, one does not have to know the com-
posites of a piece of sushi to be able to tell that a dish is
Japanese. Some dishes have unique ingredients, such as
red ginger, that are indicative of the cuisine; however, some
other dishes use commonly-seen ingredients, and it is the
particular preparation process that brings forth a character-
istic appearance. For example, rice may be compressed into
tight round and triangular shapes in Japanese cuisine, but
eaten loose in most Indian and Chinese dishes, dyed in yel-
low in Indian dishes, and appear orange in Mexican dishes.

Given that each cuisine can have a variety of plate lay-
outs, we will assume a typical appearance known to the
mass. Since not very much literature focuses on food recog-
nition, there are possibly unexplored feature descriptors that
can yield promising results specifically to cuisines.

Wu has approached a similar problem with classifying
dishes by ingredients, and the results presented suggest that
color textons yields a better result than color histograms and
texture combined. [ 1]. Thus we took advantage of the idea
and directly used color textons as clustering. The nature of
our problem is different from Wu’s in that we classify the
type of cuisines from ingredients, whereas Wu classifies for
ingredients. We also found a clustering program that yields
more suitable results for us than the JSEG used in Wu’s
experiments.

Differing from all the work listed above, we use a two-
level approach, where instead of classifying the cuisine di-
rectly from the image, we introduce an intermediate high-
level description of ingredients, which are used instead of
the raw image features to identify the cuisine. The advan-
tage of our high-level description is that it is more intuitive
and can learn new categories very quickly without having to
rerun the training, as long as the user can specify the high-
level feature fairly quickly by knowing roughly how much
of each ingredient is commonly present in a new dish.

3. Method
3.1. High Level Image Information

We used color to cluster a plate of food into sections of
different ingredients, and we used the amount of each type
of ingredients on a plate to help determine the cuisine.

Color is one of the most important pieces of information
that humans use to identify ingredients. For example, while
whole zuchini and Chinese eggplant look very similar, we
know that the green one is the zuchini, and the purple one is
the eggplant. It is even more true for food on a plate, where
the food is cut up into pieces, often similar small cubes or
round slices, making it even more confusing to identify, if
color information is not available. Therefore we preserve
the color information from the image and use methods that
can deal with color. Features such as Scale-Invariant Fea-
ture Transform (SIFT) and SIFT-like descriptors discard
color information, and since we are currently only using one
type of low-level image feature, we did not look at features
that would discard color [9]. However, shape desciptors like
SIFT are potentially helpful if the method is expanded to
somehow include more than one low-level features, such as
a combination of SIFT and RGB histograms. Details on
how we used color to cluster a plate of food into ingredients
is discussed in section 4.1.

The amount of each ingredient present on a plate is an-
other important factor. It makes the difference between a
plate of beef-stuffed large green peppers and a plate of bul-
gogi, or Korean stir-fried beef, with peppers on the garnish,
as the amount of green pepper is more than or less than the
amount of beef, respectively. We measure the amount of an
ingredient by taking the ratio of that ingredient’s area to the
entire plate’s food area, where the area is simply the number
of pixels. During the training process, an ingredient’s area
ratio is used to train the attribute classifier for that ingredi-
ent. More details follow.

3.2. Attribute-Based Classification

As mentioned earlier, the attribute-based classifier is a
two-layer method that uses high-level features called “at-
tributes” as an intermediate layer between the raw image
and the categorization results [8]. An attribute is a piece of
factual information that can be described by high-level nat-
ural language and can generalize to all the categories, such
as “green” and “lives in water.” In our case, we use each
ingredient as an attribute. After a certain number of specific
attributes are chosen, an attribute vector is assigned to each
category. For example, in a hypothetical two-attribute case
of “green” and “lives in water”, the binary attribute vector
for salmon would be [0, 1], for zuchini would be [1, 0], and
for seaweed would be [1, 1]. Then for each attribute, a bi-
nary classifier is trained with all the positive and negative
image samples; this is the layer 1 classifier. Once all the



attribute classifiers are trained, they are used to do a second
layer classification for the final category. For a typical im-
age, the process goes from the image to extracting low-level
feature descriptor such as RGB histograms, to assigning it
an attribute vector, training the layer 1 attribute classifier,
and training the layer 2 final classifier, in that order. See
Figure | for a graphical representation of the two-layer clas-
sification hierarchy.

