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Abstract

This paper describes a method by which a computer can
autonomously acquire training data for learning to recog-
nize a user’s face. The computer, in this method, actively
seeks out opportunities to acquire informative face exam-
ples. Using the principles of co-training, it combines a face
detector trained on a single input image with tracking to
extract face examples for learning. Our results show that
this method extracts well-localized, diverse face examples
from video after being introduced to the user through only
one input image. In addition to requiring very little human
intervention, a second significant benefit to this method is
that it doesn’t rely on a statistical classifier trained on a pre-
existing face database for face detection. Because it doesn’t
require pre-training, this method has built-in robustness for
situations where the application conditions differ from the
conditions under which training data were acquired.

1. Introduction

This paper describes, and demonstrates key elements of,
an approach by which a computer can train itself to recog-
nize and distinguish individual faces. In this method, the
computer starts with a single image of a person’s face.
Then, using face recognition and face tracking together, it
actively looks for additional informative examples of that
face to use as a basis for learning to recognize that user
under varied conditions of lighting, background, pose, and
expression.

We give results showing that, using this active-learning
paradigm, a computer can create a rich and representative
dataset for learning to recognize a user’s face under a wide
range of conditions and expressions. We show also that this
is possible starting with only a simple initial face model,
based on one input image. The computer, not the user, does
the work and manages this learning process.

This “active learning” method is especially well suited to
a mobile robot that must recognize specific faces in a wide
range of conditions. With traditional methods that are based

on statistical classifiers trained in advance, it may be diffi-
cult to ensure that these varying conditions are accurately
reflected in the training database. With active learning, the
robot’s face model is built from information gathered under
the actual conditions where it is used.

In the presentation below, we first describe the motiva-
tion for our proposed method in Section 2 and review how
it relates to previous work in Section 3. We describe our
methods for building the initial face model from one input
image and for extracting new face examples from video in
Section 4. Finally, we describe our testing in Section 5 and
present results in Section 6.

2. Motivation

Most existing face-recognition systems rely on data pre-
pared ahead of time. The typical approach starts by using
a statistical classifier to detect that a face is present. The
statistical classifier is normally trained from a pre-existing
database of face images. One benefit often claimed for
this approach is that a statistical classifier can, in principle,
be trained to very high accuracy, given a sufficiently large
training database and discriminative features [15], [14].
However, this theoretical accuracy is based on the assump-
tion that the training data are randomly drawn from a pop-
ulation with the same distribution as will be encountered in
the actual application. This assumption may not be valid
in practice. Statistical classifiers are inherently vulnerable,
in that they have no way of adapting or correcting them-
selves if the conditions actually encountered do not match
the training database.

The number of variables that may be relevant in the
database distribution is immense: viewing angle, distance,
background clutter, lighting spectrum, intensity, angle and
diffuseness of lighting, differences between adults and chil-
dren, differences among ethnic populations, differences
between posed photographs and spontaneous expression.
With so many variables, there’s no assurance that the train-
ing database has taken all the relevant variables into account
or that their distributions will be the same as will be found
in the application context.
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This problem may be especially critical for a socially in-
teracting robot. These robots may be used for education, in
hospitals, as helpmates for the elderly, or for entertainment.
In such applications, the robot may be used in a variety of
locations, with different lighting conditions and background
clutter. It may view a standing adult’s face from below,
but interact at eye level with children or patients in wheel-
chairs. In these and other ways, socially interacting robots
will need to recognize individual faces in circumstances that
are unconstrained and unpredictable.

In contrast with existing methods, active learning is, by
its very nature, adapted to the circumstances in which it is
used. It does not rely on a pre-existing database. It does
not require the user to pose for a comprehensive set of pho-
tographs under varying conditions. It only requires that the
subject pose for a single image. From then on, the robot
acts on its own initiative, actively seeking opportunities to
obtain more images of the subject’s face. Based on this ex-
panding data set, it refines its model of the subject’s face
until it can recognize that face under a wide range of con-
ditions. The robot thus builds its own, customized training
database, without laborious assistance from users, in a way
that is automatically adapted to its users’ conditions.

