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Abstract. Inverse light transport seeks to undo global illumination
effects, such as interreflections, that pervade images of most scenes. This
paper presents the theoretical and computational foundations for inverse
light transport as a dual of forward rendering. Mathematically, this
duality is established through the existence of underlying Neumann series
expansions. Physically, we show that each term of our inverse series
cancels an interreflection bounce, just as the forward series adds them.
While the convergence properties of the forward series are well-known,
we show that the oscillatory convergence of the inverse series leads to
more interesting conditions on material reflectance. Conceptually, the
inverse problem requires the inversion of a large transport matrix, which
is impractical for realistic resolutions. A natural consequence of our
theoretical framework is a suite of fast computational algorithms for light
transport inversion – analogous to finite element radiosity, Monte Carlo
and wavelet-based methods in forward rendering – that rely at most on
matrix-vector multiplications. We demonstrate two practical applications,
namely, separation of individual bounces of the light transport and fast
projector radiometric compensation to display images free of global
illumination artifacts in real-world environments.

1 Introduction

Global illumination effects are key visual features of real-world scenes. Simulation
of these effects in forward rendering has been extensively studied in computer
graphics, with a theoretical foundation based on the rendering equation [9]. In
contrast, most computer vision algorithms are forced to simply ignore interreflec-
tions, where one would ideally like to invert the rendering equation to undo their
effects. Recently, Seitz et al. [18] formalized this as the problem of inverse light
transport. However, little is known about the theory and algorithms for efficient
light transport inversion in practical scenes.

This paper lays the mathematical and computational foundations of inverse
light transport, by exposing a strong duality to the already mature framework of
forward light transport. Intuitively, the duality arises because solving the (forward)
rendering equation itself involves an operator or matrix inverse. Exploiting this
duality allows us to leverage many theoretical results and algorithms from forward
global illumination for the inverse problem in computer vision.
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Fig. 1. Application of inverse light transport for projector compensation in a real scene.
Top: The desired projector output (right) leads to significant interreflections when
displayed (left). Bottom: Our theory determines the pattern (left) whose projection
is close to the desired (right). Our fast iterative method involves only matrix-vector
multiplications, with each iteration taking only 0.03 sec. For a transport matrix of size
105 × 105, the full image lin is computed after several iterations in 2-3 secs.

Specifically, forward rendering readily admits to a Neumann series solution.
We derive a similar series for the inverse solution and show formally that just as
each term of the forward Neumann series adds bounces of light transport, each
term of the inverse series zeroes out the corresponding bounce (but unlike in
the forward case, also affects higher-order bounces). However, convergence of
the inverse series is oscillatory. While the forward series convergence condition
corresponds to energy conservation, in the inverse case the condition is more
complex—a sufficient condition is that the albedo of surfaces is below 0.5, so
that the net global illumination is still less than the direct lighting component.

Recent techniques for acquiring the light transport of real scenes [11, 16] have
facilitated relighting applications in computer graphics, equivalent to matrix-
vector multiplication. While light transport inversion enables new applications
like illumination estimation, separating bounces of global illumination [18] and
projector radiometric compensation [21], the high resolution of real transport
data (105 × 105 or higher) often makes standard matrix inversion impractical.

Inspired by efficient algorithmic approaches such as finite element radios-
ity [4] and Monte Carlo methods [9, 20] for the forward problem, we propose
fast algorithms for canceling interreflections, which require only matrix-vector
multiplications (as opposed to a full matrix inversion). We demonstrate practi-
cal applications of these algorithms, such as full radiometric compensation of
interreflections while projecting complex scenes (Fig. 1), as well as separation of
individual local and global illumination components or bounces (Fig. 2).

To summarize, the main contributions of this paper are:
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Fig. 2. Separation of bounces of interreflection using our iterative light transport inver-
sion technique, that runs in 3 seconds on a 131K × 131K light transport matrix.

– A theoretical framework that provides novel insights into light transport
inversion by posing it as a dual to forward rendering.

– Efficient algorithms for inverting high resolution light transport, with rigorous
convergence and error analysis.

– Demonstration of practical applications such as bounce separation and radio-
metric compensation in complex, non-Lambertian scenes.

