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Abstract

We present a novel framework for motion segmenta-
tion that combines the concepts of layer-based meth-
ods and feature-based motion estimation. We esti-
mate the initial correspondences by comparing vectors
of filter outputs at interest points, from which we com-
pute candidate scene relations via random sampling
of minimal subsets of correspondences. We achieve a
dense, piecewise smooth assignment of pixels to mo-
tion layers using a fast approximate graphcut algo-
rithm based on a Markov random field formulation.
We demonstrate our approach on image pairs con-
taining large inter-frame motion and partial occlu-
sion. The approach is efficient and it successfully seg-
ments scenes with inter-frame disparities previously
beyond the scope of layer-based motion segmentation
methods. We also present an extension that accounts
for the case of non-planar motion, in which we use
our planar motion segmentation results as an initial-
ization for a regularized Thin Plate Spline fit. In ad-
dition, we present applications of our method to auto-
matic object removal and to structure from motion.

1 Introduction

Consider the pair of images shown in Figure 1. These
two images were captured by an aquarium webcam
on a pan-tilt head. For a human observer, a brief ex-
amination of the images reveals what happened from
one frame to the next: the lower fish swam down
and darted forward and the upper fish moved for-
ward slightly; meanwhile, the camera panned to the
left about a third of the image width. Even with-

out color information, this is a simple task for the
human visual system. The same cannot be said for
any existing computer vision system. What makes
this problem difficult from a computational perspec-
tive? There are number of complicating factors, in-
cluding the following: (1) due to the low frame rate,
the motion between frames is a significant fraction of
the image size, (2) the moving objects are relatively
small and have few features compared to the richly
textured background, (3) the poses of the fish change
as they swim, (4) because of the panning motion of
the camera, the second frame has motion blur.

Finding out what went where in two frames of an
image sequence is an instance of the motion segmen-
tation problem. Formally, motion segmentation con-
sists of (1) finding groups of pixels in two or more
frames that move together, and (2) recovering the
motion fields associated with each group. Motion
segmentation has wide applicability in areas such as
video coding, content-based video retrieval, and mo-
saicking. In its full generality, the problem cannot
be solved since infinitely many constituent motions
can explain the changes from one frame to another.
Fortunately, in real scenes the problem is simplified
by the observation that objects are usually composed
of spatially contiguous regions and the number of in-
dependent motions is significantly smaller than the
number of pixels. Operating under these assump-
tions, we propose a new motion segmentation algo-
rithm for scenes containing objects with large inter-
frame motion. The algorithm leverages and builds
upon established techniques for robust estimation of
motion fields and discontinuity preserving smoothing
in a novel combination that delivers the first dense,
layer-based motion segmentation method for the case
of large (non-differential) motions.
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Figure 1: Two consecutive frames from a saltwater aquarium webcam.

The structure of the paper is as follows. We will be-
gin in section 2 with an overview of related work. In
section 3, we detail the components of our approach
to the problem of motion segmentation. This the
primary contribution of this work. We present ex-
perimental results for this approach in section 4. An
extension to non-planar motion is presented in sec-
tion 5. Applications of our method are presented in
section 6. The paper concludes in section 8

2 Related Works

Early approaches to motion segmentation were based
on estimating dense optical flow. The optical flow
field was assumed to be piecewise smooth to account
for discontinuities due to occlusion and object bound-
aries, see for example [1, 4, 29]. Darrell & Pent-
land [12] and Wang & Adelson [46] introduced the
idea of decomposing the image sequence into multi-
ple overlapping layers, where each layer is a smooth
motion field. Weiss [47] extended this approach to
account for flexible motion fields using regularized
radial basis functions (RBFs).

Optical flow based methods are limited in their abil-
ity to handle large inter-frame motion or objects with
overlapping motion fields. Coarse-to-fine methods
are able to solve the problem of large motion to a
certain extent (see for example [35, 36]), but the de-
gree of sub-sampling required to make the motion
differential places an upper bound on the maximum
allowable motion between two frames and limits it to
about 15% of the dimensions of the image [21]. Also
in cases where the order of objects along any line in
the scene is reversed and their motion fields overlap,
the coarse to fine processing ends up blurring the two
motions into a single motion before optical flow can
be calculated.

In this paper we are interested in the case of dis-
crete motion, i.e. where optical flow based methods
break down. Most closely related to our work is that
of Torr [38]. Torr uses sparse correspondences ob-
tained by running a feature detector and matching
them using normalized cross correlation. He then
processes the correspondences in a RANSAC frame-
work to sequentially cover the the set of motions in
the scene. Each iteration of his algorithm finds the
dominant motion model that best explains the data
and is simplest according to a complexity measure.
The set of models and the associated correspondences
are then used as the initial guess for the estimation of
a mixture model using the Expectation Maximization
(EM) algorithm. Spurious models are pruned and the
resulting segmentation is smoothed using morpholog-
ical operations.

In a more recent work [39], the authors extend the
model to 3D layers in which points in the layer have
an associated disparity. This allows for scenes in
which the planarity assumption is violated and/or a
significant amount of parallax is present. The pixel
correspondences are found using a multiscale differ-
ential optical flow algorithm, from which the layers
are estimated in a Bayesian framework using EM.
Piecewise smoothness is ensured by using a Markov
random field prior.

Neither of the above works demonstrate the ability
to perform dense motion segmentation on a pair of
images with large inter-frame motion. In both of the
above works the grouping is performed in a Bayesian
framework. While the formulation is optimal and
strong results can be proved about the optimality of
the Maximum Likelihood solution, actually solving
for it is an extremely hard non-linear optimization
problem. The use of EM only guarantees a locally
optimal solution and says nothing about the quality
of the solution. As the authors point out, the key to
getting a good segmentation using their algorithm is
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to start with a good guess of the solution and they
devote a significant amount of effort to finding such
a guess. However it is not clear from their result how
much the EM algorithm improves upon their initial
solution.

