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Abstract
This paper presents a comprehensive theory of photo-

metric surface reconstruction from image derivatives. For
unknown isotropic BRDFs, we show that two measurements
of spatial and temporal image derivatives, under unknown
light sources on a circle, suffice to determine the surface.

This result is the culmination of a series of fundamental
observations. First, we discover a photometric invariant that
relates image derivatives to the surface geometry, regardless
of the form of isotropic BRDF. Next, we show that just two
pairs of differential images from unknown light directions
suffice to recover surface information from the photometric
invariant. This is shown to be equivalent to determining
isocontours of constant magnitude of the surface gradient,
as well as isocontours of constant depth. Further, we prove
that specification of the surface normal at a single point com-
pletely determines the surface depth from these isocontours.

In addition, we propose practical algorithms that require
additional initial or boundary information, but recover depth
from lower order derivatives. Our theoretical results are
illustrated with several examples on synthetic and real data.

1. Introduction

Image formation is a complex interplay between the ge-
ometry of a scene, its reflectance properties and the illumi-
nation conditions under which it is observed. Photometric
stereo aims to recover the surface structure, using shading
cues from varying illumination. Under assumptions of dif-
fuse reflectance or illumination constancy, there exist wide-
ranging theories of photometric stereo, shape-from-shading
and optical flow to recover shape from image intensities
and gradients. However, algorithms for general BRDFs and
unknown light source motions remain largely unexplored.

This paper presents an intensive theoretical study of the
utility of image gradients for recovering scene structure for
complex BRDFs and unknown light directions. We assume
a homogeneous, isotropic BRDF, while a differential pair
of lights undergo unknown motion on a circle. The various
aspects of our theory are illustrated in Figure 1.

We begin with the observation that a single image forma-
tion equation yields three differential equations upon spatial
and temporal differentiation. Moreover, these differential

equations are linear in BRDF derivatives, so under appropri-
ate conditions (such as circular motion of the light), they may
be eliminated to yield a photometric invariant that relates
image derivatives, surface geometry and source directions.

A surprising discovery is that for isotropic BRDFs, it is
possible to uncover such an invariant that is independent
of lighting directions. Moreover, we show that the N × 3
matrix whose columns are the image derivatives at a pixel
under N light source positions, must be rank 2 and its null
vector, (λ, κ, 1)>, is determined by surface geometry alone.

For a surface z(x, y) : R2 → R, the entities λ and κ
are space varying functions whose relationship to surface
depths, z, or gradients ∇z, is not straightforward. Yet, we
show that the information contained in those functions can be
succinctly expressed as the direction of the surface gradient
and the direction of the gradient of the scalar field ‖∇z‖.
Thus, from image information alone, one may determine
surface structure up to level curves of constant depth and
isocontours of constant magnitude of the gradient.

Further, we show that for general surfaces where these
two sets of isocontours intersect transversally, surface nor-
mal information at a single point suffices to determine the
depth. Thus, in theory, differential photometric stereo allows
recovery of surface depths from unknown light positions on
a circle, for unknown isotropic BRDFs.

While the theory suggests an elegant algorithm for depth
reconstruction, recovering isocontours of constant depth re-
quires higher-order derivatives, which may lead to noisy
estimation. For practical applications, we suggest two ad-
ditional algorithms that can recover surface normals and
depths, resepectively, given additional information in the
form of normals on a curve, or depths at the boundary.

Throughout the paper, we validate the theoretical results
with several examples on synthetic and real data.

2. Related Work
This work differs from most prior studies in considering

differential information within the context of photometric
stereo, with unknown BRDF and light directions. Our theo-
retical results distinguish this work by establishing a minimal
requirement of two differential pairs for 3D reconstruction.
We refer the reader to the extended version [4] for details of
proofs, implementations and experiments.
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Figure 1. Outline of our differential theory of photometric stereo. Two or more differential pairs lead to an uncalibrated photometric invariant.
Isocontours of constant ‖∇z‖ and constant z may be recovered from the invariant. Additional information in the form of the gradient at a
single point suffices to recover the surface. Normals on a curve or depths on the boundary can be used for a more noise robust estimation.