2 Previous Work

Our work builds most closely on Seitz et al. [18], who introduce the problem of
inverse light transport. This paper elucidates novel theoretical connections to the
forward problem and proposes new algorithms that are far more efficient (hence,
practical on high resolution data) than the direct matrix inversion of [18]. Nayar
et al. [13] present a fast direct and global separation where the entire scene is lit
by a light source. In contrast, we acquire the full light transport, but can then
separate each bounce of light and consider general illumination conditions.

Our approach is distinct from inverse rendering methods [10, 17] that acquire
lighting and reflectance, as well as the inverse global illumination method of [22]
for BRDF estimation, all of which assume known scene geometry. In contrast,
we observe only the light transport matrix—both geometry and reflectance are
unknowns in this work. We focus on the case where scene elements are illuminated
individually by a single projector, with a camera recording the output [15, 16,
18]. Extensions to incident (and reflected) light fields [7, 11, 19] are encompassed
by the theory, but not yet considered in our practical applications.

One important application is projector radiometric compensation, where
we seek to project a desired image, while compensating for global illumination
effects on the display surface. Many recent efforts considered non-uniform scene
reflectance, but not interreflections [5, 6, 14]. Clusters of camera-projector pixels
are formed in [21], with a brute-force transport inversion within clusters, but
inter-cluster interactions are ignored. Iterative inverse methods for diffuse scenes
are proposed in [3], and a series expansion for inverse light transport, denoted as
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lin Incident lighting or projected pattern ld Direct light from sources
lg Global light from interreflections lout Outgoing light (lout = ld + lg)
S Forward transport operator S−1 Inverse transport operator
R Interreflections operator (R = S− I) K Local reflection operator
G Geometric operator A Net global transport, A = KG
F First bounce from projector T Observed light transport, T = SF
N Transport resolution (matrix size N2) p ‖K‖, related to max albedo (p < 1)

Fig. 3. Table of the main notation used in the paper.

the stratified inverse, is derived by Ng et al. [15]. We show that this series is a
natural analog to the forward Neumann series. Our dual formulation enables us
to go much further, by showing that the inverse series subtracts physical bounces
of light, analyzing convergence conditions and providing fast algorithms that
relate to radiosity, wavelet and Monte Carlo methods in forward rendering.

3 Preliminaries

Owing to the linearity of light transport, the image formation process is governed
by a linear operator S that encodes the effects of global illumination:

lout = Sld, (1)

where lout is the outgoing “global” light, and ld is the direct lighting on surfaces
due to external sources. In continuous form, lout and ld are functions (of spatial
location and outgoing direction), while S is a linear operator that accounts for
global illumination. When discretized for practical applications, lout and ld are
vectors, while S is the interreflection matrix. Note that (1) depends only on
linearity, and holds for the light field, as well as a single camera view (image).

Unlike forward global illumination computations, we do not see the light
source directly, but rather its effect on the scene, which we denote as the direct
component, ld. The inverse light transport problem considered here is simply

ld = S−1lout, (2)

where we seek to invert the operator S−1, undoing the effects of interreflections.

Practical Issues: In practice, it is rare that S is measured directly. Instead, a
projector or illumination source lights the scene,

ld = Flin lout = Tlin = SFlin, (3)

where lin is the incident pattern projected (or distant light sources turned on),
and F is a “first-bounce” matrix or operator. The actual acquired light transport
is T = SF. The above expression holds for any light transport acquisition system.

The remainder of the theoretical development focuses on analyzing and
computing S−1. Eventual practical applications do need to convert from T to S,
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Forward Inverse

Problem lout = Sld ld = S−1lout

Duality S = (I−A)−1 S−1 = (I + R)−1

Series S = I + A + A2 + . . . S−1 = I−R + R2 − . . .

Bounces Sn =
Pn

k=0 Ak = S + O(An+1) S−1
n = S−1 + O(An+1)

Iteration l
(k)
out = ld + Al

(k−1)
out l

(k)
d = lout −Rl

(k−1)
d

Monte Carlo
P

Ai0i1Ai1i2 . . . ld(ik)
P

(−1)kRi0i1Ri1i2 . . . lout(ik)

Fig. 4. Duality of forward and inverse light transport, indicating analogous relations
for some key properties. (Monte Carlo equations abbreviated; full forms in text.)

using S = TF−1. Moreover, applications like radiometric compensation actually
seek to recover lin (rather than ld in (2)) given by lin = T−1lout = F−1ld.