A representative work addressing the case of non-
planar motion is [40], which shows how the trifocal
tensor can be used to cluster groups of sparse corre-
spondences that move coherently across three views.
That work deals with similar types of sequences as
those in our work, but it does not provide dense as-
signment to motion layers or dense optical flow. The
paper states that it is an initialization and that more
work is needed to provide a dense segmentation, how-
ever the extension of dense stereo assignment to mul-
tiple independent motions is certainly non-trivial and
there is yet to be a published solution. In addition,
this approach is not applicable for objects with non-
rigid motion, as the fundamental matrix and trifocal
tensor apply only to rigid motion.

3 Proposed Method

3.1 Our Approach

Our approach is based on a two stage process, the
first of which is responsible for motion field estima-
tion and the second of which is responsible for mo-
tion layer assignment. As a preliminary step we de-
tect interest points in the two images and match
them by comparing filter responses. We then use
a RANSAC based procedure for detecting the mo-
tion fields relating the frames. Based on the de-
tected motion fields, the correspondences detected
in the first stage are partitioned into groups corre-
sponding to each constituent motion field and the re-
sulting motion fields are re-estimated. Finally, we
use a fast approximate graph cut based method to
densely assign pixels to their respective motion fields.
We now describe each of these steps in detail. A
reference Matlab implementation of the steps de-
scribed in this section is available for download at
http://vision.ucsd.edu/motion seg.html.

3.1.1 Interest point detection and matching

Many pixels in real images are redundant so it is ben-
eficial to find a set of points that reduce some of this
redundancy. To achieve this, we detect interest points
using the Förstner operator [17]. To describe each in-
terest point, we apply a set of 76 filters (3 scales and
12 orientations with even and odd phase and an elon-
gation ratio of 3:1, plus 4 spot filters) to each image.
The filters, which are at most 31 × 31 pixels in size,
are evenly spaced in orientation at intervals of 15◦

and the changes in scale are half octave. For each of
the scales and orientations, we use a quadrature pair
of derivative-of-Gaussian filters corresponding to edge
and bar-detectors respectively, as in [23, 18].

To obtain some degree of rotational invariance, the fil-
ter response vectors may be reordered so that the or-
der of orientations is cyclically shifted. This is equiv-
alent to filtering a rotated version of the image patch
that is within the support of the filter. We perform
three such rotations in each direction to obtain rota-
tional invariance up to ±45◦.

We find correspondences by comparing filter response
vectors using the L1 distance. We compare each in-
terest point in the first image to those in the second
image and assign correspondence between points with
minimal error. Since matching is difficult for image
pairs with large inter-frame disparity, the remainder
of our approach must take into account that the es-
timated correspondences can be extremely noisy.

3.1.2 Estimating Motion Fields

Robust estimation methods such as RANSAC [16]
have been shown to provide very good results in the
presence of noise when estimating a single, global
transformation between images. Why can’t we sim-
ply apply these methods to multiple motions directly?
It turns out that this is not as straightforward as one
might imagine. Methods in this vein work by iter-
atively repeating the estimation process where each
time a dominant motion is detected, all correspon-
dences that are deemed inliers for this motion are
removed [38].

There are a number of issues that need to be ad-
dressed before RANSAC can be used for the purpose
of detecting and estimating multiple motions. The
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Figure 2: Phantom motion fields. (Row 1) Scene
that consists of two squares translating away from
each other. (Row 2) Under an affine model, triplets
of points that span the two squares will incorrectly
propose a global stretching motion. This motion is
likely to have many inliers since all points on the in-
ner edges of the squares will fit this motion exactly. If
we then delete all points that agree with this transfor-
mation, we will be unable to detect the true motions
of the squares in the scene (Rows 3 & 4).

first issue is that combinations of correspondences –
not individual correspondences – are what promote a
given transformation. Thus when “phantom motion
fields” are present, i.e., transformations arising from
the relative motion between two or more objects, it
is possible that the deletion of correspondences could
prevent the detection of the true independent mo-
tions; see Figure 2. Our approach does not perform
sequential deletion of correspondences and thus cir-
cumvents this problem.

Another consideration arises from the fact that the
RANSAC estimation procedure is based on corre-
spondences between interest points in the two images.
This makes the procedure biased towards texture rich
regions, which have a large number of interest points
associated with them, and against small objects in
the scene, which in turn have a small number of inter-
est points. In the case where there is only one global
transformation relating the two images, this bias does
not pose a problem. However it becomes apparent
when searching for multiple independent motions. To

correct for this bias we introduce “perturbed interest
points” and a method for feature crowdedness com-
pensation.

Perturbed Interest Points If an object is only rep-
resented by a small number of interest points, it is
unlikely that many samples will fall entirely within
the object. One approach for promoting the effect
of correct correspondences without promoting that
of the incorrect correspondences is to appeal to the
idea of a stable system. According to the principle
of perturbation, a stable system will remain at or
near equilibrium even as it is slightly modified. The
same holds true for stable matches. To take advan-
tage of this principle, we dilate the interest points to
be disks with a radius of rp, where each pixel in the
disk is added to the list of interest points. This allows
the correct matches to get support from the points
surrounding a given feature while incorrect matches
will tend to have almost random matches estimated
for their immediate neighbors, which will not likely
contribute to a widely-supported warp. In this way,
while the density around a valid motion is increased,
we do not see the same increase in the case of an
invalid motion; see Figure 3.

Figure 3: Perturbed Interest Points. Correspon-
dences are represented by point-line pairs where the
point specifies an interest point in the image and the
line segment ends at the location of the correspond-
ing point in the other image. (Row 1) We see one
correct correspondence and one incorrect correspon-
dence that is the result of an occlusion junction form-
ing a white wedge. (Row 2) The points around the
correct point have matches that are near the corre-
sponding point, but the points around the incorrect
correspondence do not.

