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Abstract

In this paper we present a completely automated algorithm for estimating the parameters

of the contrast transfer function (CTF) of a transmission electron microscope. The primary

contribution of this paper is the determination of the astigmatism prior to the estimation of

the CTF parameters. The CTF parameter estimation is then reduced to a 1D problem using

elliptical averaging. We have also implemented an automated method to calculate lower

and upper cutoff frequencies to eliminate regions of the power spectrum which perturb

the estimation of the CTF parameters. The algorithm is comprised of three optimization

subproblems, two of which are proven to be convex. Results of the CTF estimation method

are presented for images of carbon support films as well as for images of single particles

embedded in ice and suspended over holes in the support film. A MATLAB implementation

of the algorithm, called ACE, is freely available.
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1 Introduction

One of the most exciting challenges for biology today is in understanding the

molecular machinery of the cell as a working, dynamic system. The technique of

cryo electron microscopy (cryoEM) has a unique role to play in addressing this

challenge as it can provide structural information on large macromolecular com-

plexes in a variety of conformational and compositional states while preserved un-

der close to physiological conditions. Traditionally the methods for cryoEM have

been time consuming and labor intensive, involving data acquisition, analysis and

averaging of thousands to hundreds of thousands of images of the individual macro-

molecular complexes. Thus, over the last few years there has been considerable in-

terest and substantial efforts devoted to developing automated methods to improve

the ease of use and throughput of cryoEM ([1,2,3,4,5]).

A critical step in the processing and analysis of cryoEM images involves the esti-

mation of a variety of factors that modulate the image of the specimen and which

must be corrected in order to reconstruct the true object. Principal among these is

the contrast transfer function (CTF) of the microscope. The effect of the CTF is

to introduce spatial frequency dependent oscillations into the Fourier space repre-

sentation of the image. These effects can be readily observed using an image of an

amorphous carbon film where the power spectrum of the image exhibits a series

of concentric ripples called Thon rings [6] (see Fig. 1). The troughs in the trans-
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form represent frequency values where the CTF goes through zero and reverses

phase. The precise location of the zeroes in the CTF is determined by the defocus

and spherical aberration of the microscope (see review by Wade [7], for example)

whereas the overall shape of the pattern is determined by the amount of axial astig-

matism in the objective lens of the microscope. The ripples are circular when the

astigmatism is zero and progressively change to elliptical, parabolic and hyperbolic

patterns as the astigmatism is increased. Estimating the position of the zeroes in the

CTF and correcting the consequent phase reversals in the image is essential in in-

terpreting any image beyond a resolution corresponding to the first zero of the CTF.

A further modulation of the frequency of the Fourier components of the image

arises as a result of a variety of factors (finite electron source size, energy spread of

the beam, drift, etc.) whose combined effect is to reduce the signal at high resolution

and thus limit the overall resolution of the images. These combined effects can be

modeled using an envelope function. Finally, the image contains a noise component

which is normally estimated as an additive linear component.

The theory of contrast transfer in the electron microscope [8,9] provides a paramet-

ric form for the CTF, the envelope function and the background noise. Our objective

is thus to automatically recover these parameters, which can then be used to restore

the images. Given the necessity of correcting the CTF when attempting to recon-

struct structures to high resolutions, many solutions for estimating the parameters

of the CTF have been proposed, and several of these have been automated to some

degree. However, most of the proposed solutions for estimating the astigmatism in

the image are somewhat ad-hoc and for the most part the astigmatism is simply

assumed to be negligible. In our own method which we present in this paper we

have been focused on providing a completely automated solution that is compati-

ble with ongoing efforts to improve the overall automation and throughput of the
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entire process of cryoEM structural analysis. In order to account for astigmatism

we first estimate the elliptical shape of the CTF rings using edge detection methods

and then use elliptical averaging to improve the signal to noise ratio for the final

estimate of the CTF, the envelope function and the noise. The algorithm has been

implemented as a MATLAB routine and is freely avaiable.

2 Related Work

In this section we discuss prior work on automated CTF estimation. Early works on

Contrast Transfer Theory are attributed to Hanszen [10] and Thon [6]. CTF estima-

tion was initially performed manually. Initial automated work on CTF estimation

include work by Frank et al.[11] and Henderson et al.[12] who tried to estimate

all parameters of the CTF in one pass by minimizing an error function based on

the modulus of the Fourier Transform. The envelope function parameters were not

included in the fitting process. The drawback of such approaches was that they did

not take advantage of the rotational symmetry of the CTF in the absence of astig-

matism. Hence, the signal which was used for CTF estimation was extremely weak,

thus leading to unreliable estimates of the CTF parameters. Primarily because of the

low signal to noise ratio, the estimation of the envelope function was not feasible.

In the absence of the knowledge of the envelope function and the noise statistics,

Wiener filtering would not optimally restore the image.

Zhou et al. [13] averaged the power spectrum along concentric circles about the

origin (i.e rotational averaging). They estimated the background by interpolating

the values between local minima. Zhu et al. [14] used a similar approach but as-

sumed a Gaussian distribution for the background. Rotational averaging improved

the signal to noise ratio and hence improved the estimates of the CTF parameters.