Since we focus on global illumination S, we will consider setups where S
is easy to obtain from T, i.e., where F is simple and at least approximately
invertible. Therefore, we consider projector-based acquisition, that illuminates a
single spatial location, rather than light sources that illuminate the whole object
(where F is low rank for diffuse surfaces [17]). After geometric calibration, we
can use the same parameterization for projection and camera images [18]. F is
then a diagonal matrix, with F−1 being trivial to compute.

Note that F need not correspond to the actual first bounce for an accurate
light transport inversion. In numerical terms, choosing F = diag(T) amounts to
Jacobi preconditioning, which is convergent if T is diagonally dominant.

4 Dual Forward and Inverse Light Transport

In this section, we show that the structure of the rendering equation exposes a
strong duality between forward and inverse light transport. We derive analogous
inverse and forward Neumann series expansions, and interpret them in terms of
physical bounces of light. Key theoretical results are summarized in Fig. 4.

In the operator notation of [1], the rendering equation is written as

lout = ld + KGlout ⇒ lout = (I−A)−1ld, (4)

where K considers the local reflection at a surface, governed by the BRDF, G is
a geometric operator that transports outgoing to incident radiance and A = KG
corresponds to one physical bounce of light. 3 It naturally follows that

S = (I−A)−1. (5)

3 This formulation is valid for any opaque BRDF when considering the full light field.
While the theory is fully general, our experiments will consider projection to a single
view, which introduces practical limitations, as discussed in Sec. 7.
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This well known result shows that the forward problem formally involves a matrix
or operator inversion. Also note that if the scene geometry and reflectance (and
hence A) are known, we simply have S−1 = I−A, as noted by [18, 12]. We focus
here on cases where we only measure S, but do not know or compute A.

We can separate lout into direct ld and indirect or global lg components,

lout = ld + lg = ld + Rld lout = (I + R)ld (6)

where R = S− I is a linear operator that accounts only for global illumination.
We are now ready to present an expression for inverse light transport:

S−1 = (I + R)−1. (7)

The very similar or dual forms of (5) and (7) is a key insight in this paper, and
allows direct leveraging of many forward rendering theories and algorithms for
inverse rendering and inverse light transport algorithms in computer vision.

Neumann Forward and Inverse Series: The forward equations (4) and (5)
have well-known series expansions corresponding physically to light bounces,

S = I + A + A2 + A3 + . . . . (8)

We can also relate the global illumination operator R to this expansion,

R = S− I = A + A2 + A3 + . . . . (9)

Mathematically, the dual formulation in (7) has a series analogous to (8),

S−1 = I−R + R2 −R3 + . . . . (10)

Note that the positive sign of R implies the series is oscillatory. Intuitively, from
(6), ld = lout −Rld. Since the unknown ld appears on the right hand side, a first
approximation as ld ≈ lout calculates ld ≈ lout −Rlout. This overcompensation
is corrected by higher-order terms, leading to the alternating signs in (10).

With suitable algebraic manipulations, one may note that (10) explains the
stratified inverses of Ng et al. [15] and relates it to the rendering equation. 4

Interpretation as Physical Bounces of Light: Consider an approximation
up to order n, that we denote as Sn or S−1

n . In the forward case, it is clear that

Sn =
n∑

k=0

Ak Sn − S = O(An+1) (11)

where the first n physical bounces of light are represented (each term adds the
next bounce), and the error is from neglecting bounces n + 1 onwards.
4 In particular, note that R = S− I, which is TF−1 − I. A final binomial expansion in
TF−1 and using T−1 = F−1S−1 enables one to derive the results in [15].
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Ground truth, S-1
(Direct Image ld)

S-1 ≈ I
(Global Image lout)

S-1 ≈ I - R
(Iteration 1, ld(1))

S-1 ≈ I - R + R2

(Iteration 2, ld(2))
S-1 ≈ I - R +...- R3

(Iteration 3, ld(3))
S-1 ≈ I - R +...+ R8

(Iteration 8, ld(8))

-Rlout +R2lout +R4lout-R3lout
Contribution of each term

(Difference between iterations)

Fig. 5. Top: From left to right, we add more terms of the inverse series, going from
the simulated global illumination output lout to the “direct lighting” result ld (shown
leftmost). These terms also correspond to the iterations introduced in Sec. 6. Bottom:
Contributions of individual terms (neutral grey is 0).