Feature Crowdedness Textured regions often have
significant representation in the set of interest points.
This means that a highly textured object will have
a much larger representation in the set of interest
points than an object of the same size with less tex-
ture. To mitigate this effect, we bias the sampling.
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We calculate a measure of crowdedness for each in-
terest point and the probability of choosing a given
point is inversely proportional to this crowdedness
score. The crowdedness score is the number of inter-
est points that fall into a disk of radius rc.

Partitioning and Motion Estimation Having
perturbed the interest points and established a sam-
pling distribution on them, we are now in a position
to detect the motions present in the frames. We do
so using a two step variant of RANSAC, where mul-
tiple independent motions are explicitly handled, as
duplicate transformations are detected and pruned in
a greedy manner. The first step provides a rough par-
titioning of the set of correspondences (motion iden-
tification) and the second takes this partitioning and
estimates the motion of each group (motion refine-
ment).

First, a set of planar warps is estimated by a round of
standard RANSAC and inlier counts (using an inlier
threshold of τ) are recorded for each transformation.
In our case, we use planar homography which requires
4 correspondences to estimate, however similarity or
affinity may be used (requiring 2 and 3 correspon-
dences, respectively). The estimated list of transfor-
mations is then sorted by inlier count and we keep
the first nt transformations, where nt is some large
number (e.g. 300).

We expect that the motions in the scene will likely be
detected multiple times and we would like to detect
these duplicate transformations. Comparing trans-
formations in the space of parameters is difficult for
all but the simplest of transformations, so we com-
pare transformations by comparing the set of inliers
associated with each transformation. If there is a
large overlap in the set of inliers (more than 75%)
the transformation with the larger set of inliers is
kept and the other is pruned.

Now that we have our partitioning of the set of cor-
respondences, we would like to estimate the planar
motion represented in each group. This is done with
a second round of RANSAC on each group with only
100 iterations. This round has a tighter threshold
to find a better estimate. We then prune duplicate
warps a second time to account for slightly different
inlier sets that converged to the same transformation
during the second round of RANSAC with the tighter
threshold.

The result of this stage is a set of proposed transfor-

mations and we are now faced with the problem of
assigning each pixel to a candidate motion field.

3.1.3 Layer Assignment

The problem of assigning each pixel to a candidate
motion field can be formulated as finding a function
l : I → {1, . . . ,m}, that maps each pixel to an integer
in the range 1, . . . ,m, where m is the total number of
of motion fields, such that the reconstruction error∑

i

[I(i)− I ′(M(l(i), i))]2

is minimized. Here M(p, q) returns the position of
pixel q under the influence of the motion field p.

A näıve approach to solving this problem is to use a
greedy algorithm that assigns each pixel the motion
field for which it has the least reconstruction error,
i.e.,

l(i) = argmin
1≤p≤m

[I(i)− I ′(M(p, i))]2 (1)

The biggest disadvantage of this method as can be
seen in Figure 4 is that for flat regions it can produce
unstable labellings, in that neighboring pixels that
have the same brightness and are part of the same
moving object can get assigned to different warps.
What we would like instead is to have a labelling that
is piecewise constant with the occasional discontinu-
ity to account for genuine changes in motion fields.

Figure 4: Example of näıve pixel assignment as in
Equation 1 for the second motion layer in Figure 6.
Notice there are many pixels that are erratically as-
signed. This is why smoothing is needed.

The most common way this problem is solved (see
e.g. [47]) is by imposing a smoothness prior over the
set of solutions, i.e., an ordering that prefers piece-
wise constant labellings over highly unstable ones. It
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is important that the prior be sensitive to true dis-
continuites present in the image. In [6], for exam-
ple, Boykov, Veksler and Zabih have shown that dis-
continuity preserving smoothing can be performed by
adding a penalty of the following form to the objec-
tive function ∑

i

∑
j∈N (i)

sij [1− δl(i)l(j)]

where δ·· is the Kronecker delta, equal to 1 when its
arguments are equal. Given a measure of similarity
sij between pixels i and j, it penalizes pixel pairs
that have been assigned different labels. The penalty
should only be applicable for pixels that are near each
other. Hence the second sum is over a fixed neighbor-
hood N (i). The final objective function we minimize
is∑

i

[I(i)−I ′(M(l(i), i))]2 +λ
∑

i

∑
j∈N (i)

sij [1−δl(i)l(j)]

where λ is the tradeoff between the data and the
smoothness prior.

An optimization problem of this form is known as
a Generalized Potts model which in turn is special
case of a class of problems known as metric labelling
problems. Kleinberg & Tardos demonstrate that the
metric labelling problems corresponds to finding the
maximum a posteriori labelling of a class of Markov
random field [24]. The problem is known to be NP-
complete, and the best one can hope for in polynomial
time is an approximation.

Recently Boykov, Veksler and Zabih (BVZ) have de-
veloped a polynomial time algorithm that finds a so-
lution with error at most two times that of the op-
timal solution [7]. Each iteration of the algorithm
constructs a graph and finds a new labelling of the
pixels corresponding to the minimum cut partition in
the graph. The algorithm is deterministic and guar-
anteed to terminate in O(m) iterations.

Besides the motion fields and the image pair, the al-
gorithm takes as input a similarity measure sij be-
tween every pair of pixels i, j within a fixed distance
of one another and two parameters, k the size of the
neighborhood around each pixel, and λ the tradeoff
between the data and the smoothness term. We use a
Gaussian weighted measure of the squared difference
between the intensities of pixels i and j,

sij = exp
[
−d(i, j)2

2k2
− (I(i)− I(j))2

]

where d(i, j) is the distance between pixel i and pixel
j.

We run the BVZ algorithm twice, once to assign the
pixels in the image I to the forward motion field and
again to assign the pixels in image I ′ to the inverse
motion fields relating I ′ and I. If a point in the scene
occurs in both frames, we expect that its position and
appearance will be related as:

M(l(p), p) = p′

M(l′(p′), p′) = p

I(M(l(p), p)) = I ′(p)

Here, the unprimed symbols refer to image I and the
primed symbols refer to image I ′. Assuming that the
appearance of the object remains the same across the
images, the final assignment is obtained by intersect-
ing the forward and backward assignments.