The drawback of this approach was the assumption of no astigmatism.
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Tani et al. [15] pointed out that the rotationally averaged 1D estimate of the power

spectrum when re-sampled as a function of the square of the frequency (which they

referred to as the “q2 plot”) is periodic, assuming that the value of the spherical

aberration (Cs) is negligible. They filtered the Fourier transform of the “q2 plot”

to get rid of some of the noise. Astigmatism was calculated by dividing the image

into small sectors and rotational averaging was done inside each of the sectors.

In essence, the elliptical Thon rings were approximated by small circular arcs. As

pointed out by Tani et al. [15], averaging should ideally be done on points in the

power spectrum with the same CTF value. Our approach of elliptical averaging

achieves this goal.

In the last few years some new approaches were introduced. Fernández et al. [16]

used autoregressive (AR) modeling for estimating the power spectrum, while the

background noise was modeled as an exponential of a polynomial of the frequency.

Following the same line of work Valázquez-Muriel et al. [17] used autoregressive

moving averages (ARMA) to model the power spectrum. This series of work was

significant because for the first time, effort was put into the estimation of the power

spectrum before estimating the CTF parameters. However, their method of param-

eter adjustment is essentially an exhaustive search for parameters and does not pro-

vide any formal guarantees of convergence. Hence the program needs to run several

times to get to the actual solution. Secondly, while adjusting the defocus parame-

ter, astigmatism was assumed to be absent. Under such an assumption, rotational

averaging would give much better estimates of the defocus.

Sander et al. [18] used multivariate statistical analysis to group power spectra hav-

ing similar CTF parameters and used class averages to get an estimate of the power

spectrum. They used an iterative scheme to determine the parameters of the CTF.

This iterative scheme is in essense an exhaustive search for parameters which mini-
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mize the correlation between the theoretical and acutal CTF. The exhaustive search

is performed over a user defined region in the parameter space. It becomes compu-

tationally intensive if the user, chooses a large region. On the other hand, it becomes

inaccurate if the user chooses a small region. Even this exhaustive search does not

guarantee convergence to the global correlation maxima because for each step only

one parameter is being varied.

Mindell et al. [19] used a smoothed version of the 2D estimate of the power spec-

trum as an estimate of the background. They sought to maximize the cross-correlation

between a theoretical CTF and the background subtracted 2D estimate of the power

spectrum by doing a exhaustive search for the two defoci defining the CTF and the

angle of astigmatism. Such exhaustive search approaches are computationally very

intensive.

Huang et al. [20] reduced the problem of background and envelope estimation to a

constrained optimization problem. They solved the constrained optimization prob-

lem using the simplex algorithm of linear programming. They obtained an estimate

of the CTF by compensating the 1D profile of the estimated power spectrum for

the background and envelope functions. A lower and higher cutoff frequency to

exclude some parts of the power spectrum were also defined . Astigmatism was

calculated by dividing the image into small sectors (as many as 60) and rotationally

averaging in each sector as described by Tani et al. [15]. The method proposed by

Huang et al. [20] is both elegant and mathematically convincing and we have used

the idea of constrained optimization in our own implementation.

3 Theory

In this section we briefly describe the image formation equation based on the con-

trast transfer theory [8,9,21]. Under the linear model of contrast transfer in an elec-
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tron microscope the following assumptions are made

• The CTF (c) and the envelope function (e) are both spatially invariant.

• The noise (n) is independent and additive.

With the above assumptions the image formation equation can be written as

i(x, y) = c(x, y) ⊗ e(x, y) ⊗ f(x, y) + n(x, y) (1)

where (x, y) are the spatial domain variables. i, c, e, and n represent the image, the

CTF, the envelope function, and the noise in spatial domain respectively. f is the

projection of the particle being imaged and is called the structure factor. ⊗ refers

to the convolution operator.

Taking the Fourier transform on both sides of equation 1, we get the image forma-

tion equation in the frequency domain.

I(sx, sy) = C(sx, sy)E(sx, sy)F(sx, sy) + N (sx, sy) (2)

where (sx, sy) denote the frequency domain variables, while I, C, E , F and N

denote the image, the CTF, the envelope function, the structure factor and the noise

in frequency domain respectively.

In polar coordinates, Equation 2 can be rewritten as :

I(s, θ) = C(s, θ)E(s, θ)F(s, θ) + N (s, θ) (3)

where, s =
√

s2
x + s2

y and θ = arctan (sy/sx).

In the weak phase approximation, the following parametric form for the CTF was

proposed by Wade [7]

C(s, θ) =
√

1 − C2
a sin(γ(s, θ)) + Ca cos(γ(s, θ)) (4)
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The phase γ is given by

γ(s, θ) = 2π

(

−Csλ
3s4

4
+

z(θ)λs2

2

)

(5)

where, λ is the wavelength of electrons in the microscope, Cs is the spherical aber-

ration of the lens, and z is the defocus.

In the presence of astigmatism, the defocus is dependent on θ and is governed by

the following equation proposed by Henderson et al.[12]

z(θ) =
z2 + z1

2
+

z2 − z1

2
sin(2(θ − φ)) (6)

where, z1 and z2 are the minimum and maximum defoci respectively. φ is the angle

made by the major axis of the elliptical Thon rings with the x-axis.