A physical interpretation for the inverse series seems non-intuitive, since (10) is
expressed in terms of R, that includes all global illumination terms. Nevertheless,
in [2], we derive a surprising result: each term of the inverse series cancels or
zeros out the corresponding bounce of light transport, analogous to the forward
case. Formally, we show that S−1

0 = I, S−1
1 = I−A−A2 − . . ., and for n > 1,

S−1
n = I−A +

∞∑

m=2




min(m,n)∑

k=1

(−1)k

(
m− 1
k − 1

)
Am. (12)

Now, consider the case when m ≤ n. In this case, the second summation has a
limit of m > 1, and the coefficient of Am becomes

∑m
k=1(−1)k

(
m−1
k−1

)
, which is

the binomial expansion of (1 + x)m−1 with x = −1, thus, identically 0.
This implies a key result, that the Am terms vanish for 2 ≤ m ≤ n,

S−1
n = I−A + O(An+1) S−1

n − S−1 = O(An+1) (13)

analogous to the forward series in (11). An exact expression can be derived as

S−1
n = I−A + (−1)n

∞∑

m=n+1

(
m− 2
n− 1

)
Am. Note the oscillatory series behavior

from the (−1)n. Finally, since S = (I−A)−1,

S−1
n S =

[
(I−A) + O(An+1)

]
[I−A]−1 = I + O(An+1). (14)

In other words, the n term series S−1
n annihilates the first n physical bounces of

light (each term in the series zeroes the corresponding interreflection bounce),
leaving only bounces n + 1 and higher. However, as opposed to the forward series
where the higher bounces are simply 0 until they are added in, the values for the
higher bounces in the inverse series oscillate until they are zeroed—this is related
to the oscillatory convergence of the inverse series. An exact result is

S−1
n S = I + (−1)n

∞∑

m=n+1

(
m− 1

n

)
Am. (15)
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(a) Oscillatory convergence at each point
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Fig. 6. Error analysis of inverse
series. (a): Convergence at differ-
ent points (center, edge, corner).
(b): Comparison of error to the-
oretical bound for different albe-
dos showing good agreement. (c):
Convergence for different albedos
(is faster for lower albedos up to
0.5). (d): As expected, an albedo
of 0.62 diverges for a closed box
(6 sides), shows slow convergence
for a 5-sided box and rapid conver-
gence for more open environments.

5 Convergence and Error Analysis

For the forward case, Arvo et al. [1] prove several results, briefly summarized here.
For a closed enclosure, ‖G‖= 1 (less for open scenes). From energy conservation,
excluding perfect reflectors, ‖K‖≤ p < 1, where p relates to the surface albedo
(for non-diffuse materials, it is the maximum over all incident directions of the
fraction of total energy reflected).5 Since ‖ A ‖≤‖ K ‖‖ G ‖, it follows that
‖A‖≤ p < 1, so the forward series always converges.

For the inverse series in (10), a bound from (9) is,

‖R‖≤‖A‖ + ‖A2 ‖ + . . . ≤ p + p2 + . . . =
p

1− p
. (16)

If p < 1
2 , we obtain ‖R ‖< 1, which is sufficient for convergence (though not

necessary). Intuitively, if the diffuse albedo (or maximum fraction of energy
reflected for any incident direction for non-diffuse materials) is less than 1/2, the
norm of the total global illumination operator R is less than that of the direct
lighting operator I. In matrix terms, S = I + R is diagonally dominant. Since
the inverse series is oscillatory, we require to bound the full global illumination,
rather than just each bounce separately as in the forward case.