In this simple intersection step, occluded pixels are
removed from further consideration. By reasoning
about occlusion ordering constraints over more than
than two frames, one can retain and explicitly label
occluded pixels in the output segmentation; see for
example the recent work of Xiao and Shah [51].

1. Detect interest points in I
2. Perturb each interest point

3. Find the matching points in I′

4. For i = 1:Ns

Pick tuples of correspondences
Estimate the warp
Store inlier count

5. Prune the list of warps
6. Refine each warp using its inliers
7. Perform dense pixel assignment

Figure 5: Algorithm Summary

4 Experimental Results

We now illustrate our algorithm, which is summa-
rized in Figure 5, on several pairs of images con-
taining objects undergoing independent motions. We
performed all of the experiments on grayscale images
with the same parameters1.

Our first example is shown in Figure 6. In this fig-
ure we show the two images, I and I ′, and the as-
signments for each pixel to a motion layer (one of the
three detected motion fields). The rows represent the

1Ns = 104, nt = 300, rp = 2, rc = 25, τ = 10, k = 2, λ =
.285. Image brightnesses are in the range [0, 1].
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Figure 6: Notting Hill sequence. (Row 1) Original
image pair of size 311 × 552, (Rows 2-4) Pixels as-
signed to warp layers 1-3 in I and I ′.

Figure 7: Fish sequence. (Row 1) Original image pair
of size 162× 319, (Rows 2-4) Pixels assigned to warp
layers 1-3 in I and I ′.

different motion fields and the columns represent the
portions of each image that are assigned to a given
motion layer. The motions are made explicit in that
the pixel support from frame to frame is related ex-
actly by a planar homography. Notice that the por-
tions of the background and the dumpsters that were
visible in both frames were segmented correctly, as
was the man. This example shows that in the pres-
ence of occlusion and when visual correspondence is
difficult (i.e. matching the dumpsters correctly), our
method provides good segmentation. Another thing
to note is that the motion of the man is only approx-
imately planar.

Figure 7 shows a scene consisting of two fish swim-
ming past a fairly complicated reef scene. The seg-

mentation is shown as in Figure 6 and we see that
three motions were detected, one for the background
and one for each of the two fish. In this scene, the
fish are small, feature-impoverished objects in front
of a large feature-rich background, thus making the
identification of the motion of the fish difficult. In
fact, when this example was run without using the
perturbed interest points, we were unable to recover
the motion of either of the fish.

Figure 8: Flower Garden sequence. (Row 1) Origi-
nal image pair of size 240 × 360, (Rows 2-4) Pixels
assigned to warp layers 1-3 in I and I ′.

Figure 8 shows two frames from a sequence that
has been a benchmark for motion segmentation ap-
proaches for some time. Previously, only optical flow-
based techniques were able to get good motion seg-
mentation results for this scene, however producing a
segmentation of the motion between the two frames
shown (1 and 30) would require using all (or at least
most) of the intermediate frames. Here the only in-
put to the system was the frame pair shown in Row 1.
Notice that the portions of the house and the garden
that were visible in both frames were segmented ac-
curately as was the tree. This example shows the dis-
criminative power of our filterbank as we were unable
to detect the motion field correctly using correspon-
dences found using the standard technique of nor-
malized cross correlation. In addition, this example
demonstrates the importance of the perturbed inter-
est points and the sampling based on feature crowd-
edness as the correct motions were not detected when
either of the two techniques were not used.
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In Figure 9, a moving car passes behind a tree as the
camera pans. Here, only two motion layers were re-
covered and they correspond to the static background
and to the car. Since a camera rotating around its
optical center produces no parallax for a static scene,
the tree is in the same motion layer as the fence in the
background, whereas the motion of the car requires
its own layer. The slight rotation in depth of the car
does not present a problem here.

Figure 9: VW sequence. (Row 1) Original image pair
of size 240× 320, (Rows 2-3) Pixels assigned to warp
layers 1-2 in I and I ′.

5 Extension to Non-planar mo-
tion

Consider the image pairs illustrated in Figure 10.
These have a significant component of planar motion
but exhibit residual with respect to a planar fit be-
cause of either the non-planarity of the object (e.g. a
cube) or the non-rigidity of the motion (e.g. a lizard).
These are scenes for which the motion can be approx-
imately described by a planar layer-based framework,
i.e. scenes that have “shallow structure” [31]. In or-
der to extend our approach to such scenes, we pro-
pose an additional stage consisting of a regularized
spline model for capturing finer scale variations on
top of an approximate planar fit. Our approach is
related in spirit to the deformotion concept in [34],
developed for the case of differential motion, which
separates overall motion (a finite dimensional group
action) from the more general deformation (a diffeo-
morphism).

It is important to remember that optical flow does
not model the 3D motion of objects, but rather the
changes in the image that result from this motion.
Without the assumption of a rigid object, it is very
difficult to estimate the 3D structure and motion of
an object from observed change in the image, though
there is recent work that attempts to do this [8, 9, 41,
42, 43, 44, 50]. For this reason, we choose to do all
estimation in the image plane (i.e. we use 2D models),
but we show that if the object is assumed to be rigid,
the correspondences estimated can be used to recover
the dense structure and 3D motion.

5.1 Our Approach for Non-planar
Motion

When the scene contains objects undergoing signifi-
cant 3D motion or deformation, the optical flow can-
not be described by any single low dimensional image
plane transformation (e.g., affine or homography).
However, to keep the problem tractable we need a
compact representation of these transformations; we
propose the use of thin plate splines for this purpose.
A single spline is not sufficient for representing mul-
tiple independent motions, especially when the mo-
tion vectors intersect [47]. Therefore we represent the
optical flow between two frames as a set of disjoint
splines. By disjoint we mean that the support of the
splines are disjoint subsets of the image plane. The
task of fitting a mixture of splines naturally decom-
poses into two subtasks: motion segmentation and
spline fitting.