Most prior work in photometric stereo has dealt with
Lambertian surfaces, for which the surface normal can be
recovered from three images [14]. In some cases, specularity
removal has been used as a pre-processing step [3].

Hertzmann and Seitz use example-based methods for
general BRDFs, but require a reference object of the same
material [6]. Helmholtz stereopsis [16] eliminates the BRDF
by exploiting reciprocity, but needs active control of both
light and camera positions. Tan et al. use color-based separa-
tion of the diffuse and specular components of dichromatic
reflectance for reconstruction [12]. Further empirical prop-
erties of the BRDF can be exploited to recover shape, but
require dense coverage of the lighting hemisphere [2, 7].

Isocontours of constant depth are recovered by Alldrin
and Kriegman [1] using bilateral symmetry of a spatially
varying BRDF. They require a dense configuration of known
lights on a circle and initial information on a curve to recover
depth. Tan and Zickler [13] further recover isocontours of
constant magnitude of the gradient, whereby initial informa-
tion at a single point suffices. In contrast, our theory does not
depend on pointwise BRDF symmetries, rather uses image
derivatives. Instead of the dense, calibrated ring of lights of
[1, 13], we need as few as two differential pairs, at unknown
positions on a circle. While the results of [13] are derived
only for the gnomonic projection, our theory holds for many
projections (see Sec. 3.1). Thus, we can also recover isocon-
tours of constant depth as well as constant magnitude of the
gradient, but our derivations are more general and may lead
to other interesting topological classes in 3D reconstruction.

A related work that uses differential information to derive
photometric invariants is Clark’s active photometric stereo
[5]. However, it recovers depth using a distance-dependent
imaging model and calibrated source positions.

Besides photometric stereo, image derivatives have been
considered in other contexts. Shape from shading seeks to
recover depth from a single image of a Lambertian surface
[10, 15]. In computer graphics, Ramamoorthi et al. have
studied the first-order behavior of reflection as a convolution
and visibility under area lighting [11]. Optical flow uses

spatial and temporal derivatives for recovering the motion
field [9]. Indeed, the form of our photometric invariant bears
a striking resemblance to the optical flow constraint. How-
ever, our theory neither relies on assumptions like brightness
constancy, nor does it suffer from the aperture problem.

3. Image Formation for Isotropic BRDFs
Throughout this paper, the object and the camera are

fixed, while the directional point light source moves around
the object. The camera principal axis is oriented along
v̂ = (0, 0, 1)>, pointing towards the origin. We assume
orthographic projection and the object is represented by a
surface z(x, y), where x = (x, y)> represents a point on the
image plane. A unit 3-vector on S2 ⊂ R3 is represented
as ŵ, whereas a 2-vector on R2, is represented as w. For a
vector w ∈ R2, we denote l(w) =

√
‖w‖2 + 1.

3.1. A Note on Surface Normal Parameterizations
The relationship between the unit normal n̂ on the 2-

sphere and its representation n is determined by the projec-
tion mapping π : S2 → R2 [8]. For a gnomonic projection,
from the center of the sphere to the tangent plane resting
on the north pole, n̂ = (n>,1)>

l(n) , thus, n = [−zx,−zy]>.
A stereographic projection is centered on the south pole.
Similarly, we represent a directional point light source ŝ
by a 2-vector, s. The theory of the paper is independent of
this choice and valid for both projections (indeed, for any
centered on the line joining the north and south poles).

3.2. Parameterizing Isotropic BRDFs
We develop our theory for homogeneous isotropic BRDFs.

Such reflectance functions depend only on the three angles
between the unit normal n̂, the light source direction ŝ and
the viewing direction v̂, thus, they can be represented as
a function of the form ρ̄(n̂>ŝ, n̂>v̂, ŝ>v̂). For gnomonic
projection, the angles that determine the isotropic BRDF are

n̂>ŝ =
n>s + 1
l(n)l(s)

, n̂>v̂ =
1
l(n)

, ŝ>v̂ =
1
l(s)

. (1)
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Thus, the BRDF can be written as a function of the form
ρ̂(n>s, l(n), l(s)), appropriately defined from ρ̄:

ρ̄(n̂>ŝ, n̂>v̂, ŝ>v̂) = ρ̂(n>s, l(n), l(s)) = ρ̂(α, β, γ),
(2)

where we denote α = n>s, β = l(n), γ = l(s) for the
parameters of an isotropic BRDF. It may be verified that the
same is true for a stereographic projection. Note that for
our fixed pose and variable illumination setup, n depends on
space variables x and s on time variables t.