Error Analysis: The error introduced in an n term expansion (Sn or S−1
n ) for

forward and inverse series can be bounded as

‖S− Sn ‖ ≤
∞∑

k=n+1

‖Ak ‖≤
∞∑

k=n+1

pk =
pn+1

1− p
. (17)

‖S−1 − S−1
n ‖ ≤

∞∑

k=n+1

‖Rk ‖≤
∞∑

k=n+1

(
p

1− p

)k

=
pn+1

(1− p)n(1− 2p)
. (18)

5 These relations hold in any Lp norm, since by reciprocity, ‖K‖1=‖K‖∞= p, and
‖·‖q≤ max(‖·‖1, ‖·‖∞).
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Our iterative method re-
covers ld in 10 iterations
for the shadowed scene
and 20 for the glossy one.

Numerical Simulations: For simplicity, we consider a synthetic diffuse box
(closed, so ‖G‖= 1), without shadows but with interreflections. Fig. 5 assumes
that ld is constant on each surface, which have different albedos. From left to
right, addition of more terms from (10) causes oscillations between over and
under-compensating interreflections, till convergence to ld. Interestingly, while
forward global illumination in lout results in predictable red and green color-
bleeding, odd terms of the inverse series give rise to cyan and magenta colors.
The final inverse light transport solution for ld has no color bleeding, as desired.

In Fig. 6, we analyze errors and convergence. Fig. 6a indicates similar oscilla-
tory convergence behavior near corners, edges and face centers. Fig. 6b shows
excellent agreement, up to a constant factor, between error for the whole S−1

operator and the theoretical bound in (18). Fig. 6c illustrates the inverse relation
of convergence rate and albedo. Even albedos near the theoretical limit (like
0.45) converge in a few iterations, those very close to 0.5 converge slowly and
those greater than 0.51 diverge. Fig. 6d shows the variation of convergence with
geometry (that is, ‖G‖). For an albedo of 0.62, close to the theoretical limit for
a 5-sided box, we observe very slow convergence for a 5-sided box, divergence for
a 6-sided box and rapid convergence for more open geometries.

Finally, Fig. 7 shows a scene with occlusions and glossy surfaces. Similar
behaviors hold as above, with convergence of the inverse series to direct lighting.

6 Exploiting Duality for Fast Light Transport Inversion

We now introduce efficient algorithms for high-resolution light transport inversion,
exploring duals to iterative finite element radiosity, wavelet accelerations and
Monte Carlo methods.

Finite Element Methods: Forward rendering rarely computes the series in
(8) to explicitly determine S, due to the high cost of matrix-matrix multiplications
on high-resolution scenes. Instead, finite element and radiosity methods [4] try
to solve lout = ld + Alout, which corresponds directly to (4), iteratively,

l(k)
out = ld + Al(k−1)

out . (19)

This iteration is numerically stable, and requires only the matrix-vector multipli-
cation for Alout. The superscript stands for the step k, and l(0)out = ld. Note that n
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Figure 1: Lookit! Lookit!

Abstract

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse
molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero
eros et accumsan et iusto odio dignissim qui blandit praesent lupta-
tum zzril delenit augue duis dolore te feugait nulla facilisi. Lorem
ipsum dolor sit amet, consectetuer adipiscing elit, sed diam non-
ummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat
volutpat.

Citations can be done this way [?] or this more concise way [?],
depending upon the application.

Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcor-
per suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis
autem vel eum iriure dolor in hendrerit [?] in vulputate velit esse
molestie [?] consequat, vel illum dolore eu feugiat nulla facilisis at
vero eros et accumsan et iusto odio dignissim qui blandit praesent
luptatum zzril delenit augue duis dolore te feugait nulla facilisi. [?]

CR Categories: K.6.1 [Management of Computing and Infor-
mation Systems]: Project and People Management—Life Cycle;
K.7.m [The Computing Profession]: Miscellaneous—Ethics

Keywords: radiosity, global illumination, constant time

1 Introduction

2 Exposition

z∑

j=1

j =
z(z + 1)

2
(1)

x ! y1 + · · · + yn (2)
≤ z (3)

∗e-mail: roy.g.biv@aol.com
†e-mail:ed.grimley@aol.com
‡nigelf1@msn.com
§e-mail:martha.stewart@marthastewart.com

3 A New Section

3.1 A New Subsection

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse
molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero
eros et accumsan et iusto odio dignissim qui blandit praesent lupta-
tum zzril delenit augue duis dolore te feugait nulla facilisi. Lorem
ipsum dolor sit amet, consectetuer adipiscing elit, sed diam non-
ummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat
volutpat.