The envelope function is a result of several phenomena such as the coherence

of the electron beam, the lens current instability, specimen drift etc. Models for

the envelope function have been proposed to account for the above phenomena

[13,22,23,24,25,26,27]. An approximation of the envelope function, called the “B-

factor” parametric form [26,27] is given by

E(s) = ek−Bs2

(7)

In recent published work [20], the“B-factor” parametric form was found to be in-

adequate in describing the envelope function. Our own experiments indicate that a

few additional parameters, as well as the “B-factor”, reasonably describe the enve-

lope function. We model the envelope function using the following empirical form

E(s) = e−(k1+k2

√
s+k3s+k4s2) (8)

One of the empirical parametric forms for the noise spectrum which encompasses a

wide range of different physical effects, including incoherent scattering, film noise
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and scanner noise [28], is given by

N 2(s) = e−(n1+n2

√
s+n3s+n4s2) (9)

Our experiments show that the noise spectrum in a large number of test images

fit the above noise model very accurately even for images recorded using a CCD

camera. Therefore, we chose to use the above noise model.

4 The Algorithm

As described above, there are 12 parameters which describe the power spectrum of

an image taken using a TEM; the two defoci (z1 and z2), the amplitude contrast Ca,

the astigmatism angle φ, the four parameters of the envelope function (k1, k2, k3

and k4) and the four parameters of the noise function (n1, n2, n3 and n4). Before

we proceed to estimate these parameters we do a re-parameterization. If we have

the knowledge of one of the defoci, say z2 , we can estimate the other defocus,

say z1, based on the knowledge of the ratio r of the major and minor axes of the

elliptical Thon rings. Hence, we can get rid of one parameter z1 and introduce a

new parameter r. The new set of parameters are r, φ, z2, Ca,k1, k2, k3, k4 n1, n2,

n3 and n4.

It is not practically feasible to set up this parameter estimation problem as a single

step optimization because of the large number of parameters. However, we can

estimate certain parameters without any knowledge of the others. We propose a

sequential algorithm in which a few parameters are calculated at each step. The

sequence of steps are as follows:

(1) Determination of astigmatism parameters (r, φ) and elliptical averaging : The

benefit of the new parameterization is that we can estimate the parameters r

and φ without any knowledge of the other parameters. Based on the estimated
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r and φ elliptical averaging of the power spectrum then averages all points at

same CTF phase (γ).

(2) Determination of a lower cutoff frequency (sl) : A lower cutoff frequency is

calculated to remove a region of the power spectrum which is dominated by

the structure factor.

(3) Determination of noise parameters (n1,n2, n3 and n4) : Having estimated r and

φ, the noise parameters are estimated independent of all remaining parameters.

(4) Determination of upper cutoff frequency (su) : The upper cutoff frequency

is determined based on the energy contained in the noise subtracted power

spectrum.

(5) Determination of envelope parameters (k1, k2, k3 and k4) : The envelope func-

tion parameters can then be calculated independent of the defocus (z2) and

amplitude contrast (Ca).

(6) Determination of CTF parameters (z1,z2 and Ca) : Finally z2 and Ca are cal-

culated. Based on the values of z2 and r, z1 can be calculated.

Below we describe each of these steps in detail.

4.1 Determination of astigmatism parameters

Astigmatism is an imaging artifact caused by misalignment of the microscope, es-

pecially the apertures [29]. The presence of astigmatism can be seen in different

ways. In the image it appears as the streaking in the graininess of the support film.

A hole in the support film of an astigmatic image appears to have both light and dark

fringes at its boundary. The effect is most easily observed in the power spectrum

of the image where the Thon rings are distorted. Fig. 2 illustrates power spectra

with increasing levels of astigmatism. In an image with little or no astigmatism,

the Thon rings are circular. The shape of the Thon rings changes from circular to
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elliptic to parabolic and finally to hyperbolic with increasing astigmatism.

From a purely mathematical standpoint, the rings (level sets of the power spectrum)

can be any conic section depending on the values of defoci z1 and z2.

z1 = z2 ⇒The conic is a circle. See Fig 2(a).

z1

z2

> 0 ⇒The conic is an ellipse. See Fig 2(b-d).

z1 = 0 or z2 = 0 ⇒The conic is a parabola. See Fig. 2(e).

z1

z2

< 0 ⇒The conic is an hyperbola. See Fig. 2(f).

We present a method for calculating astigmatism when the Thon rings are elliptical.

The images with parabolic or hyperbolic Thon rings are never used in practice

and should be automatically rejected by the algorithm. Automatic rejection of such

images is an important feature required for complete automation of CTF estimation.

In the absence of astigmatism, the Thon rings are circular. Hence, rotational aver-

aging of the power spectrum can be done, so that points with the same CTF phase γ

are averaged. Rotational averaging gives a 1D power spectrum which has a higher

signal to noise ratio than the 2D estimate of the power spectrum. This in turn leads

to better estimation of the noise, envelope and CTF parameters.

In the presence of astigmatism, the Thon rings are elliptical. If the parameters of

the family of the concentric ellipses could be estimated, averaging along ellipses

could improve signal to noise ratio. In previous approaches [13,14,15,20] elliptical

averaging was approximated by dividing the power spectrum into several sectors,

doing rotational averaging in the small sectors and estimating the defocus sepa-

rately for each sector. This procedure amounts to approximating the elliptical ring

with a number of circular arcs. If the number of sectors is chosen to be large, the
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approximation should be good. However, the number of points which are averaged

decreases and this leads to inferior estimates of defocus and other CTF parame-

ters. On the other hand, if the sectors are large, much of the elliptical boundary is

approximated using a single circular arc which leads to a bad approximation. This

was the primary criticism of using a 1D power spectrum instead of doing parameter

estimation on the 2D power spectrum. In our algorithm we estimate the parameters

of the family of ellipses first and then take an average along the elliptical boundary

to get a 1D power spectrum. In this algorithm, parameter estimation using a 1D

power spectrum should be superior to its 2D counterpart due to increased signal to

noise ratio.