Ideally we would like to do both of these tasks si-
multaneously, however these tasks have conflicting
goals. The task of motion segmentation requires us
to identify groups of pixels whose motion can be de-
scribed by a smooth transformation. Smoothness im-
plies that each motion segment has the the same gross
motion, however, except for the rare case in which the
entire layer has exactly the same motion everywhere,
there will be local variations. Hence the motion seg-
mentation algorithm should be sensitive to inter-layer
motion and insensitive to intra-layer variations. On
the other hand, fitting a spline to each motion field
requires attention to all the local variations. This is
an example of different tradeoffs between bias and
variance in the two stages of the algorithm. In the
first stage we would like to exert a high bias and use
models with a high amount of stiffness and insensi-
tivity to local variations, whereas in the second stage
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Figure 10: Non-planarity vs. non-rigidity: The left image pair shows a non-planar object undergoing 3D rigid
motion; the right pair shows an approximately planar object undergoing non-rigid motion. Both examples
result in residual with respect to a 2D planar fit.

we would like to use a more flexible model with a low
bias.

We begin with the motion segmentation procedure
of Section 3. The output of this stage, while suffi-
cient to achieve a good segmentation, is not sufficient
to recover the optical flow accurately. However, it
serves two important purposes: firstly it provides an
approximate segmentation of the sparse correspon-
dences that allows for coherent groups to be processed
separately. This is crucial for the second stage of the
algorithm as a flexible model will likely find an un-
wieldy compromise between distinct moving groups
as well as outliers. Secondly, since the assignment is
dense, it is possible to find matches for points that
were initially mismatched by limiting the correspon-
dence search space to points in the same motion layer.
The second stage then bootstraps off of these esti-
mates of motion and layer support to iteratively fit
a thin plate spline to account for non-planarity or
non-rigidity in the motion. Figure 11 illustrates this
process.

However, since splines form a family of universal ap-
proximators over R2 and can represent any 2D trans-
formation to any desired degree of accuracy, it raises
the question as to why one needs to use two differ-
ent motion models in the two stages of the algorithm.
If one were to use the affine transform as the dom-
inant motion model, splines with an infinite or very
large degree of regularization can indeed be used in
its place. However, in the case where the dominant
planar motion is not captured by an affine transform
and we need to use a homography, it is not practical
to use a spline. This is so because the set of ho-
mographies over any connected region of R2 are un-
bounded, and can in principal require a spline with
an unbounded number of knots to represent an ar-
bitrary homography. So while a homography can be
estimated using a set of four correspondences, the
corresponding spline approximation can, in principle,
require an arbitrarily large number of control points.

This poses a serious problem for robust estimation
procedures like RANSAC since the probability of hit-
ting the correct model decreases exponentially with
increasing degrees of freedom.

Many previous approaches for capturing long range
motion are based on the fundamental matrix. How-
ever, since the fundamental matrix maps points to
lines, translations in a single direction with varying
velocity and sign are completely indistinguishable, as
pointed out, e.g. by [40]. This type of motion is ob-
served frequently in motion sequences. The trifocal
tensor does not have this problem; however, like the
fundamental matrix, it is only applicable for scenes
with rigid motion and there is not yet a published so-
lution for dense stereo correspondence in the presence
of multiple motions.

We now describe the refinement stage of the algo-
rithm in detail.

5.1.1 Refining the Fit with a Flexible Model

The flexible fit is an iterative process using regular-
ized radial basis functions, in this case Thin Plate
Spline (TPS). The spline interpolates the correspon-
dences to result in a dense optical flow field. This
process is run on a per-motion layer basis.

Feature extraction and matching During the pla-
nar motion estimation stage, only a gross estimate
of the motion is required so a sparse set of feature
points will suffice. In the final fit however, we would
like to use as many correspondences as possible to
ensure a good fit. In addition, since the correspon-
dence search space is reduced (i.e. matches are only
considered between pixels assigned to corresponding
motion layers), matching becomes somewhat simpler.
For this reason, we use the Canny edge detector to
find the set of edge points in each of the frames and
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Figure 11: Determining Long Range Optical Flow. The goal is to provide dense optical flow from the first
frame (1), to the second (4). This is done via a planar fit (2) followed by a flexible fit (3).

estimate correspondences in the same manner as in
Section 3.

Iterated TPS fitting Given the approximate planar
homography and the set of correspondences between
edge pixels, we would like to find the dense set of
correspondences. If all of the correspondences were
correct, we could jump straight to a smoothed spline
fit to obtain dense (interpolated) correspondences for
the whole region. However, we must account for the
fact that many of the correspondences are incorrect.
As such, the purpose of the iterative matching is es-
sentially to distinguish inliers from outliers, that is,
we would like to identify sets of points that exhibit
coherence in their correspondences.

One of the assumptions that we make about the
scenes we wish to consider is that the motion of the
scene can be approximated by a set of planar layers.
Therefore a good initial set of inliers are those cor-
respondences that are roughly approximated by the
estimated homography. From this set, we use TPS
regression with increasingly tighter inlier thresholds
to identify the final set of inliers, for which a final fit
is used to interpolate the dense optical flow. We now
briefly describe this process.

Thin Plate splines are a family of approximating
splines defined over Rd. The theory for Thin Plate
Splines was first developed by Duchon [14, 15] and
subsequently by Meinguet [27]. Our presentation
here follows follows Wahba [45].

Our task here is to construct smoothly varying func-
tions that map pixel positions in one image to pixel
positions in another. We use two splines, one each for
the x and y mappings. Let {(x1, y1), . . . , (xn, yn)} be
the positions of the points in the first image. Let the
target for the first spline be given by vi and let f
denote the transformation that we are trying to esti-
mate. In two dimensions the smoothness penalty for

Thin Plate Splines is given by

J2 =
∫∫

R2
(f2

xx + 2f2
xy + f2

yy)dxdy

J2 is also known as the bending energy. The mini-
mization is performed over the space of functions χ
whose partial derivatives of total order 2 are in L(R2),
i.e., the integral of square of every partial derivative
of order 2 over R2 is bounded. Meinguet [27] provides
a detailed description of this space. The functional
J2(f) defines a semi-norm over χ.