3.2 A Second Subsection

3.2.1 A Subsubsection

Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcor-
per suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis
autem vel eum iriure dolor in hendrerit in vulputate velit esse mo-
lestie consequat, vel illum dolore eu feugiat nulla facilisis at vero
eros et accumsan et iusto odio dignissim qui blandit praesent lupta-
tum zzril delenit augue duis dolore te feugait nulla facilisi.

3.2.2 Another Subsubsection

Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcor-
per suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis
autem vel eum iriure dolor in hendrerit in vulputate velit esse mo-
lestie consequat, vel illum dolore eu feugiat nulla facilisis at vero
eros et accumsan et iusto odio dignissim qui blandit praesent lupta-
tum zzril delenit augue duis dolore te feugait nulla facilisi.

Method
Resolution of transport matrix (N )

80 320 1280 5120 10240

Series 1.0 47.0 2.3e3 9.3e4 7.5e5
Iterative 0.1 0.5 10.3 162.5 679.0

Wavelet 1.2 1.3 1.6 2.3 4.0

Table 1: Comparison of relative timings.
Fig. 8. Timings for series, iterative finite ele-
ment, and wavelet accelerated methods (using
Daubechies4 wavelets). N is the transport resolu-
tion (matrix size is N2). We normalize timings
so that 1.0 corresponds to 5.57× 10−4 seconds,
with experiments in Matlab on an Intel i7 ma-
chine. All methods are run until 1% error.

steps simply compute the effect of the first n terms of the series in (8). For inverse
light transport, one can derive a similar relation, starting from ld = lout −Rld,
that follows from (6). The iterative solution naturally follows, dual to (19),

l(k)
d = lout −Rl(k−1)

d , (20)

with l(0)d = lout. Again, the first n steps correspond to the first n terms in (10).
Note the negative sign on R that determines the oscillatory nature of the series.

Matrix Iteration: In cases where we seek to precompute S−1, there is also a
corresponding full matrix iteration. The dual forward and inverse relations are

Sk = I + ASk−1, S−1
k = I−RS−1

k−1, (21)

with S0 = S−1
0 = I. These equations provide a numerically stable iteration.

Wavelet Methods: The matrix-vector multiplication Rld in (20) is the time-
consuming step. We can wavelet-transform and approximate the vector ld, as
well as the rows of R, to speed it up. This is analogous to wavelet radiosity and
light transport in forward rendering [8].

Monte Carlo Methods: For the matrix A, [9] considers all index permutations

lout(i0) = ld(i0) +
∞∑

k=1

∑

i1,i2,...ik

Ai0i1Ai1i2 . . .Aik−1ik
ld(ik), (22)

where the first summation is over all terms k in the series, or all path lengths in
a path tracing context. The different indices correspond to all matrix sums, or
equivalently all paths, where each ij chooses a particular point on the path.

Analogously, the inverse series in (10) has a similar form,

ld(i0) = lout(i0) +
∞∑

k=1

(−1)k
∑

i1,i2,...ik

Ri0i1Ri1i2 . . .Rik−1ik
lout(ik), (23)
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Effectiveness of Monte Carlo
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fects of increasing sam-
ples with pure Monte
Carlo. Transport resolu-
tion is N = 5120.

where the oscillatory behavior requires the additional (−1)k factor. A direct
Monte Carlo algorithm uses a number of samples, drawing the indices i1, i2, . . . ik
at random for each. The expectation of these samples gives the desired result.
One may also use fewer samples for the iteration, but compute the final step with
a direct matrix-vector multiplication, akin to final gather in forward rendering.

Numerical Simulations: As timing baseline, we use matrix-matrix multi-
plications to directly compute the series in (10) (explicit matrix inversion is
intractable for high resolutions). In Fig. 8, for transport resolution N , the series
method scales as O(N3) and rapidly becomes impractical. The iterative method
uses only matrix-vector multiplications and is O(N2), with a speedup of three
orders of magnitude for large sizes. Wavelet acceleration leads to linear O(NW )
performance, where the number of wavelets W is relatively insensitive to N .