The two parameters which define the family of elliptical Thon rings are

(1) r : The ratio of the major and minor axes of the Thon rings .

(2) φ : The angle which the major axis makes with the x-axis.

Our algorithm is motivated by the following observation. Near the origin, the Thon

rings are most prominent and the spacing between them is large. Far from the ori-

gin, the Thon rings start fading away and the spacing between them decreases dras-

tically. Higher frequency rings can be blurred out by convolving the power spec-

trum estimate with a 2D Gaussian filter of large width. The most prominent gradient

in the power spectrum is between the points where the power spectrum falls from

a very high value to it’s first minimum. Edge detection with a high threshold value

successfully recovers a single Thon ring. Edges are points that are local maxima

of the magnitude of the gradient (above a given threshold) along the direction of

the gradient. A higher value of threshold leads to lesser number of edge pixels. In

practice, we use the Canny edge detector [30] to detect the edges with a suitable

threshold. All edges very close to the center are removed because if the defocus is

12



very large, the first edge ring is very small and therefore not reliable for estimat-

ing r and φ. A typical result of the edge detection algorithm is shown in Fig. 3(a).

The location of the edge is different from the location of the first dark ring which

corresponds to a local minima of the power spectrum.

Following the edge detection we fit an ellipse to the detected edges. Any conic

section can be represented by the following parametric form

ax2 + bxy + cy2 + dx + ey = 1 (10)

The conic given by equations 10 is a hyperbola, parabola or an ellipse depending

on the following conditions

b2 − 4ac > 0 ⇒ The conic is a hyperbola

b2 − 4ac = 0 ⇒ The conic is a parabola

b2 − 4ac < 0 ⇒ The conic is an ellipse or a circle

One of the advantages of using this general conic parameterization is that we can

detect images with parabolic and hyperbolic Thon rings and reject them. Addition-

ally, if the conic exhibits reflection symmetry about the origin ( which means that if

a point (x1, y1) satisfies equation 10, then point (−x1,−y1) also satisfies Equation

10), then the equation of the conic reduces to

ax2 + bxy + cy2 = 1 (11)

A simple translation of the detected edge coordinates shifts the center of the ellipse

to the origin. Hence, we use equation 11 as the equation of our ellipse. Also note

that equation 11 is linear in parameters a, b and c, and so it is natural to consider

linear least squares estimation. However, a linear estimator which minimizes the
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least square error might not be the appropriate choice for estimating the parameters

because spurious edges (outliers) may be detected if the threshold of the Canny

edge detector is not chosen properly. See Fig. 4(a). One approach would be to filter

out these spurious edges based on connectivity and length of the edges. Our exper-

iments showed that such an approach was not robust enough. To deal with outliers

we use the robust estimation technique of Random Sample Consensus (RANSAC)

[31].

RANSAC, unlike least squares estimate, is robust to outliers. See Fig. 4 for an

illustration. A brief description of the RANSAC algorithm follows. Assume that

the minimum number of data points needed to estimate a parameter vector −→p is N

and there are M data points in all. RANSAC has the following steps:

(1) Randomly select N data points out of M data points.

(2) Estimate the parameter vector −→p using the N selected points. The estimation

procedure for this step can be any non-robust method.

(3) Find how many data points ( of M ) fit the model with parameter vector−→p

within a user defined tolerance. Call this K.

(4) If K is big enough, accept fit and exit with success.

(5) Repeat the above steps for a user defined number of times.

(6) Exit with failure.

For step 2 of RANSAC we use the linear least squares estimate. The astigmatic
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parameters (r, φ) can be calculated from the ellipse parameters a, b and c by

l1 =
a + c

2
− 1

2

√

(a − c)2 + b2

l2 =
a + c

2
+

1

2

√

(a − c)2 + b2

φ = arctan

(

2(l2 − a)

b

)

(12)

r =

√

l1
l2

(13)

Consider a power spectrum with elliptical Thon rings parameterized by r and φ. All

the points along an ellipse have the same CTF phase γ. Hence we can average all

points along an ellipse to generate a 1D power spectrum. The elliptically averaged

power spectrum is given by

I2(s) =
∫ 2π

0
I2(sx(θ), sy(θ))dθ

=
∫ 2π

0
I2(rs cos(θ − φ), s sin(θ − φ))dθ (14)

4.2 Determination of the lower cutoff frequency

At low frequency, the structure factor dominates the power spectrum. This region

of the power spectrum adversely affects the estimation accuracy of the CTF param-

eters. To filter out the effects of the structure factor, a lower cuttoff frequency needs

to be calculated. The power spectrum below this cutoff frequency is not used in the

estimation of the CTF parameters.