3.3. Ratio images
The image formation model can be easily generalized to:

E(x, t) = a(x) ρ̂ (α(x, t), β(x), γ(t)), (3)

where a(x) is a surface albedo. This is a reasonable model
and in particular, subsumes traditional Lambertian assump-
tions, while allowing for more general isotropic BRDFs,
possibly modulated by a spatially-varying texture. We make
no assumptions on the form of the isotropic BRDF ρ̂.

In practice, one may eliminate the pointwise albedo a(x)
by considering ratio images. Note that ratios of arbitrarily
illuminated images need not preserve the functional depen-
dence of the isotropic BRDF on α, β and γ. But ratios with
respect to the image obtained from a light source colocated
with the sensor, that is, s = (0, 0)>, do preserve the desired
form of the BRDF. It can be easily seen from (2) that such
ratio images, denoted by I , have the form

I(x, t) =
a(x) ρ̂(α, β, γ)
a(x) ρ̂(β)

= ρ(α, β, γ), (4)

where ρ(·) is the appropriately defined function. The exact
form of ρ̄(·), ρ̂(·) or ρ(·) is immaterial, since we will derive
our photometric invariant by eliminating it.

Alternatively, one may also take ratios with respect to an
image under uniform (floodlit or cloudy sky) illumination.

4. A Novel Differential Photometric Invariant
A common approach to photometric reconstruction de-

rives invariants that relate image intensities to surface ge-
ometry and source directions. Most prior work focuses on
restricted reflectances (such as Lambertian). However, one
may deal with complex BRDFs if they can be eliminated
from a system of equations. In this section, we use differen-
tial information to derive such an invariant. A surprising and
useful result is that our invariant does not depend on light
source positions, so it is in fact an uncalibrated invariant.

4.1. Differential Images
Intuitively, a single image formation equation leads to

independent relations upon differentiation with respect to
various variables. These may then be related by eliminating
any terms that depend on the functional form of the BRDF.
We use this intuition to derive a novel photometric invariant.

The space and time derivatives of the images in (4) are

∇xI(x, t) = ραJ>(n)s + ρβ
1
l(n)

J>(n)n (5)

It(x, t) = ραs>t n + ργ
1
l(s)

s>t s (6)

where α, β, γ are defined previously and J(n) = [nx,ny] is
the 2× 2 Jacobian related to the second fundamental form,
II . (For the gnomonic projection, J(n) = l(n) · II .)

This system of three equations (note that (5) represents
two equations) is clearly underconstrained, with the un-
knowns ρα, ρβ , ργ , n and s. However, the BRDF derivatives
can be eliminated to extract constraints on the surface normal
in a setup of circular motion, as discussed next.

4.2. Circular Motion Yields an Invariant
Let us constrain the source to move in a circle around

the camera axis. Intuitively, since ‖s‖ is now constant, γ
stays constant. Thus, the BRDF reduces to a 2D one, which
allows elimination of derivatives with respect to α and β.
Mathematically, s>t s = 0 for lights on a circle, so the three
equations (5) and (6) can be reduced to

Ixs>t n− Its>nx
Iys>t n− Its>ny

=
n>nx
n>ny

= constant across time,

(7)
since the right hand side depends only on position. Thus, we
have a photometric invariant that relates image derivatives,
surface geometry and light directions, regardless of BRDF.

4.3. Illumination Invariant Photometric Flow
It might seem that, with known sources, non-linear mini-

mization can be used to estimate the unknowns {n,nx,ny},
up to scale, using (7). However, as shown below, the source
directions are not required at all. That is, the invariant (7)
directly relates image derivatives to surface geometry.

Proposition 1. The entire information in the photometric
invariant (7) is encapsulated by two entities, which depend
only on surface geometry and not on source positions s.