Fig. 9 shows the expected inverse relation between variance and number of
samples for the Monte Carlo method. The images in the top row show the power
of final gather—Monte Carlo with 30 samples is noisy as expected, but is nearly
smoothed out using one direct iteration. The bottom row shows that, as expected,
pure Monte Carlo converges as the number of samples increases.

7 Experiments with Real Data

Our acquisition setup consists of a Dell 4310WX projector and a Canon EOS 5D
Mark II camera. An accurate, one-time, radiometric calibration of the projector
and camera is performed to ensure linearity of the corresponding signals [2]. We
assemble 8 images at various exposures into a high dynamic range image.

We present two applications of our iterative light transport inversion — pro-
jector radiometric compensation and separating the bounces of light transport. As
mentioned in Sec. 3, choosing F as the diagonal of T is accurate for radiometric
compensation, even in non-Lambertian scenes. For our single projector-camera
setup, that is only an approximation for applications like bounce separation in
specular scenes. However, higher bounces rapidly become diffuse in practice and
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our experiments show robust results even for non-diffuse scenes. We refer the
reader to [2] for a more complete discussion.

Projector Radiometric Compensation: The ubiquitous use of projectors
may necessitate inverting photometric distortions and interreflection effects to
simulate any desired appearance in non-flat, non-Lambertian spaces. In terms of
our theory, given a desired appearance lout, we seek to invert the light transport
to find ld = S−1lout. As discussed in Sec. 3, we must account for the first bounce
F from the projector, and actually compute lin = T−1lout.

Fig. 1 shows results for radiometric compensation to project a desired image
onto a scene with non-Lambertian materials, occlusions and interreflections.
Clearly, the desired appearance is closely matched. The size of the transport
matrix is 131K × 131K, for which our iterative algorithm performs radiometric
compensation in only about 3 secs. While such high resolutions may be infeasible
for a straightforward matrix inversion, based on the patterns in Fig. 8, the
stratified inverses method of [15] will require 1−2 orders of magnitude more time.
Also, in contrast to the method of [21], our algorithms are physically motivated
and not contingent on any tunable parameters.

Separating Bounces: One consequence of our theory is that once the light
transport has been acquired, we can quickly separate an image into the different
bounces (direct, 1st bounce indirect, 2nd bounce indirect and so on). It follows
from (19), noting that S−1 = I−A, that the k-th indirect bounce is

l(k+1)
out − l(k)

out = ld − S−1l(k)
out. (24)

Thus, each successive run of our iterative inversion algorithm yields a bounce of
light transport. Fig. 10 shows a didactic example demonstrating the accuracy of
the bounce separation. The scene consists of a white dihedral with green light
projected on the left half. Note that successive bounces of indirect illumination
in the bottom row alternate perfectly between the two walls, as expected. Fig. 11
demonstrates the same with a non-Lambertian occluder present in the scene. We
observe that the specular highlight is limited only to the direct component and
absent from the indirect bounces, which is also expected.

This application is the same as [18], but our algorithms are far more efficient.
For instance, our iterative method recovers the direct component as well as each
bounce of indirect illumination in 0.09 sec for the 4K × 4K transport matrix in
Fig. 11, while straightforward matrix inversion requires 4.6 sec. More importantly,
our methods can efficiently operate on much higher resolution scenes that direct
inversion cannot handle—for instance, Fig. 2 demonstrates bounce separation in
a 131K × 131K transport matrix. While an uncompressed matrix of that size
cannot even be loaded in RAM, extrapolating from Fig. 8, a brute force inversion
will require nearly 150 hours. In contrast, we require only 33ms per iteration in
our (unoptimized) Matlab implementation, for a total of about 3 sec to separate
each bounce. Note that the faster method of [13] yields only the top row of Fig. 10
for a particular lighting configuration, while we can separate all the bounces for
any lighting, albeit at the expense of a more laborious acquisition.
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Image Direct Global

Bounce 1 Bounce 2 Bounce 3 Bounce 4

Fig. 10. Separation of individual
bounces. The scene is a white concave
dihedral, with flat green projection on
the left half. Top row: input image
and separated direct and net global
components. Bottom row: recovered
indirect bounces. Note that successive
bounces illuminate alternating walls of
the dihedral, as expected.