As mentioned earlier, the edge ring corresponds to the region of maximum gradient

in the power spectrum. The first dark Thon ring, contains this edge ring. The region

inside the first edge ring is dominated by the structure factor. The location (fre-

quency) of the local maxima of the 1D power spectrum which is closest to the edge
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location is used as the lower cutoff frequency. Fig. 5 shows a 1D power spectrum.

The first dotted line represents the lower cutoff frequency and we denote it by sl.

4.3 Determination of the noise parameters

The estimate of the power spectrum is elliptically averaged to get a 1D power spec-

trum. Using the cutoff frequency calculated in the previous section, the 1D power

spectrum corresponding to the lower frequency is removed. We denote this new 1D

power spectrum by P(s). Hence, using equation 3, assuming that the data is uncor-

related with background noise and that elliptical averaging has been completed, we

get

P(s) = C2(s)E2(s)F2(s) + N 2(s) (15)

P(s) can be sampled at frequencies s = [s1s2....sT ]>. In the frequency range under

consideration, if the frequency response due to structure is assumed to be white,

then Equation 15 reduces to the following equation

P(s) = C2(s)E2(s) + N 2(s) (16)

Let N̂ 2(s) denote an estimate of N 2(s) and has a parametric form given by Equa-

tion 9. Under the assumption that the noise spectrum N 2(s) changes slowly as

compared to the function C2(s) , the local minima of P(s) correspond to the zero

crossings of the CTF. At a zero crossing of the CTF, the function P(s) has con-

tribution from the noise spectrum only. To get an estimate of the noise spectrum

N 2(s), we fit a curveN̂ 2(s) to P(s) such that N̂ 2(s) is strictly less than P(s).

Formally, to calculate N̂ 2(s) we minimize the objective function given by

ON(n1, n2, n3, n4) = ‖ log(P(s)) − n1 − n2

√
s − n3s − n4s

2‖2 (17)
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under the constraints

log(P(s)) − n1 − n2

√
s − n3s − n4s

2 ≥ 0

(18)

In vector notation we can restate the above problem as

n̂ = arg min
n

‖An − b‖2 (19)

under the constraint

An − b ≥ 0 (20)

where,

A = [
1T×1

√
s s s

2 ] b = log(P(s)) n = [ n1 n2 n3 n4
]>

(1T×1 is a column vector of length T with all elements 1).

This constrained least squares problem reduces to the form of quadratic program-

ming given by

n̂ = arg min
n

(nT
Bn + c

T
n) (21)

where B = A
T
A and c = −2A

T
b under the constraint

An − b ≥ 0 (22)

The convexity of a quadratic programming problem depends on whether or not the

matrix B is positive semi definite. The matrix B is positive semi definite in the case

of a constrained least squares problem, and so the quadratic programming problem

is convex. Hence, it is guaranteed to converge to a global minima.

The constrained linear least squares problem is solved using an algorithm by Cole-

man and Li [32].

17



4.4 Determination of upper cutoff frequency

The upper cutoff frequency is determined based on the energy contained in the

signal. The energy contained in the power spectrum after removing the contribution

from the background noise and removing the region dominated by the structure

factor is given by

E =
sT
∑

s=sl

[

I2(s) −N 2(s)
]

(23)

where, sl is the lower cutoff frequency. We define an upper cutoff frequency (su),

so that 95% of the energy E is contained between sl and su. Formally,

su
∑

s=sl

[

I2(s) −N 2(s)
]

= 0.95
sT
∑

s=sl

[

I2(s) −N 2(s)
]

(24)

4.5 Determination of envelope function parameters

Several phenomena such as the coherence of the electron beam, the lens current

instability and specimen drift lead to an exponential decrease in signal strength with

frequency. The effects of all these phenomena are modeled using a single function

called the envelope function. As discussed earlier, we use the following empirical

form for the envelope function

Ê2(s) = e−(k1+k2

√
s+k3s+k4s

2) (25)

where, Ê2(s) represents an estimate of the envelope function. Let M(s) = P(s) −

N 2(s) denote the background subtracted power spectrum. The same approach that

was used to find parameters ofN̂ 2(s) can be used to find the parameters of Ê2(s)

with a minor modification. The curveÊ2(s) should be strictly greater than the func-

tion M(s). Hence, the objective function is given by

OE(k1, k2, k3, k4) = ‖ log(M(s)) − k1 − k2

√
s − k3s − k4s

2‖2 (26)
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under the constraint

log(M(s)) − k1 − k2

√
s − k3s − k4s

2 ≤ 0 (27)

The parameters k1, k2, k3 and k4 can be calculated in the same way as the parame-

ters n1, n2, n3 and n4.

4.6 Determination of the CTF parameters

In this section we discuss the method used to calculate the parameters of the CTF

namely the defocus z2 and the amplitude contrast Ca. An estimate of the CTF is be

given by

Ĉ2(s) =
P(s) − N̂ 2(s)

Ê2(s)
(28)