Proof. With the following series of definitions

λ =
n>nx

n>ny
, u = nx − λny, κ =

s>u

s>t n
, (8)

we may rewrite (7) as

Ix − λIy − κIt = 0. (9)

By definition, λ depends only on the surface normal and is
constant across time (that is, independent of light source po-
sitions). Also, by definition of λ and u in (8), we have u⊥n.
Since the lights lie on a circle, we have st⊥s. Moreover,
at time t (or equivalently, angular position t on the circle
of sources), the light source is s = (r cos t, r sin t)>. Then,
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Figure 2. The ratio of im-
age derivatives at a pixel,
recorded for various light
positions, lie on a straight
line given by the equation

λ
Iy

Ix
+ κ

It

Ix
= 1.

st = (−r sin t, r cos t)>, thus, ‖s‖ = ‖st‖. It follows that κ
is actually the (signed) ratio of the magnitudes of u and n. 1

Indeed, with n⊥ = (−n2, n1)>, it immediately follows that

u = −κn⊥. (10)
Thus, κ is also independent of illumination, so the constraint
(9) is independent of both the BRDF and the light sources.
Clearly, all the information in the invariant is encapsulated
by λ and κ, which depend only on surface geometry.

Noting the similarity of (9) to optical flow [9], we call
it the photometric flow relation. However, (9) is derived
without resorting to any brightness constancy assumption
and as we discuss next, recovery of λ and κ in a photometric
stereo setup does not suffer from the aperture problem.

4.4. Importance of the Invariant

The result of Proposition 1 is a surprising one and can
be understood as a fundamental relationship between spatial
and temporal derivatives of images due to isotropic BRDFs:
Corollary 2. For a surface with isotropic BRDF, the N × 3
matrix of spatial and temporal image derivatives at a pixel,
recorded forN > 1 unknown light positions on a circle, must
be rank 2. In addition, the null-vector, denoted (λ, κ, 1)>,
depends only on the surface geometry.

This is also useful practically, since it establishes that
surface information may be recovered from image deriva-
tives with unknown isotropic BRDFs and unknown light
sources. In fact, as few as two differential image pairs suf-
fice to estimate λ and κ. This is an important observation:

Corollary 3. Two pairs of differential images suffice to re-
cover surface information from the photometric flow.

Note that three light sources can create two differential
pairs. It is instructive to recall that traditional photomet-
ric stereo for Lambertian surfaces requires three images to
completely determine the surface normal.

4.5. Experimental Evaluation

Here, we empirically illustrate the validity of (9). A dif-
ferential pair of lights is moved on a circle and real images of

1In practice, the temporal derivative is obtained as a difference between
images at time t and t + δt, so asserting ‖s‖ = ‖st‖ assumes that the
angular difference δt betwen the lights of the rotating differential pair is
known. This is the same as the ratio of their distance and the radius of the
circle on which they are situated. Note that calibrated measurement is not
required for obtaining this ratio (for example, a piece of string suffices).

a plastic apple of varying albedo are acquired at 11 unknown
light positions. Ratio images are computed with respect to

a floodlit image. Figure 2 shows that the ratios
Iy
Ix

and
It
Ix

computed for various light positions lie on a straight line.
The entities λ and κ are given by the best-fit straight line.

5. Reconstructibility From Photometric Flow
While the previous section proves the existence of a

BRDF and illumination-independent photometric flow, its re-
lation to surface reconstruction is not immediately apparent.
We conclusively establish that relationship in this section.

5.1. Isocontours of Constant ‖∇z‖
To begin, we show that one may recover isocontours

where magnitude of the gradient, ‖∇z‖, stays constant. This
follows directly from the definition of λ in Proposition 1:

Corollary 4. From two or more differential images of a
surface with unknown isotropic BRDF, obtained from un-
known light source positions, one may recover isocontours
of constant magnitude of the surface gradient.

Proof. Consider the scalar field g(x, y) = ‖n(x, y)‖. The
associated gradient is ∇g = (‖n‖x, ‖n‖y)>. The level
curves of a scalar field are orthogonal to the gradient. So,
the direction of the tangent to the level curves of g is ‖n‖y

‖n‖x
,

which is the same as λ−1, by definition (8). Thus, knowing
the value of λ, one may trace the isocontours of constant
‖n(x, y)‖. The statement of the theorem follows as a special
case for the gnomonic projection, where n = −∇z.