In Figure 1, the hierarchy represents the process from
raw images to attributes and then to the final category. At
the top, the green circles represents the raw images’ low
level feature, e.g. EMD, RGB histogram, SIFT, etc. At the
green arrows stage, each image’s attribute vector is used to
form the training matrices for the training of m ingredient
(attribute) classifiers. If an ingredient does not exist, the
value for this image in the training matrix is 0. Otherwise
the value is the ratio of the number of pixels of that ingredi-
ent to the total number of pixels of the food area. The yellow
circles represent the m attribute classifiers, one for each in-
gredient. In a simple case, these would be binary classifiers
indicating whether an image has an ingredient. In our case,
we use the ratio of the ingredient area to the total food area,
and then use regression to predict the ratio in test images to
obtain predictions for the attribute classifier layer. Ground
truth for test samples at this level is the image’s area ratio
for the specific ingredient classifier, as extracted from the
image’s attribute vector. At the stage of the yellow arrows,
attribute vectors are used as training samples for the final
classifier. Each attribute vector is 1 by m, where m is the
number of ingredients. Each image has an attribute vector,
indicating how much of each ingredient the image contains.
Ground truth is the cuisine ID labeled for the image. Fi-
nally, the blue circle represent the final prediction of one
cuisine out of k cuisines, each assigned an ID.

Ideally, all images in a category would share the same
binary attribute vector description. However, the world is
not ideal, and in the case of dishes, the ingredients in one
dish may vary drastically depending on the chef, the season,
and many other factors. This means that attribute vectors for
different images in the same category are not necessarily the
same, and that they cannot simply be binary. To this end, we
have chosen to represent each attribute, or ingredient, using
the area of that ingredient present in the image. The area
is represented by the ratio of the number of pixels in an
ingredient to the number of pixels of the entire food region
in an image.

In determining the attributes, we could represent each in-
gredient as one attribute, and train as many layer 1 attribute
classifiers as there are ingredients. However, the number
of ingredients is very large across cuisines. To reduce the
number of classifiers we have to train, we divided the ingre-
dients into 16 types of ingredients, listed in Table 1, and we
train the same number of attribute classifiers, one for each

attribute.
Ingredient | Description
0 | pasta
1 | tomato
2 | greens
3 | red fish, as in tuna
4 | seaweed, as in sushi
5 | carrots, orange or pink veggies
6 | meat, brown bread
7 | orange fish, shrimp, fish eggs, fried food
8 | white veggies, rice
9 | dark veggies, eel-colored ingredients
10 | egg yolk, yellow green veggies, cooked
onions, light white fish
11 | chili sauce, kimchi, red peppers, red veggies
12 | whitefish, pinkish raw fish
13 | cheese
14 | flour (roasted, yellow), burnt cheese
15 | pepperoni, sausage

Table 1. Ingredient categories used for the attribute vectors. Each
column of an attribute vector is one ingredient category. The nu-
merical value in each column represents the ratio of the corre-
sponding ingredient category to the total food area in a specific
image. Each image has exactly one attribute vector in each at-
tribute that is present in the image.

Figure 1. A visualization of the attribute-based classification, using
the dataset as a concrete example. Img is short for sample image;
Ing for ingredient, which we used as the attribute; and Cui for cui-
sine. From the top layer, low-level feature descriptors are extracted
from the raw image, then used to train a number of attribute clas-
sifiers, which acts as an intermediate layer before classification.
The attribute vectors are then used in a second layer of training to
predict the category from the attributes solely, completely neglect-
ing the raw image data. The advantage of this method is that any
new types of dishes can be learned once the classifiers are trained,
even if the new dish’s attribute vector has never been seen before.
This makes it possible to generalize to any type of cuisines and any
dishes, as long as it can be described by an attribute vector, which
in our case is a vector that indicates how much of an ingredient is
present on a plate.



In the second layer, predicting the cuisine category from
the attributes, we use the attribute vectors to train the fi-
nal classifier, with the cuisine category ID as ground truth.
Hence the final categorization of the cuisines is separate
from the raw images, as it uses the intermediate high-level
attributes layer to predict the results, as shown in the hier-
archy in [8]. During testing, predictions of the area ratios
are extracted from the individual layer 1 attribute classifiers
and reshaped into attribute vector predictions of each im-
age. These attribute vector predictions are then used as test
sample data.

3.3. Low-Level Feature Descriptors

To train the layer 1 attribute classifiers, we used the Earth
Mover’s Distance [10]. Other low-level feature descriptors
may be used, including RGB histogram, which we plan to
experiment and compare with in the future. The results are
presented in Section 5. Ground truth for the attribute classi-
fier training is the area ratio from the attribute vector.