A straight forward method would be to calculate the parameters using any con-

strained non-linear optimization method which minimizes the objective function

Oz = ‖Ĉ2(s) − C(s, z2, Ca)‖2 (29)

under the constraint

z2 < 0 and 0 ≤ Ca ≤ 0.2 (30)

where, C(s, z2, Ca) is the theoretical CTF obtained by using the elliptically aver-

aged version of Equation 4. This problem has enough local mimima to prevent any

guarantee of convergence to the actual solution. However, if we provide the algo-

rithm with an initial guess which is sufficiently close to the solution, we can hope

for convergence. A reasonable initial guess for the the amplitude contrast is 0. We

use a simple but robust technique to calculate an initial estimate of the defocus as

an initial estimate for the constrained non-linear optimization algorithm. Ĉ2(s) is

smoothed using a moving average low pass filter and then the derivative is taken to

find local minima ofĈ2(s). Let, m1 ... mr be the r local minima. In an ideal situa-

tion, mi would correspond to the ith zero crossing of the CTF. However, we need
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to consider the possibility that some of the r minima could be spurious, and some

of the actual minima could have been missed. We therefore define a set of defoci

values zij given by

zij =
2j + Csλ

3m4
i

2λm2
i

(31)

where, zij is the defocus obtained by assuming that the ith minimum corresponds

to the jth zero crossing of the CTF. Let, C(s, zij) be the theoretical CTF obtained

with the defocus values zij using equation 4. The initial value of defocus ( say zinit

) is obtained by

zinit = arg min
zij

‖ ˆC(s)
2 − C2(s, zij)‖2 (32)

The zinit so obtained is close to the true defocus. However for greater accuracy,

we use this value as an initial condition for a constrained non-linear optimization

algorithm [33] which minimizes the objective function given by equation 29 and

under the constraint given by inequality 30.

5 Results

The algorithm described above was implemented in MATLAB, a high-level tech-

nical computing language and interactive environment for algorithm development,

data visualization, data analysis, and numerical computation. The program is called

ACE (Automated CTF Estimation) and requires the MATLAB image processing

and optimization toolboxes. The user can choose to turn astigmatism estimation on

or off. In the case when astigmatism estimation is turned off, circular rather than

elliptical averaging is performed. First, as a proof of concept, we show detailed re-

sults for each step of the algorithm using carbon support films. We next show the

accuracy of the algorithm on a set of images of carbon support films in which de-

focus has been systematically varied from 0.6µm under-focus to 6µm under-focus

in steps of 0.2µm. This experiment was designed to prove the accuracy of the al-
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gorithm up to a constant bias. Finally we show the practical utility of the algorithm

by testing it on images of particles embedded in ice and suspended over holes in

the carbon film.

5.1 Carbon support

The Thon rings are far more prominent in images of carbon support films than in

images containing only protein specimens embedded in vitreous ice [7]. Thus, as a

proof of concept, we first show detailed results of the performance of the algorithm

on images of carbon support films. We start with a demonstration of the ellipse

fitting algorithm. A typical result of the edge detection algorithm is shown in Fig.

3(a). To demonstrate the robustness of the algorithm toward outliers, we changed

the parameters of the Canny edge detector to force spurious edges to be detected

(Fig. 4(a)). A comparison of the least squares estimate and a RANSAC estimate,

shown in Fig. 4(b) and (c), illustrates that whereas the least squares estimate is

incorrect, RANSAC is able to reject the outliers to give the correct result. A typical

result of the estimates of the lower and upper cutoff frequencies is shown in Fig.

5. All subsequent results are shown in the frequency region between the upper and

lower cutoff frequency indicated by the dashed lines.

A typical result of the estimation of the lower and upper cutoff frequencies is shown

in Fig. 5. All subsequent results are shown in the frequency region between the

upper and lower cutoff frequency. A typical fit of noise spectrumN̂ 2(s) is shown

in Fig. 6(a). Notice that the noise spectrum passes through the local minima and

is strictly below the power spectrum. A typical fit of the square of the envelope

function Ê2(s) is shown in Fig. 6(b). The square of the envelope function passes

through the local maxima of the noise subtracted power spectrum and is strictly

above it. Fig. 6(c) shows an estimate of the square of the CTF (CTF2) found using
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Equation 28. The CTF2 corresponding to a crude estimate of the defocus value

is shown in Fig. 7(a) using a dashed curve. The crude estimate is obtained from

the local minima shown using red dots. Note that even with the crude estimate

of defocus, many of the low frequency minima of the theoretical and estimated

CTF2 are aligned. This estimate is close to the real solution. This crude estimate

is the initial value supplied to the non-linear constrained optimization algorithm

to refine the estimate of defocus and amplitude contrast. The dashed curve in Fig.

7(b) shows the CTF2 corresponding to refined estimates of defocus and amplitude

contrast. Notice that with the refined estimate of defocus and amplitude contrast, the

minima of the estimated and theoretical CTF2 are aligned more closely, especially

at higher frequencies. Finally we show a composite of the true power spectrum and

the estimated power spectrum in Fig. 8 for a 2D visualization of the estimated CTF.

5.2 Defocus series experiment

We designed a defocus series experiment to test the accuracy of the algorithm. The

defocus of the microscope was changed from 0.6 µm under-focus to 6 µm under-

focus in steps of 0.2 µm without changing the astigmatism. Corresponding to each

defocus setting an image of the carbon support film was recorded using a CCD

camera. The motivation for designing such an experiment is as follows.

First, the accuracy with which defocus can be measured, depends to an extent on

the value of defocus itself. For example, it is easier to estimate defocus in the far

from focus images as compared to near to focus images. Hence, the accuracy of an

algorithm should be tested on a wide range of defocus values.