Note that the result we have proved is more general than
the statement of Corollary 4. It may be easily verified that the
isocontours of constant ‖n‖ are the same for any n derived
from a projection centered on the line joining the poles.

5.1.1 Experimental Evaluation

Figure 3 illustrates the recovery of isocontours of constant
‖∇z‖ using synthetic data. For the sphere of varying albedo
and the bunny, we use a simplified Torrance-Sparrow model

ρ̄ = (2
√
πσ)−2e−(σ−1 cos−1 bn>bh)2

, ĥ =
ŝ + v̂
‖ŝ + v̂‖

. (11)

with σ = 0.3. For the vase of varying albedo, we use a con-
stant coefficient Phong-Blinn model: ρ̄ = n̂>ŝ + (n̂>ĥ)σ,
with a typical value of σ = 5. In each case, we observe that
the recovered isocontours closely match the ground truth.

5.2. Isocontours of Constant Depth
To recover isocontours of constant ‖n‖, we required

knowledge only of λ. However, we can further disambiguate
the surface using κ. The following constructively proves that
λ and κ together determine the isocontours of constant depth
(in addition to the isocontours of constant ‖n‖).
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(a) (b) (c)
Figure 3. Recovery of isocontours of constant ‖∇z‖. Red curves
plot the isocontours, while the green dots represent points chosen
to start tracing the curves. (a) A sphere with variable albedo and
simplified Torrance-Sparrow BRDF. (b) A vase with Blinn-Phong
BRDF. (c) A bunny with Torrance-Sparrow BRDF.

Proposition 5. From two or more differential images of a
surface with unknown isotropic BRDF, obtained from un-
known source positions, one may recover the direction of the
surface gradient at every point.

Proof. We denote n = (p, q)>, thus, nx = (px, qx)> and
ny = (py, qy)>. Using (9), two or more pairs of differential
images determine λ(x, y) and κ(x, y). Thereby, two linear,
first order PDEs are obtained from (10) at every pixel:

px − λ(x, y)py = κ(x, y)q (12)
qx − λ(x, y)qy = −κ(x, y)p. (13)

Further, a surface must satisfy the integrability condition:

py − qx = 0. (14)

Thus, we have a coupled first order system of three lin-
ear PDEs in the two variables p and q. Note that this is
an overdetermined system, which may not be solvable in
general. However, in our particular case, we can exploit the
special form of the PDEs to derive an unusual solution.

Consider the function h = p− λq. Taking partial deriva-
tives and using (12), (13) and (14), we get

hx = (κ− λx)q, hy = −κp− λyq. (15)

By integrability of h, we have hxy = hyx, which gives us
another first order linear PDE:

(λx − κ)qy − λyqx − κpx = κxp+ κyq. (16)

From (12), (13), (14) and (16), we have a linear system
in {px, py, qx, qy}, whereby expressions for them may be
obtained as linear functions of {p, q}:

px = ν1p+η1q, qx = py = ν2p+η2q, qy = ν3p+η3q, (17)

where, with ∆ = −(κλ2 + λλy − λx + κ),24 ν1
ν2
ν3

35 =
1

∆

24 λ(κ2 − λxκ+ λκx)
κ2 − λxκ+ λκx

−(λκ2 + λyκ− κx)

35 , (18)

24 η1
η2
η3

35 =

24 κ
0
0

35 +
κy + κ2

∆

24 λ2

λ
1

35 , (19)

(a) (b) (c)
Figure 4. Recovery of isocontours of constant depth. Red curves
plot the isocontours, while the green dots represent points chosen
to start tracing the curves. (a) A vase with variable albedo and
Blinn-Phong BRDF. (b) A bunny with Torrance-Sparrow BRDF.
(c) Plot of the direction of the gradient corresponding to (b), with
the length of the vector normalized to one for display.

The reader may verify by substitution that the expressions
above are consistent with the definitions of λ and κ in (8).