This active learning method illustrates a broader way of
viewing computer vision and the human-computer interface
in general, that is, that the computer is an active participant
in the human-computer interaction, not only accepting data
provided by the user, but taking the initiative to obtain the
data that allow it to learn.

3. Related work

Our approach relies on the co-training principles intro-
duced by Blum and Mitchell [4]. Through co-training, two
complementary classifiers are able to train each other using
a combination of labeled and unlabeled data.

Successful visual co-training has been previously
demonstrated in [12]. Our approach differs from [12] in
that we use a tracker instead of a second classifier to iden-
tify informative training examples. By using a classifier and
a tracker together, we take advantage of the temporal conti-
nuity of video sequences to validate both tracking and clas-
sification against one another while generating additional
training examples. More significantly, our approach does
not rely on pre-trained statistical classifiers to bootstrap the
learning process. We start with only one input image.

Abramson and Freund, in [1], also build on the co-
training paradigm introduced in [4] by pairing a trained
classifier with a human. While this method reduces the
amount of human labor, it still requires a great deal of hu-
man processing. Our approach requires very little human
effort.

In [9], [10], and [11], Lee et al. combine recognition
and tracking for face recognition tasks. Their approach dif-

Figure 1. Block diagram of the process for generating additional
positive examples of a user’s face.

fers from ours in requiring that a set of training images be
acquired as the first step. The training images are used to
learn a visual appearance manifold for each individual and
the transition probabilities within that manifold. A tracker is
used to semi-automate preparing the dataset, but human in-
tervention was still required to make sure each video frame
contained a properly positioned face region ([9]) and to
manually assign face images to pose clusters ([10]). Our
method, in contrast, uses an automated process in which
a low-error detection at the start and end of a tracking se-
quence validates correct alignment for the tracked face re-
gion.

Viola and Jones [15] demonstrated an efficient face de-
tector based on brightness differences between adjacent rec-
tangular regions. Balas and Sinha [2] extended this feature
type by lifting the requirement that light and dark rectan-
gles be adjacent. They point out that any two rectangular
regions can be paired. Balas and Sinha use these features,
which they call dipoles, as descriptors for general object
recognition.

In our one-shot method for learning an initial face model,
we use these dipole features in a different way. Because
each rectangle of a dipole can be made smaller than the
bright or dark region it captures, these features can represent
large-scale, high-contrast facial characteristics with soft lo-
calization. Since they’re not constrained to be adjacent, re-
liably high-contrast region pairs can be combined to create
high-level appearance filters that efficiently remove all but
a small fraction of the image from the search space. This
filtering step of our one-shot recognition method is similar
to the method Ferencz et al. use in [7].

4. Methods

4.1. Overview of the approach

Figure 1 shows an overview of the process by which a ro-
bot can autonomously acquire a diverse set of informative
face examples for an individual user. These positive exam-
ples can be used as input to a machine-learning algorithm.

This process begins with a single input image. The input
image is used to create an initial face model for the user.



Figure 2. To acquire additional, informative face images, we look
for sequences of frames with high model error or failed detection
that are bracketed by two frames with low model error. We run
the tracker over this sequence, starting at one of the low-error end
frames and stopping at the other.

Figure 3. At the end of the sequence, the tracker’s final location is
compared to the location of the low-error detection in this frame. If
these two image locations correspond closely, intervening frames
that have low tracking error are extracted as face examples for
learning.

This initial face model doesn’t require security-level accu-
racy. It only needs to keep the user interested and engaged
with the robot. As the user interacts, the robot searches its
video input for high-confidence matches to the initial face
model. When this search process finds a good match (one
with sufficiently low error), the robot begins storing the in-
coming video stream. During these user interactions, the
robot simply gathers video data. Processing occurs later,

Figure 4. Face regions selected as light and dark rectangles for
generating the large-scale features in an initial face model. Dark
rectangles are outlined in yellow, light rectangles in red.

offline.
Offline processing uses the principles of co-training to

find and extract informative face examples for each user.
The goal of co-training is to build up a useful set of positive
examples for one classifier with examples detected by a dif-
ferent, complementary classifier. For co-training to work,
each classifier must, with high confidence, find positive ex-
amples that were either close to or outside the other clas-
sifier’s decision boundary. Our method replaces one of the
classifiers with a tracker. As in two-classifier co-training,
if the tracker locates the face correctly and with high con-
fidence in video frames where the initial face model either
failed or matched with high error, it gives us positive ex-
amples that are specifically useful for improving the initial
face model.