Second, the microscope can set defocus increments very precisely, but the zero de-

focus, which is used as a reference to set defocus values, is difficult to set to a high
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degree of accuracy. In other words, the zero defocus contains a zero error which

introduces a bias in the defocus set by the microscope. Therefore, to test the accu-

racy of an algorithm, comparing the estimated defocus and the nominal defocus set

by the microscope is not appropriate. However, the difference between two defo-

cus values set by the microscope is independent of the zero error and is a suitable

quantity to assume as ground truth for testing the efficiency of the algorithm. Com-

paring the nominal and estimated change in defocus would prove the algorithm to

be correct up to a constant bias.

With the above considerations in mind, a large (and practical) defocus range of

0.6 µm under-focus to 6 µm under-focus was chosen with small increments of

0.2 µm. The defocus was estimated for each image. The mean of the difference

between successive defocus estimates was 0.2026 µm and the standard deviation

was 0.0165 µm. The plot of the calculated defocus versus the nominal defocus is

shown in Fig. 9. The solid line in Fig. 9 shows a straight line fit through the data.

The zero error, which is given by the y-axis offset, was found to be 0.085 µm. The

entire experiment was fully automatic.

5.3 GroEL embedded in ice

The algorithm was next tested using images of single particles of GroEL embed-

ded in vitreous ice and suspended over holes in the carbon support film. A typical

image is shown in Fig. 10. The 2D power spectrum of each image was obtained by

cropping out overlapping regions of the image and averaging their power spectra.

Fig. 11 shows the result of edge detection and ellipse fitting for the image in Fig.

10 and the subsequent further stages of the algorithm are depicted in Fig. 12. The

local minima in the CTF which are barely perceptible in Fig. 11, become much

more prominent after the elliptical averaging step. Fig 12 (e) shows the theoretical
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CTF2 based on the initial estimate of defocus. The mean squared error between the

theoretical CTF2 ( shown using dashed curve ) and the estimate of CTF2 ( shown

using solid curve ) was calculated to be 0.0494. The mean squared error reduces to

0.0409 when the refined estimates of defocus and amplitude constrast are used for

the calculation of the theoretical CTF2 ( Fig. 12 (f) ). A visual comparison of Fig.

12 (e) and (f) also shows that the CTF2 based on the refined estimate of defocus

and amplitude contrast fits the estimate of the CTF2 better.

The algorithm was applied to a total of 540 images of GroEL particles suspended

over holes. With astigmatism turned off, the algorithm produced correct estimates

(as verified by visual inspection of the fitted 1D power spectrum) of the CTF in

527 of the images ( 97.59% success rate). In 10 images ( 1.85% ) the calculated

parameters were incorrect and 3 images ( 0.56% ) could not be processed at all.

When the astigmatism estimation was turned on, 494 out of 540 images could be

processed correctly ( 91.48% success rate). The success rate was reduced because

the ellipse fitting algorithm failed as a result of there being more spurious edges

than real ones. In 46 images ( 7.96 % ), ACE calculated incorrect results while 3

images ( 0.56 % ) could not be processed at all.

6 Discussion

We have implemented an automated algorithm for estimating the parameters of

the CTF including the determination of astigmatism. The parameter estimation is

very accurate when applying the algorithm to images of carbon support films. The

problem becomes much more challenging when trying to estimate the CTF directly

from images of protein specimens embedded in vitreous ice and suspended over

holes in the carbon support film. One approach to this problem that has sometimes

been taken is to estimate the defocus of the specimen using a nearby image of the
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carbon support film. However, we can show that the assumption that the carbon

support film and the specimen in the nearby hole are at the same defocus is not

always valid. For example, in one particular experiment in which we measured

both the defocus of the specimen over the hole as well as from the carbon support

film outside of the hole we found that the differences can be as large as 0.5um.

These results are shown in Fig. 13

The calculation of astigmatism is very robust for carbon images. However, when

the two defoci are nearly the same ( i.e. r ≈ 1 ), the direction of the major axis is

arbitrary. This is as expected because when r ≈ 1, the Thon rings are circular. This

does not affect the 1D averaging because no matter what direction of major axis

is chosen, the value of r ≈ 1 will result in circular averaging. For ice-embedded

particle images, the accuracy of astigmatism estimation depends on the kind of par-

ticle being imaged. For small particles having a dense population in ice, like most

of the GroEL images described in the Results section above, the estimation can be

fairly reliable. However, for images with low densities of particles spurious edge

detection results in a failure of the astigmatism estimation. For particles which ex-

hibit strong internal symmetry, for example helical filaments like Tobacco Mosaic

Virus (TMV), the ordered arrangement of the subunits results in a series of strong

amplitudes in the power spectrum which interferes with the edge detection algo-

rithm. For these situations, a possible approach is to use the carbon images near the

location of the particles to estimate the astigmatism, as unlike defocus, this does

not depend on the location of the imaged object. Once the astigmatism parameters

have been estimated, the other parameters can be estimated directly from the par-

ticle images following elliptical averaging. This approach was used to estimate the

CTF for 95 images of TMV embedded in ice with 100% success rate (as judged by

visual inspection of the fitted CTF).
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Without the ability to accurately estimate the astigmatism of acquired images, it is

necessary to acquire images with the astigmatism set as close to zero as possible or

to reject images exhibiting any noticeable astigmatism. However, if the parameters

of astigmatism can be determined accurately, then Wiener filtering can in principle

restore astigmatic images as accurately as non-astigmatic images. Various people

have in the past raised the point that using astigmatic images for single particle re-

construction might be valuable in terms of avoiding resolution gaps resulting from

the zeroes in the CTF. However as far as we are aware these discussions have not

been published anywhere in the literature. This is perhaps an area for further inves-

tigation.