The Earth Mover’s Distance is calcualted between each
pair of clusters in an image, where each cluster is one in-
gredient, ideally. An image is first clustered into groups
using the Texton-izer, an algorithm that clusters an image
based on the color textons information [2]. The algorithm
takes a number that specifies the number of clusters to di-
vide each image into, and we chose 4, because that seems
to be able to cover for all types of dishes, although we do
not have emperical data to support the choice. Then each
cluster is labeled with the ingredient ID as shown in Table
1, and clusters that contain no food items, such as the back-
ground or the container, are labeled with -1. (These labels
are used later for the ingredient attribute classifier training,
where the clusters that are labeled with a certain ingredi-
ent are used as positive data for that ingredient classifier,
and clusters that do not belong to this ingredient are used as
negative data. The setup is the same for all attribute classi-
fiers.) Once the clusters are labeled with the ingredient ID,
the image is loaded back into the program, and each clus-
ter’s RGB data is used to calculate the EMD against every
other cluster.

We used the EMD implementation provided by the au-
thors of [10]. The algorithm takes an adjustable maximum
number of feature points from each of the two clusters in
interest and a distance function, and then calculates the dis-
tance between them. We kept the number of feature points
at the default of 100, and we select a random set of 100
points from the cluster for calculation, because the entire
cluster contains tens of thousands of points, and it is time-
wise impractical to use all of them for calculation. Because
of the random selection, the distance may be slightly differ-
ent at each run, and the distance between two clusters may
be different. For instance, EMD(cluster1, cluster2) may be
different from EMD(cluster2, clusterl).

For each cluster, its EMD with the other clusters is put
into a 1D vector, where each column is one ingredient. So
for a cluster that has ingredient ID 1, its EMD vector looks
like [0, d2, ds, ...d15], where d; is the EMD between ingre-
dient 1 and ingredient ¢, and d; is 0 because the EMD of a
set of points and itself is 0. Similar for other clusters. Clus-
ters that do not have any ingredients present are discarded
and not entered into a EMD vector. The resulting matrix
consists of » rows by m columns, where 7 is the number of
ingredients present in this image and m is the number of in-
gredients in the system. This matrix is saved for later use in
attribute classifier training, during which each ingredient’s
EMD vector, from all the images where the ingredient is
present, are loaded as positive data to train that ingredient’s
attribute classifier.

4. Implementation

The main classification system is written in C++ with
the OpenCV library [4]. MATLAB and Python were used
in the data-acquiring stage to execute the code from [7] to
query and download images from Flickr. A complete illus-
tration of the process from raw image to final classification
is shown in Figure 2.

4.1. Clustering an Image into Ingredient Regions

Segmentation is the first step that we needed to separate
the image into regions of ingredients. We used the Texton-
izer to segment, and in addition, cluster the image using
color and texton information [13, 2]. It returns quite ac-
curate clusters for the most part, where each cluster is one
type of ingredient, or several similar ingredients, which is
still acceptable. It also works when the clusters are not con-
tinuous in the image.

We have also tried JSEG, which was used in Wu’s ex-
periments, but the Texton-izer gave cleaner boundaries on
our dataset, and the clustering in addition to segmentation
is more useful for our purpose [ 1, 6]. See Figure 3 for an
example of a clustered image.

Figure 3. An image is clustered into regions by ingredient using
the Texton-izer, which segments and clusters the image based on
color textons.



4.2. Attribute-Based Classification

In the two-layer stages of the attribute-based classifica-
tion, we used a SVM regression with RBF kernel for layer
1, and SVM classification with a third degree polynomial
kernel for layer 2. SVM was chosen because it was the
classifiers that the [8] used, and SVM is a good baseline re-
gardless. For the implementation, we used the one in the
OpenCV library [4].

4.3. Dataset

Flickr has a good variety of photographs of food items
[1]. They are easily and freely downloadable with auto-
mated scripts, and the one we used to query and download
the data is [7]. A subset of the data was obtained from
Google Image Search. An existing dataset that we consid-
ered but did not use, the Pittsburgh Fast-Food Image Dataset
(PFID), is readily available with many categories, but it is
limited to fast-food items [5].

We selected photographs that are rich in color to avoid
bad lighting or lighting that is too different from the ma-
jority of the images in the dataset. Images are cropped to
the food region to avoid as much background and non-food
areas as possible.