The smoothing thin-plate spline is then defined to be
the solution to the following variational problem:

arg min
f∈χ

[
1
n

n∑
i

(vi − f(xi, yi))2 + µ

∫∫
R2

(f2
xx + 2f2

xy + f2
yy)dxdy

]
(2)

where the scalar µ is the tradeoff between fitting the
target values vi and the smoothness of the function
f .

The null space of the penalty functional is a three
dimensional space consisting of polynomials of degree
less than or equal to one, i.e., the space of all functions
spanned by the basis functions

φ1(x, y) = 1, φ2(x, y) = x, φ3(x, y) = y

ax + by + c, a, b, c ∈ R

Duchon [14] showed that if the points
{(x1, y1), . . . , (xn, yn)} are such that the least
squares regression on φ1, φ2, φ3 is unique then the
variational problem above has a unique solution fµ

and is given by

fµ(x, y) =
n∑
i

wiGi(x, y) + ax + by + c (3)
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Here G(x, y) is the Green’s function to the twice iter-
ated Laplacian. It is also known as the fundamental
solution to the bi-harmonic equation

∆2G = 0

where,

Gi(r) = r2 log r, r2 = (x− xi)2 + (y − yi)2

Thus the calculation of the spline fit requires the es-
timation of the parameters wi and a, b, c.

Now let K be an n× n matrix with entries given by

Kij = Gi(xj , yj)

and let T be a n× 3 matrix with rows given by

Ti = [ xi yi 1 ].

Also let d be the 3-vector

d = [ a b c ]>.

Then it can be shown that the optimal value for the
coefficient vector w = [wi] is given by the solution to
the matrix equations [45, 30, 5]

(K + nµI)w + Td = 0 (4)

T>w = 0 (5)

This is a simple linear system that can be solved using
matrix inversion. For the case of µ = 0 we obtain the
interpolating Thin Plate Spine.

The complexity of matrix inversion scales as O(n3)
in the number of rows. Thus as the number of points
that we are fitting to goes up it is not practical to use
these methods on the full dataset. In our experiments
we take a naive subsampling based approach. Out of
the 1200 points that we are required to fit to, we ran-
domly subsampled 500 points and used them as the
landmarks for the spline fitting procedure. We ob-
serve that this simple approach works well in practice.
A number of researchers have explored more sophis-
ticated and computationally attractive approaches to
the problem [19, 33, 47, 13]. Any of these can be used
as a replacement for our spline estimation procedure.

We estimate the TPS mapping from the points in the
first frame to those in the second where µt is the reg-
ularization factor for iteration t. The fit is estimated

using the set of correspondences that are deemed in-
liers for the current transformation, where τt is the
threshold for the tth iteration. After the transforma-
tion is estimated, it is applied to the entire edge set
and the set of correspondences is again processed for
inliers, using the new locations of the points for error
computation. This means that some correspondences
that were outliers before may be pulled into the set of
inliers and vice versa. The iteration continues on this
new set of inliers where τt+1 ≤ τt and µt+1 ≤ µt. We
have found that three iterations of this TPS regres-
sion with incrementally decreasing regularization and
corresponding outlier thresholds suffices for a large
set of real world examples. Additional iterations pro-
duced no change in the estimated set of inlier corre-
spondences.

This simultaneous tightening of the pruning thresh-
old and annealing of the regularization factor aid in
differentiating between residual due to localization
error or mismatching and residual due to the non-
planarity of the object in motion. When the pruning
threshold is loose, it is likely that there will be some
incorrect correspondences that will pass the thresh-
old. This means that the spline should be stiff enough
to avoid the adverse effect of these mismatches. How-
ever, as the mapping converges we place higher con-
fidence in the set of correspondences passing the
tighter thresholds. This process is similar in spirit to
iterative deformable shape matching methods [2, 10].

I. Estimate planar motion
1. Find correspondences between I and I′

2. Robustly estimate the motion fields
3. Densely assign pixels to motion layers

II. Refine the fit with a flexible model
4. Match edge pixels between I and I′

5. For t=1:3
6. Fit all correspondences within τt

using TPS regularized by µt

7. Apply TPS to set of correspondences
Note: (τt+1 ≤ τt, µt+1 ≤ µt)

Figure 12: Algorithm Summary

5.2 Experimental Results

We now illustrate our algorithm, which is summa-
rized in Figure 12, on several pairs of images contain-
ing objects undergoing significant, non-planar mo-
tion. Since the motion is large, displaying the optical
flow as a vector field will result in a very confusing
figure. Because of this, we show the quality of the op-
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Figure 13: Face Sequence. (Row 1) The two input im-
ages, I and I ′ of size 240 × 320. (Row 2) The difference
image is show first where grey regions indicate zero error
regions and the reconstruction, T (I) is second. (Row 3)
The initial segmentation found via planar motion.

tical flow in other ways, including (1) examining the
image and corresponding reconstruction error that re-
sult from the application of the estimated transform
to the original image (we refer to this transformed
image as T (I)), (2) showing intermediate views (as
in [32]), or by (3) showing the 3D reconstruction in-
duced by the set of dense correspondences. Examples
are presented that exhibit either non-planarity, non-
rigidity or a combination of the two. We show that
our algorithm is capable of providing optical flow for
pairs of images that are beyond the scope of existing
algorithms. We performed all of the experiments on
grayscale images using the same parameters2.