In the following sections, we describe the initial face
model and how it’s used for detection. We then give de-
tails of our method for combining tracking and detection to
extract informative, positive face examples for learning.

4.2. Creating the initial face model

The initial face model is created by one-shot learning. A
user presents a single, frontal-view face example as a video-
frame capture and draws a bounding rectangle to indicate its
location. Users are encouraged to include enough margin to
capture areas of the head that are likely to be distinctive. For
example, profile lines at the top and sides of the head can be
distinctive features, even against a cluttered background [6].
Currently, users are also asked to mark the locations of eyes
and nose tip. Since these locations need not be precise cen-
ter points, we expect to be able to fully automate this step.

Our initial face model uses two types of features: large-
scale features and small-scale features.

The large-scale features, described in [2], consist of
paired light and dark rectangular regions. The regions
within a pair need not be adjacent. Each region is rep-



resented by its average pixel brightness, and the average-
brightness difference between paired regions used as a de-
scriptor.

Some face knowledge is used to select good regions for
large-scale features. The forehead (when visible), nose, and
cheeks are generally brighter than the eyes, the shadowed
area under the nose, and the area under the chin. The loca-
tion for each of these light and dark rectangles is determined
by examining an appropriate subregion of the user’s face in-
put (based on eye and nose-tip locations) for its brightest or
darkest area. Once these light and dark rectangles (shown
in Figure 4) are located, they’re combined into large-scale
features.

The selected features are organized into a filtering cas-
cade. Each cascade level consists of three features. Two
of these are a bilaterally-symmetric pair (for example, two
eye-to-cheek features), and the third is a vertical feature (for
example, forehead-to-nose-shadow). Section 4.3 describes
how this filtering cascade is applied during search.

Our small-scale features are located at interest points
within the input face image. Various interest-point opera-
tors could be used. We chose the Difference of Gaussians
blob detector, described in [13], and the Harris Corner de-
tector, described in [8]. Our descriptors for these small-
scale features are similar to the SIFT descriptors presented
in [13] or the HOG descriptors presented in [6]. They con-
sist of a 4×4 cell array of partially overlapping subregions.
Each subregion is represented as a weighted histogram of
eight gradient directions.

4.3. Searching with the initial face model

To search a video frame for a match to an initial face
model, potential face regions at multiple scales and at each
image location are evaluated with the large-scale-feature
cascade. A dipole feature is considered present if the dif-
ference in average brightness between the light and dark
regions is half the observed level in the input image. Dur-
ing search, any face region that passes this test for two of
the three dipole regions at that cascade level proceeds to
the next level. This threshold setting (half the brightness
difference observed in the input image) was selected based
on ROC-curve analysis of a dataset consisting of forward-
facing face images for six users and 50 cluttered back-
ground images. At and below this fraction of the original
brightness difference, there were no false negatives from the
cascade.

The cascade’s output is a list of pixels, with each pixel
associated with an image region at one search scale. The
number of surviving pixels from a typical 320×240 im-
age ranges from a few hundred to a few dozen for each
scale. Since the cascade features use soft localization, the
surviving image pixels form compact clusters. These are
combined using region growing, further reducing the total

Figure 5. Algorithm steps for finding and extracting informative
face examples from stored video.

number of potential face regions. By the next stage of the
search process, the total number of search regions has been
reduced from about 700, 000 (scales×pixels) to about five
or ten.

Once the image has been filtered against the large-scale
features, the remaining candidate positions are evaluated
using small-scale descriptors. The metric by which can-
didate regions are evaluated for model agreement requires
explanation. Initially, the standard deviation for descriptor
similarity between a feature in the model and that feature’s
appearance in the wild is unknown. Without more knowl-
edge about appearance variability, the absolute value of a
descriptor’s similarity metric may be a poor guide to the
quality of the match. Instead, each feature is assigned the
(x, y) location corresponding to its best match within a local
search area. Disagreement with the model is then computed
as the sum of displacements between where each feature
occurred in the model and where its best match was found.
Intuitively, this error metric is a measure of cumulative lo-
cal strain placed upon the model as each feature location
is pulled and stretched to align with its best match in the
image region.