Now, using integrability of p and q, that is (px)y = (py)x
and (qx)y = (qy)x, we get two new PDEs:

(ν1p+ η1q)y = (ν2p+ η2q)x (20)
(ν2p+ η2q)y = (ν3p+ η3q)x, (21)

These are linear, first order PDEs, where we can again re-
place the first order derivatives {px, py, qx, qy} using (17) to
get two (dependent) homogeneous linear equations in {p, q}.
Using, say, the first equation, we get

q

p
=

ν1y + η1ν3 − ν2x − ν2η2
ν2η1 + η2x + η2

2 − ν1η2 − η1y − η1η3
(22)

The statement of the theorem follows by considering a
gnomonic projection, where p = −zx and q = −zy .

Again, we note that the actual result proved is stronger
and holds for several projections besides gnomonic. To
emphasize the import of the result: with just Gaussian elimi-
nation and repeated use of the integrability condition, two
pairs of differential images at unknown light source po-
sitions allow us to recover the direction of the gradient at
every point of a surface with unknown isotropic BRDF.

Similar to Corollary 4, it immediately follows that:

Corollary 6. From two or more differential images of a sur-
face, obtained from unknown source positions, it is possible
to recover the isocontours of constant depth (or the level
curves) for the entire surface.

This result may be contrasted with symmetry-based meth-
ods [1, 13] that theoretically require a dense configuration of
lights at known positions to recover the same information.

5.2.1 Experimental evaluation

The recovery of gradient direction and level curves of con-
stant depth is illustrated for synthetic data in Figure 4. The
BRDF parameters used are the same as Figure 3.
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5.3. Surface Reconstruction from Isocontours
We note that one may not recover magnitude of the gra-

dient without additional information, since the uncalibrated
invariant of (7) is homogeneous in p, q and their derivatives.
The following proposition establishes that, with the results
of Corollaries 4 and 6, additional information is required for
general surfaces only on a set of measure zero.

We assume that the surface can be split into a finite num-
ber of regions, each of which satisfies a generality condition,
namely, that the isocontours of constant z and constant ‖∇z‖
are not everywhere parallel. Surfaces such as a hemisphere
are not general, but most surfaces do satisfy this condition.

Proposition 7. Given the isocontours of constant depth and
constant ‖∇z‖, under certain assumptions of generality for
the surface z(x, y), specification of the surface normal at
a single point suffices to reconstruct the depth map up to a
global convex-concave ambiguity and additive offset.

A similar result is proved in [13]. However, the proof here
is more easily generalizable to other classes of isocontours.

Proof. Let x∗ be a point in an open set U where the isocon-
tours of constant z and constant ‖∇z‖ intersect transversally.
Then, within U , one may define unit vector fields v and w
that are tangent, respectively, to the isocontours of constant z
and constant ‖∇z‖ and thus, are transversal. Then, since∇z
is orthogonal to v, it is apparent that the following relation
must hold at the point x∗ ∈ U (see Figure 5)

w · ∇z
‖∇z‖

= ±
√

1− (v ·w)2. (23)

Note the sign ambiguity, which arises since the directions of
v and w can be specified at most up to a global sign. If the
value of ‖∇z‖ is specified at x∗, it is also specified at every
point on the isocontour of constant ‖∇z‖. Thus, we have a
linear ODE in z along that isocontour, which may be solved
up to an additive constant, c∗.

Since the isocontours of constant z and constant ‖∇z‖ are
transversal in U , the values of depths can now be assigned,
up to an unknown c∗, along all the isocontours of constant
z that intersect the isocontour of constant ‖∇z‖ passing
through x∗ and thus, almost everywhere on U . Note that
the sign ambiguity in (23) corresponds to a global convex-
concave ambiguity and the unknown constant c∗ corresponds
to a global additive offset.

Finally, we note that for a unit normal n̂ = (n1, n2, n3)>,

we have ‖∇z‖ =
√
n−2

3 − 1. Thus, specifying the surface

Figure 5. Transversality of iso-
contours of constant z and con-
stant ‖∇z‖ is sufficient to recover
depth, given normal at x∗. See
Proposition 7.