Face Sequence The first example is shown in Fig-
ures 13 and 14. The top row of Figure 13 shows the
two input frames, I and I ′, in which a man moves
his head to the left in front of a static scene (the
nose moves more than 10% of the image width). The
second row shows first the difference image between
T (I) and I ′ where error values are on the interval [-
1,1] and gray regions indicate areas of zero error. This
image is followed by T (I); this image has two esti-
mated transformations, one for the face and another
for the background. Notice that error in the overlap

2k = 2, λ = .285, τp = 15, µ1 = 50, µ2 = 20, µ3 = 1, τ1 =
15, τ2 = 10, τ3 = 5. Here, k, λ, and τp refer to parameters in
Section 3.

of the faces is very small, which means that accord-
ing to reconstruction error, the estimated transfor-
mation successfully fits the relation between the two
frames. This transformation is non-trivial as seen in
the change in the nose and lips as well as a shift in
gaze seen in the eyes, however all of this is captured
by the estimated optical flow. The final row in Figure
13 shows the segmentation and planar approximation
from Section 3, where the planar transformation is
made explicit as the regions’ pixel supports are re-
lated exactly by a planar homography. Dense corre-

Figure 14: Face Sequence – Interpolated views. (Row 1)
Original frame I ′, synthesized intermediate frame, origi-
nal frame I, (Row 2) A surface approximation from com-
puted dense correspondences.

spondences allow for the estimation of intermediate
views via interpolation as in [32]. Figure 14 shows the
two original views of the segment associated with the
face as well as a synthesized intermediate view that
is realistic in appearance. The second row of this fig-
ure shows an estimation of relative depth that comes
from the disparity along the rectified horizontal axis.
Notice the shape of the nose and lips as well as the
relation of the eyes to the nose and forehead. It is
important to remember that no information specific
to human faces was provided to the algorithm for this
optical flow estimation.

Notting Hill Sequence The next example shows
how the spline can also refine what is already a close
approximation via planar models. Figure 15 shows a
close up of the planar error image, the reconstruction
error and finally the warped grid for the scene that
was shown in Figure 6. The planar approximation
was not able to capture the 3D nature of the clothing
and the non-rigid motion of the head with respect to
the torso, however the spline fit captures these things
accurately.
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Figure 16: Gecko Sequence. (Row 1) Original frame I of size 102 × 236, synthesized intermediate view,
original frame I ′. (Row 2) T (I), Difference image between the above image and I ′ (gray is zero error),
Difference image for the planar fit.

Figure 15: Notting Hill. Detail of the spline fit for a
layer from Figure 6, difference image for the planar fit,
difference image for the spline fit, grid transformation.

Gecko Sequence The second example, shown in
Figure 16, displays a combination of a non-planar
object (a gecko lizard), undergoing non-rigid motion.
While this is a single object sequence, it shows the
flexibility of our method to handle complicated mo-
tions. In Figure 16(1), the two original frames are
shown as well as a synthesized intermediate view
(here, intermediate refers to time rather than view-
ing direction since we are dealing with non-rigid mo-
tion) . The synthesized image is a reasonable guess at
what the scene would look like midway between the
two input frames. Figure 16(2) shows T (I) as well as
the reconstruction error for the spline fit (T (I)− I ′),
and the error incurred with the planar fit. We see
in the second row of Figure 16(2) that the tail, back
and head of the gecko are aligned very well and those
areas have negligible error. When we compare the
reconstruction error to the error induced by a pla-
nar fit, we see that the motion of the gecko is not
well approximated by a rigid plane. Here, there is
also some 3D motion present in that the head of the
lizard changes in both direction and elevation. This
is captured by the estimated optical flow.

Figure 17: Rubik’s Cube. (Row 1) Original image pair
of size 300 × 400, (Row 2) assignments of each image to
layers 1 and 2.

Rubik’s Cube The next example shows a scene with
rigid motion of a non-planar object. Figure 17 dis-
plays a Rubik’s cube and user’s manual switching
places as the cube rotates in 3D. Below the frames,
we see the segmentation that is a result of the pla-
nar approximation. As can be seen the segmentation
contains large chunks of the background along with
the Rubik’s Cube. While it is indeed desirable that
the only pixels that we segment are those belonging
to the Rubik’s Cube, we must note that the back-
ground lacks any distinguishing features making its
motion truly ambiguous. Hence without additional
knowledge about the objects in the scene, any prior
that we place on the scene while segmenting it will be
the cause of some mistakes. In our MRF-based seg-
mentation scheme we make the assumption that the
layers are spatially contiguous, this coupled with the
motion ambiguity mentioned earlier results in some
portion of the background being interpreted as be-
longing to the same layer as the Rubik’s cube. Figure
18 shows T (I), the result of the spline fit applied to
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this same scene. The first row shows a detail of the
two original views of the Rubik’s cube as well as a
synthesized intermediate view. Notice that the rota-
tion in 3D is accurately captured and demonstrated
in this intermediate view. The second row shows the
reconstruction errors, first for the planar fit and then
for the spline fit, followed by T (I). Notice how ac-
curate the correspondence is since the spline applied
to the first image is almost identical to the second
frame.

Correspondences between portions of two frames that
are assumed to be projections of rigid objects in mo-
tion allow for the recovery of the structure of the
object, at least up to a projective transformation. In
[37], the authors show a sparse point-set from a novel
viewpoint and compare it to a real image from the
same viewpoint to show the accuracy of the struc-
ture. Figure 18 shows a similar result, however since
our correspondences are dense, we can actually render
the novel view that validates our structure estima-
tion. The novel viewpoint is well above the observed
viewpoints, yet the rendering as well as the displayed
structure is fairly accurate. Note that only the set of
points that were identified as edges in I are shown;
this is not the result of simple edge detection on the
rendered view. We use this display convention be-
cause the entire point-set is too dense to allow the
perception of structure from a printed image. How-
ever, the rendered image shows that our estimated
structure was very dense. It is important to note
that the only assumption that we made about the ob-
ject is that it is a rigid, piecewise smooth object. To
achieve similar results from sparse correspondences
would require additional object knowledge, namely
that the object in question is a cube and has planar
faces. It is also important to point out that this is
not a standard stereo pair since the scene contains
multiple objects undergoing independent motion.