4.4. Finding informative face examples

Finding and extracting informative face examples from
stored video sequences occurs offline. Figure 5 shows the
steps for doing that.



The first processing step is to search each frame in
the video sequence using the initial face model described
above. Each frame in which the user’s face is detected is
scored by its model error, as described above, and the lo-
cation and scale of that frame’s best match to the input im-
age is recorded. Frames in which no match was found are
flagged and assigned a high error. The result of this step
is a plot of model error versus frame number, as shown in
Figure 2.

The second step is to find sets of consecutive frames
that have low model error and run the tracker over these
frame sets. This step validates the tracker for use with
this video sequence and determines the tracker’s high-
confidence tracking-quality threshold. The tracking loca-
tion in each frame is compared to the detection location,
and if they are close, tracking is considered correct. If the
tracker is far from the detected face location, tracking in this
frame is flagged as having failed. The results of this step
are used to plot a cumulative density function for tracking
quality when tracking has failed on these frames. A high-
confidence tracking-quality threshold is selected based on
the CDF. We selected this threshold as the 10% value for
tracking failure.

In the third processing step, we locate sets of consecu-
tive frames with high model error or failed detection that
are bracketed by two frames with low model error (see Fig-
ure 2). Next, each candidate frame series is evaluated by
tracking the face from beginning to end of the series. If the
tracker’s final location in each direction corresponds well
with the location of the best face detection from the previ-
ous step, the frame series is retained for further processing.
If, however, the tracker’s final location is far from the lo-
cation of this frame’s low-error detection, no face examples
are extracted from the intervening frames. This evaluation
step is illustrated in the top portion of Figure 3.

The requirement that only high-error, intervening frames
between two low-error detections be used for extracting
new face examples helps prevent a stable background el-
ement that gives rise to a false positive from contaminating
the dataset.

The requirement that the tracker’s final location agree
well with the location of the terminal low-error detection
in a frame series helps validate both tracking and detec-
tion. The bottom portion of Figure 3 illustrates the rea-
son for this validation step. The detector used in this se-
ries was crippled by removing several of its small-scale fea-
tures to increase its vulnerability to false-positive errors.
Ephemeral matches from wrinkled fabric in frame 12 and
from the user’s ear in frame 79 created two low-error detec-
tions that bracket a series of high-error detections in frames
15-77. Since the tracker’s terminal location doesn’t co-
incide well with the second low-error detection, however,
false-positives from the intervening frames are prevented

from entering the dataset for the user’s face.
In the frame sets that are retained, the tracking-quality

threshold determined in Step 2 serves as the basis for decid-
ing whether to extract a new face example from each inter-
vening frame. Since its purpose in this context is to serve
as a co-training partner, the tracker’s internal quality metric
should be complementary to the face detector’s. We used
color-histogram-based trackers similar to the trackers de-
scribed in [3] and [5]. For each video sequence, we selected
the tracker to use with that sequence and set its parameter
values dynamically so as to maximize location correspon-
dence in Step 2.

5. Testing

To test the ability of this method to identify and ex-
tract new face examples in a complex environment, we cap-
tured short webcam videos of six subjects. The videos were
taken in indoor environments with visual distractions that
included passersby and/or significant background clutter.
Subjects were asked to move to different locations between
videos to introduce appearance changes due to differences
in lighting direction.

At the start of each session, each subject was asked to
assume a neutral expression and face into the camera for
an initial input image. Subjects were then encouraged to
engage in normal conversation and interact with either the
robot or with the other people present while being filmed.

The resulting videos were then processed to extract ad-
ditional face examples.

6. Results

Figure 6 shows the initial face input and some of the new
face examples extracted from the video sequences using this
method.

The number of face samples obtained for each subject
per 500-frame video sequence varied from none to 12. In
no cases was a non-face area extracted by this method.

Localization is generally good in the extracted samples.
The main difficulty in acquiring consistent face samples was
scale selection. This difficulty appears to have been due to
the lack of robust scale adaptation in the tracker implemen-
tations we used.
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Figure 6. Examples of additional training examples extracted by
this method.
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