(a) Ground truth

(d) Reconstruction

(b) Transversal
Isocontours

(c) Depth
Estimation

Figure 6. Depth recovery for a monkey saddle surface. (a) The
ground truth surface. (b) Recovered isocontours of constant ‖∇z‖
(red) and constant z (blue), from images under a Torrance-Sparrow
BRDF model. All points on the red and cyan curves have same
values as respective green and magenta points. (c) Specifying
the surface normal at one point (marked in blue) determines all
depths along the corresponding isocontour of constant ‖∇z‖ (green
points), from which depth at every other point is determined by iso-
contours of constant z (red curves). (d) The reconstructed surface.

normal at a single point is sufficient to determine ‖∇z‖ and
seed the above depth reconstruction.

Again, we contrast with [1, 13], which use dense, cali-
brated sources and in the case of [1], additional information
on an entire curve to resolve the depth. As the above proof
shows, our gradient-based framework has the advantage of
requiring initial information at a single point, in an uncal-
ibrated setting, with only two differential image pairs.

5.3.1 Experimental Evaluation

To empirically demonstrate reconstruction from isocontours,
we simulate a monkey saddle, z = x3 − 3xy2, for which
the isocontours of constant z and ‖∇z‖ are transversal. In
Fig. 6(b), we show recovery of isocontours of constant z and
‖∇z‖. Specifying the normal at a single point on one of the
isocontours of constant ‖∇z‖ allows us to assign depths to
isocontours of constant z (Fig. 6(c)) and recover the depth
map (Fig. 6(d)). The recovered depth is nearly the same as
ground truth except in regions where the chosen isocontour
(dotted green in Fig. 6(c)) does not cross level curves of z.

6. Practical Algorithms for Reconstruction
Recall that, given image derivatives, one may estimate

the entities λ and κ that contain sufficient information for
disambiguating the surface, given the normal at a single
point. However, in practice, the equation (22) involves third-
order derivatives of the surface normal, which can lead to
noisy estimation. In this section, we present algorithms for
recovering surface normals given initial information across
a curve, or recovering depths given boundary information.
These algorithms require only the estimation of λ and κ,
which can be performed directly from image derivatives,
without resorting to higher order differentiation.

The images used for real data experiments were acquired
using a Canon 5D camera. For the clay ball dataset (Fig.7(a)),
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Figure 7. Isocontours
of constant ‖∇z‖ for a
hand-moulded clay el-
lipsoid and for a plastic
apple.

the differential pair is created by attaching two light bulbs
to a shaft, which can be rotated around a wheel using a
crank. The axis of the wheel is aligned with the camera
principal axis. The time step ∆t, computed as the ratio of
the distance between the bulbs and the radius of the shaft,
was 0.12 (about 7 degrees). For the apple (Fig.7(b)) and
the teflon ball (Fig.8) datasets, we used a gantry to acquire
images at ∆t corresponding to 2 degrees.

Image derivatives are computed using a Savitzky-Golay
filter. The PDE solution for Algorithm 2 in Section 6.2 uses
central differences, with a smoothness regularizer and can be
implemented in standard PDE solution frameworks. Please
see [4] for further acquisition and implementation details.

6.1. Algorithm 1: Recovering Surface Normals

Proposition 8. Initial data in the form of known surface
normals on a curve suffices to recover the surface normals
from the coupled PDEs in (12) and (13).

Note that including the integrability requirement of (14)
is ignored here (as is done in traditional Lambertian photo-
metric stereo). Once the surface normals are estimated, one
may impose integrability while recovering the depth map.

Proof. Consider the isocontours of constant ‖∇z‖, parame-
terized by x, which are solutions to the ODE ẏ = −λ(x, y).
For a closed, smooth surface, these characteristic curves will,
in general, be non-intersecting.

Along the above curves, the pair of PDEs in (12) and
(13) reduces to a pair of ODEs: {ṗ = κq, q̇ = −κp}. Let
p = r sin θ and q = r cos θ. Then, the following pair of
relations, obtained by differentiating p and q with respect to
the curve parameter (in this case, x) and substituting in the
above pair of ODEs, must be true:

ṙ cos θ = (θ̇ − κ)r sin θ, ṙ sin θ = (κ− θ̇)r cos θ. (24)

Thus, ṙ2 = r2(θ̇ − κ)2. So, a solution to the pair of ODEs
can be obtained as {ṙ = 0, θ̇ = κ}. Given initial data along
a curve, we can solve the above pair of ODEs. These initial
conditions amount to specifying r and θ along a curve.