Image Direct Global

Bounce 1 Bounce 2 Bounce 3 Bounce 4

Fig. 11. Bounce separation with oc-
clusions and specularities. Top row:
input image and separated direct and
net global components. Bottom row:
recovered indirect bounces. Note that
successive bounces illuminate alternat-
ing walls and the specular highlight is
present only in the direct component.

We share some restrictions with other projector-camera systems, such as
shutter speeds limited by projector refresh rates, color bleeding and non-linear
color mixing ratios. For radiometric compensation, the projector cannot display
negative values, which may lead to clipping artifacts in dark regions.

8 Conclusions and Future Work

The main contribution of this paper is a formulation of inverse light transport
in computer vision, as a dual to the theory of forward rendering in computer
graphics. This lends new insights for canceling interreflections in complex scenes,
as well as fast computational methods for doing so. Our efficient algorithms,
analogous to finite element radiosity and Monte Carlo path tracing in forward
rendering, can handle transport resolutions far higher than previous methods.

From a theoretical perspective, we have just scratched the surface of analogies
between forward and inverse methods. It is our hope that the framework of
this paper forms the basis for discovering further insights into the structure of
light transport and developing methods that couple fast acquisition and iterative
inversion to perform radiometric compensation in dynamic scenes.
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8. S. Gortler, P. Schröder, M. Cohen, and P. Hanrahan. Wavelet radiosity. In
SIGGRAPH 93, pages 221–230, 1993.

9. J. Kajiya. The rendering equation. In SIGGRAPH 86, pages 143–150, 1986.
10. S. Marschner. Inverse Rendering for Computer Graphics. PhD thesis, Cornell

Univ., 1998.
11. V. Masselus, P. Peers, P. Dutre, and Y. Willems. Relighting with 4D incident light

fields. ACM Trans. on Graphics (SIGGRAPH 03), 22(3):613–620, 2003.
12. Y. Mukaigawa, T. Kakinuma, and Y. Ohta. Analytical compensation of inter-

reflection for pattern projection. In ACM VRST, pages 265–268, 2006.
13. S. Nayar, G. Krishnan, M. Grossberg, and R. Raskar. Fast separation of direct and

global components of a scene using high frequency illumination. ACM Trans. on
Graphics (SIGGRAPH 06), 25(3):935–944, 2006.

14. S. Nayar, H. Peri, M. Grossberg, and P. Belhumeur. A Projection System with
Radiometric Compensation for Screen Imperfections. In IEEE PROCAMS, 2003.

15. T.-T. Ng, R. S. Pahwa, J. Bai, Q.-S. Quek, and K.-H. Tan. Radiometric Compen-
sation Using Stratified Inverses. In ICCV, 2009.

16. P. Peers, K. Berge, W. Matusik, R. Ramamoorthi, J. Lawrence, S. Rusinkiewicz,
and P. Dutre. A compact factored representation of heterogeneous subsurface
scattering. ACM Trans. on Graphics (SIGGRAPH 06), 25(3):746–753, 2006.

17. R. Ramamoorthi and P. Hanrahan. A signal-processing framework for inverse
rendering. In SIGGRAPH 01, pages 117–128, 2001.

18. S. Seitz, Y. Matsushita, and K. Kutulakos. A theory of inverse light transport. In
ICCV 05, pages 1440–1447, 2005.

19. P. Sen, B. Chen, G. Garg, S. Marschner, M. Horowitz, M. Levoy, and H. Lensch.
Dual Photography. ACM Trans. on Graphics (SIGGRAPH), 24(3):745–755, 2005.

20. E. Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis,
Stanford University, 1998.

21. G. Wetzstein and O. Bimber. Radiometric Compensation through Inverse Light
Transport. In Pacific Conf. on Comp. Graphics and Appl., pages 391–399, 2007.

22. Y. Yu, P. Debevec, J. Malik, and T. Hawkins. Inverse global illumination: Recovering
reflectance models of real scenes from photographs. In SIGGRAPH 99, pages 215–
224, 1999.