5. Results and Discussion

Accuracies for the several low-level feature descriptors
we used for training the layer 1 attribute classifiers are listed
in Table 2. Confusion matrix of the three classes is in Table
3.

Fold 1 2 3 4 5 Mean | Stdev

Acc | 60.0 | 86.7 | 95.6 | 86.7 | 85.4 | 82.9 12.0

Table 2. Accuracy percentages for each of five cross validation
folds and the average accuracy. Each of the first four folds contains
45 images, the last one contains 48, for a total of 228 images, with
76 images per category.

1 2|3
17100 0 | O
2 11 |86 | 4
30 12 | 25|63

Table 3. Confusion matrix of the final classification results. Row /
column 1: Italian; row / column 2: Japanese; row / column 3: Ko-
rean. Correct classifications are on the diagonal. Cell (1, 1) means
Italian classified as Italian, (1, 2) means Italian misclassified as
Japanese, (1, 3) means Italian misclassified as Korean, etc.

Cross validation results show that fold 0 has noticeably
lower accuracy than the other folds. We saw in the mis-
classified images that almost all of bibimbap, a Korean dish
with many colorful ingredients, are misclassified. The cause

of this may be that the training images are off-balanced
and that most (15 out of 19) of the bibimbap images are in
fold 0, whereas folds 1-4 contain all of the bulgogi images.
Therefore, when fold 0 is used as test data, there were only
4 images that trained for bibimbap, which was insufficient
to learn about bibimbap properly.

The dish that was the most overwhelmingly misclassified
was bulgogi, the Korean roast beef. This dish tends to be
consisted entirely of beef and few other ingredients, mean-
ing that it sometimes could only have one existing ingredi-
ent, the beef. All of the misclassified bulgogi images turned
out to be this case. When this happens, the beef ingredi-
ent’s EMD would only be calculated against itself, which
has a distance of 0, making the EMD data matrix a single-
row matrix with all -1 except for one 0, which is probably
problematic for training. Other images of bulgogi that are
classified correctly have at least two rows of EMD data. To
solve this problem, we have to come up with a way in con-
structing the EMD matrix to make single-ingredient dishes
useful and not just contain -1 and O but something else in
relation, so that the matrix can be meaningful for training.

A possible downside to the attribute-based classifier is
that the cuisine level depends on the attribute level, so if the
attribute level makes mistakes, then the mistakes would be
carried through to the cuisine level.

6. Conclusion and Future Work

We have investigated the attribute-based classification in
the domain of food recognition, more specifically, classify-
ing dishes into their cuisines, using ingredient area ratios
as attributes and Earth Mover’s Distance as the low-level
feature. EMD turns out to be problematic for dishes where
only one ingredient is present, so the the image’s only EMD
is the ingredient’s distance with itself, which is not mean-
ingful and caused a majority of the misclassifications.

In the near future, we intend to examine more into ev-
ery step of the process and expand the dataset to more cat-
egories and dishes. Experiments we may explore include
different SVM kernels, other low-level image features such
as RGB histograms, varying number of pixels to use for
EMD, attempts to solve the one-ingredient problem with
EMD, and revisions if the current algorithm is not as gener-
alizable to a larger dataset as we expect.

Other possibilities for those interested may include us-
ing shape information, such as SIFT, in combination with
the color texton clusters that we are already extracting, for
example, by concatenating the shape descriptor to the at-
tribute vector [9]. Currently, the spatial relation between
the color texton clusters are not being used, so incorporat-
ing them into the feature vector would also be a potential
improvement of accuracy.

Applicability of the algorithm is very wide. It may be
used as the backbone of a mobile application that takes pho-
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Figure 2. Flowchart of a sample image illustrating the process from raw image, to attribute, and to category prediction. Color coding
corresponds to the layers in the attribute-based classification hierarchy in 1.

Figure 4. Samples of the classification results. Columns and rows correspond to those in the confusion matrix; read as [row] classified as
[column], see Figure 3. Row / column 1: Italian; row / column 2: Japanese; row / column 3: Korean. Correct classifications are on the
diagonal.



tos and send them into classification, which then shows the
dish in a network in relation to other dishes and ingredients.
This can help restaurant customers see what other dishes
they are interested in, and which restaurants have them. It
can also help restaurant owners quickly find out what ingre-
dients others are using for the similar dishes and encourage
market competition.
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