6.1.1 Experimental Evaluation

Figure 7 shows the estimated isocontours of constant ‖∇z‖
on real data for a hand-moulded clay ball and a plastic apple.
The shape may be recovered by specifying the normals on
a curve. An example reconstruction is shown in [4]. A
practical limitation is that specifying such initial information

I(t1) I(t1 + dt)

I(t2) I(t2 + dt)

(a) Sample images

(b) Lambertian photometric stereo

(c) Our BRDF-Invariant Method
Figure 8. Reconstruction with ground truth. (a) Two differential
pairs for a teflon ball. (b) Height map using traditional photometric
stereo. Note the typical shearing due to non-Lambertian effects. (c)
Height map using the BRDF-invariant theory of Section 6.2.

may be difficult (the occluding contour is not usable as it is
non-transversal to isocontours of constant ‖n‖).

6.2. Algorithm 2: Recovering Depth

Proposition 9. Boundary data in the form of known depths
suffices to recover the surface depth from the PDEs in (12),
(13) and (14).

Proof. Using the integrability condition (14), the pair of
equations (12) and (13) can be written as a single constraint:

px = λ2qy − λκp+ κq. (25)

For a gnomonic projection, we have p = −zx and q = −zy .
Thus, we can rewrite the above as

zxx − λ2zyy + λκzx − κzy = 0. (26)

This is a linear, second-oder hyperbolic PDE, which is well-
posed given Dirichlet boundary conditions.

While (26) is, in fact, a weaker condition than the coupled
constraints in (12) and (13), it leads to a convenient numer-
ical implementation. In practice, boundary depths may be
specifiable when an object rests on a background plane.

6.2.1 Experimental Evaluation

Fig. 8(a) shows 2 of the 13 differential images of a teflon
sphere. It can be easily seen that the material of the sphere
is non-Lambertian. Consequently, the height map recon-
structed by traditional photometric stereo (Fig. 8(b)) using
13 lights is clearly sheared. In contrast, the reconstructed
height map using the algorithm presented in this section
closely resembles a sphere (Fig. 8(c)).

Fig. 9 shows the complete pipeline for a clearly glossy
plastic apple. Note the non-Lambertian effects in the deriva-
tive images. The recovered height map closely matches
the expected shape. Fig. 10 shows reconstruction of an
object that does not exactly satisfy the theoretical smooth-
ness requirements. Note the high level of detail recovered,
which demonstrates robustness to minor non-differentiability.
Please see [4] for a detailed experimental analysis.
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E(t1)E(t1 + dt)

E(t2)E(t2 + dt)

(a) Inputs

I(t1) I(t1 + dt)

I(t2) I(t2 + dt)

(b) Ratios

Ix(t1) Iy(t1) It(t1)

Ix(t2) Iy(t2) It(t2)

(c) Derivatives

(d) Recovered (e)Textured
height map reconstruction

Figure 9. Reconstruction for
the apple dataset. (a) Sample
images from the differential
pair. (b) Ratios with respect
to the floodlit image. (c) Spa-
tial and temporal derivatives.
Blue indicates low values and
red indicates high values. (d,e)
Depth recovery.

7. Conclusion and Future Work

In this paper, we have presented a comprehensive theory
that relates image gradients to surface geometry in uncali-
brated photometric stereo for isotropic BRDFs. In the pro-
cess, we have uncovered fundamental insights into the nature
of differential information contained in photometric images
for isotropic BRDFs. We have presented a novel invariant
for surface reconstruction and precisely characterized the
extent to which this invariant informs surface reconstruction.

A key observation in our work is the linearity of the
differentiation operation, that may be used to derive novel
constraints on surface geometry, regardless of the exact form
of the BRDF. This insight is of potential relevance in many
other domains like shape from shading and optical flow and
may provide a unified framework to analyze all of these
problems with general BRDFs.
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