6 Applications

6.1 Automatic Object Removal

We demonstrate an application of our algorithm to
the problem of video object deletion in the spirit of
[22, 46]; see Figure 19. The idea of using motion
segmentation information to fill in occluded regions
is not new, however previous approaches require a
high frame rate to ensure that inter-frame disparities

clearpage
are small enough for differential optical flow to work
properly. Here the interframe disparities are as much
as a third of the image width.

6.2 Structure From Periodic Motion

The periodicity of moving objects such as pedestrians
has been widely recognized as a cue for salient object
detection in the context of tracking and surveillance,
see for example [11, 26]. In addition, it can be used
for 3D reconstruction. The key idea is very simple.
Given a monocular video sequence of a periodic mov-
ing object, any set of period-separated frames repre-
sents a collection of snapshots of a particular pose of
the moving object from a variety of viewpoints. This
is illustrated in Figure 20. Thus each complete pe-
riod in time yields one view of each pose assumed by
the moving object, and by finding correspondences
in frames across neighboring periods in time, one
can apply standard techniques of multiview geome-
try, with the caveat that in practice such periodicity
is only approximate.

One consequence of this matching between phase-
separated frames is that the motion of the object
between the two frames can be quite large. This is
where we can apply our motion segmentation tech-
nique to segment out the object in question before
attempting the reconstruction. In Figure 21, we show
the results from the segmentation for two frames.

Figure 22(c) shows the sparse 3D structure recovered
for the To-separated frames of a walking person shown
in Figure 22(a,b). To get this reconstruction, we esti-
mated the epipolar geometry between the two frames,
performed bundle adjustment to improve the estima-
tion and computed depth as described in [20]. A de-
tail of the head and left shoulder region is shown in
Figure 22(d) from a viewpoint behind the person and
slightly to the left. Here we can see that the qualita-
tive shape of the head relative to the sleeve region is
reasonable.

The set of points used here consists of (i) the Förstner
interest points used to estimate the fundamental ma-
trix and (ii) the neighboring Canny edges with cor-
respondences consistent with the epipolar geometry.
Many points appear around the creases in the cloth-
ing, but this leaves several blank patches around the
lower shirt and the arm.
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Figure 18: Rubik’s Cube – Detail. (Row 1) Original frame I, synthesized intermediate frame, original frame
I ′, A synthesized novel view, (Row 2) difference image for the planar fit, difference image for the spline fit,
T (I), the estimated structure shown for the edge points of I. We used dense 3D structure to produce the
novel view.

Figure 19: Illustration of video object deletion. (1) Original frames of size 180 × 240. (2) Segmented layer
corresponding to the motion of the hand. (3) Reconstruction without the hand layer using the recovered
motion of the keyboard. Note that no additional frames beyond the three shown were used as input.

7 Discussion

In this paper we have presented a new method for
performing dense motion segmentation and estima-

tion in the presence of large inter-frame motion.

Like any system, our system is limited by the assump-
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Figure 20: Illustration of periodic motion for a walking person. Equally spaced frames from one second of
footage are shown. The pose of the person is approximately the same in the first and last frames, but the
position relative to the camera is different. Thus this pair of frames can be treated approximately as a stereo
pair for purposes of 3D structure estimation. Note that while the folds in the clothing change over time,
their temporal periodicity makes them rich features for correspondence recovery across periods.

(a) (b)

Figure 21: (a,b) Segmentation of Region of Interest for To-separated input frames.

tions it makes. We make three assumptions about the
scenes:

1. Identifiability

2. Constant appearance

3. Dominant planar motion.

A system is identifiable if its internal parameters can
be estimated given the data. In the case of motion
segmentation it implies that given a pair of images

it is possible to recover the underlying motion. The
minimal requirement under our chosen motion model
is that each object present in the two scenes should
be uniquely identifiable. Consider Figure 23; in this
display, several motions can relate the two frames,
and unless we make additional assumptions about
the underlying problem, it is ill posed. Similarly
in some of the examples we can see that while the
segments closely match the individual objects in the
scene, some of the background bleeds into each layer.
Motion is just one of several cues used by the human
vision system in perceptual grouping and we cannot
expect a system based purely on the cues of motion
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Figure 22: (a,b) To-separated input frames. (c) Estimated 3D structure for interest points. Here the
viewpoint is diagonally behind the person and we can see the relative depths of the legs and arm as well as
the head. (d) Detailed view of head and shoulder region viewed from behind the person which shows the
outline of the hair, neck and shirt-sleave.

and brightness to be able to do the job. Incorpora-
tion of the various Gestalt cues and priors on object

appearance will be the subject of future research.
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Figure 23: Ternus Display. The motion of the dots
is ambiguous; additional assumptions are needed to
recover their true motion.

Our second assumption is that the appearance of an
object across the two frames remains the same. While
we do not believe that this assumption can be done
away with completely, it can be relaxed. Our fea-
ture extraction, description, and matching is based
on a fixed set of filters. This gives us a limited de-
gree of rotation and scale invariance. We believe that
the matching stage of our algorithm can benefit from
the work on affine invariant feature point descrip-
tion [28] and feature matching algorithms based on
spatial propagation of good matches [25].

Our third assumption is that the individual motion
fields are predominantly planar. This is not a strict
requirement and is only needed insofar as we are able
to obtain the initial planar fits. The actual motion
estimate and segmentation is based on the more flex-
ible spline based model.

8. Conclusion

In this paper, we have presented a solution to the
problem of motion segmentation for the case of large
disparity motion and given experimental validation
of our method. We have also presented an exten-
sion to handle non-planar/non-rigid motion as well as
applications to automatic object deletion and struc-
ture from periodic motion. Our approach combines
the strengths of the feature-based approaches (i.e.,
no limits on the disparity between frames) and the
the direct, optical flow-based methods (i.e., provides
a dense segmentation and correspondences).
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