7 Conclusion

We have presented a completely automated method for the estimation of the CTF,

the envelope function and the noise spectrum parameters of an image taken us-

ing a TEM. The method incorporates a novel way of estmating astigmatism, and

reduces the problem of CTF estimation to a truly 1D estimation problem using el-

liptical averaging. The accuracy of the algorithm was demonstrated using images

of carbon support film as well as on large datasets of single particles embedded

in ice. A MATLAB implementation of the algorithm called ACE (Automated CTF

Estimation) is freely available at:

http://nramm.scripps.edu/software/ace
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9 Figure captions

(1) Fig. 1: The power spectrum of an image of carbon support film. Concentric

ripples called the Thon rings are due to the CTF.

(2) Fig. 2: Simulated power spectra with increasing astigmatism are shown. The

caption shows the two defocus values corresponding to the power spectrum.

The Thon rings can distort to an ellipse, a parabola or a hyperbola.

(3) Fig. 3: A typical result of edge detection and RANSAC estimation is shown.

In (b) the two double headed arrows represent the estimated length and orien-

tation of the major and minor axes.

(4) Fig. 4: In (a) result of a noisy edge detection is shown. In (b) and (c) the two

double headed arrows represent the estimated length and orientation of the

major and minor axes using least squares fit and RANSAC respectively. In (c)

the additional blue points represent the inliers picked by RANSAC.

(5) Fig. 5: Determination of lower and upper cutoff frequencies and the fitting of

noise spectrum and enevelope function. The solid blue curve represents the

elliptically averaged 1D power spectrum. The lower cutoff frequency and the

higher cutoff frequency are shown using dashed black vertical lines.The sum

of noise spectrum and envelope function is shown by the green dashed curve.

The noise spectrum is shown by a red dot-dash curve.

(6) Fig. 6: Estimation of the CTF2. In (a) the solid curve shows the part of the

power spectrum between the lower and upper cutoff frequency. The red dotted

curve shows the estimated noise spectrum. In (b) the background subtracted

1D profile of the estimated power spectrum is shown using the solid curve.

The estimated square of the envelope function is shown using the dashed green

curve. In (c) an estimate of the CTF2 is shown.

(7) Fig. 7: The result of defocus and amplitude contrast estimation is shown. The
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blue curve is an estimate of the CTF2 (Ĉ2(s)). The red dashed curve in (a)

is the theoretical CTF2 obtained using the crude defocus estimate. The crude

estimate of defocus is based on the local minima shown using red dots. In (b)

defocus and amplitude contrast estimates are refined. Notice the local minima

at higher frequencies are better aligned with the minima of the theoretical

CTF2 after refinement.

(8) Fig. 8: A composite of the estimated ( left ) and observed power spectrum (

right ) in 2D is shown.

(9) Fig. 9: The plot of the calculated defocus versus the nominal defocus set by

microscope is shown using dots. A line fit to the above data points is also

shown. The zero error, which can be seen in the y-axis offset, was found to be

0.085 µm.

(10) Fig. 10: The result shows a typical image of GroEL particles embedded in ice

suspended in a hole. A section of the micrograph is zoomed in to show the

density of the particles in the hole.

(11) Fig. 11: The result of edge detection and ellipse fitting is shown.

(12) Fig. 12: (a) shows the elliptically averaged power spectrum. The vertical dashed

lines in (a) show the estimated lower and upper cutoff frequency. In (b), the

solid curve represents the part of the power spectrum between the lower and

upper cutoff frequency. The dashed curve represents the estimate of noise

spectrum (N̂ 2). In (c) the solid curve represents the noise subtracted power

spectrum and the dashed curve represents the estimate of the square of the

envelope function (Ê2). In (d) the estimate of the square of the CTF (CTF2)

recovered from the power spectrum is shown. In (e) the solid curve shows the

estimated CTF2 based on the power spectrum. The dashed curve shows the

theoretical CTF2 based on an initial estimate of defocus. The initial estimate
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of the defocus was based on the local minima ( shown using dots ) of the

estimated CTF2 and was calculated using equation 32. The theoretical CTF2

based on a refined estimate of defocus and amplitude contrast is shown in (f).

(13) Fig. 13: The plot of calculated defocus of the specimen in a hole versus de-

focus caluculated using carbon support film outside of the hole is shown for

a dataset containing 540 images(4096x4096) of GroEL embedded in ice. No-

tice that the defocus calculated using the images of carbon support film can be

very different from the actual defocus at the location of the specimen.
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Fig. 1.
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(a) 1.0 µm, 1.0 µm (b) 1.0 µm, 0.75 µm (c) 1.0 µm , 0.5 µm

(d) 1.0 µm, 0.25 µm (e) 1.0 µm, 0.0 µm (f) 1.0 µm, -1.0 µm

Fig. 2.
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(a) Edge detection

(b) RANSAC estimate

Fig. 3.
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(a) Edge detection (b) LS estimate

(c) RANSAC estimate

Fig. 4.
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Fig. 8.
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Fig. 10.
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(a)

(b)

Fig. 11.
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