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Abstract—Increasingly automated techniques for arraying, im-
munostaining, and imaging tissue sections led us to design soft-
ware for convenient management, display, and scoring. Demand
for molecular marker data derived in situ from tissue has driven
histology informatics automation to the point where one can en-
vision the computer, rather than the microscope, as the primary
viewing platform for histopathological scoring and diagnoses. Tis-
sue microarrays (TMAs), with hundreds or even thousands of pa-
tients’ tissue sections on each slide, were the first step in this wave
of automation. Via TMAs, increasingly rapid identification of the
molecular patterns of cancer that define distinct clinical outcome
groups among patients has become possible. TMAs have moved
the bottleneck of acquiring molecular pattern information away
from sampling and processing the tissues to the tasks of scoring
and results analyses. The need to read large numbers of new slides,
primarily for research purposes, is driving continuing advances
in commercially available automated microscopy instruments that
already do or soon will automatically image hundreds of slides per
day. We reviewed strategies for acquiring, collating, and storing
histological images with the goal of streamlining subsequent data
analyses. As a result of this work, we report an implementation of
software for automated preprocessing, organization, storage, and
display of high resolution composite TMA images.

Index Terms—Automated tissue microarray (TMA) scoring,
densitometry/fluorometry, image acquisition, texture segmenta-
tion, tissue microarrays (TMAs).

I. INTRODUCTION

T ISSUE MICROARRAYS (TMAs) enable more efficient
analyses of tissues for cancer tissue expression studies

and many other applications, but are laborious to read. Hun-
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Fig. 1. A flow diagram is presented of the automated acquisition and visu-
alization demonstrated on a colon cancer tissue microarray. The only inputs
required are the scan area (x, y, dx, dy) and the number of cores. After these
steps are completed, the images are ready for diagnosis/scoring. The image in
‘b’ is a single field of view from a 20× objective and ‘c’ is a montage of images
acquired at 20×.

dreds to thousands of cylindrical cores (of 0.6–2.0 mm diameter
and up to 30 mm long) are biopsied from tissue donor blocks,
and arrayed in a single new recipient paraffin block [1], [2].
The new block is sectioned and placed on slides [Fig. 1(a)], [1].
The presence of many tissue samples on one slide dramatically
increases the processing and analysis rates. Many patients with
a given type of cancer can be studied for protein expression pat-
terns simultaneously by immunohistochemical methods. Tissue
microarray blocks can also be analyzed for gene profiles by in
situ hybridization (ISH) or with fluorescence (FISH) [2]. Re-
searchers thus identify cancer biomarkers which correlate with
differences among the arrayed samples, such as histological
grade, pathological stage, or patient survival.

The scale of the task depends in part on the number of cores
required for each tumor. The number of cores required may be
increased by the need to sample more than one region of the
tumor to obtain sufficient tissue to represent the entire tumor.
When, in fact, one or two cores may be needed to represent the
entire tumor in cases of breast carcinoma as indicated by Zhang
et al. [3] and Camp et al. [4], respectively; other tumors known
for their heterogeneity like prostate cancer may require more
cores [5]. The distribution of the marker to be studied may also
impact the number of samples needed from each patient. For
instance, some markers such as HER2/neu or ER may have suf-
ficiently low inter-tumor variability to justify the use of one or
two cores, whereas more heterogeneous proliferation markers
such as Ki-67 would likely require more. It seems reasonable
that the number of tissue samples needed may vary as a function
of the particular marker and the type of cancer, and requiring
more cores increases the analytical challenge in large archival
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TABLE I
SUMMARY OF AVAILABLE TMA SCANNERS

cohorts [3]. Improving automation promises to simplify increas-
ing the number of samples for greater statistical significance.

Manual analysis of the immunohistochemical results is the
primary bottleneck in TMA studies. In our hands, TMA anal-
ysis typically takes ∼ 10 times longer than TMA produc-
tion. Pathologists typically read the intensity or percentage of
immunopositive cells in each tissue core to identify cancer-
associated changes in gene expression and to make correlations
with tumor histology or other variables. This labor-intensive
bottleneck makes automated analyses a compelling goal.

The ultimate TMA analysis automation goal is to load a cas-
sette of, say, 100 slides and return the next day to find molecular
label measurements in a convenient database, linked to the im-
ages of the TMAs. Approaches toward this goal vary. Slide
loaders for microscopes; e.g., from Vision BioSystems, have
been available for many years. Several complete systems are
specifically designed for automated TMA analysis. Manufactur-
ers include Aperio, Biogenex Laboratories, Bacus Laboratories,
Universal Imaging, and Applied Imaging. The characteristics of
example automatic scanning systems A-H are summarized in
Table I to aid description of the predominant approaches. TMAs
are most commonly stained with color or fluorescent dyes and
less often with immunogold, autoradiographic or quantum dot
preparations. To accommodate all techniques, the system would
require optics for brightfield (Bright), fluorescence (Fluor), and
darkfield (Dark) or reflection (for silver or gold particles). Re-
flection via a combination of cross-polarized filters and a beam-
splitter in place of the usual epifluorescent filters (e.g., the Nikon
IGS cube) is preferred by many over darkfield for silver and gold
metallic particles.

Different techniques are used to map the locations of the cores
on the slide for image acquisition. The user may be required to
interactively define the grid points (Grid) prior to scanning.
In some systems, the cores are located automatically by im-
age analysis (Spot Find), usually during a low magnification
(e.g., 1–4× or perhaps with a conventional digital camera and
lens) scan and thresholding step that is followed by a higher
magnification (e.g., 10× ) scan. Smaller fragments of broken
cores can be missed during low magnification scanning and
then excluded from the higher magnification rescan, which may
result in the loss of diagnostically useful information. The in-
teractive (Grid) technique can add 20–60 min to each scan for
TMAs with 500 or more cores. During scanning, one Individual
image may be collected from each core (i.e., near the center at
higher magnification) or the images may be Abstracted from a
montage of several images that comprise each core. The Image
Analysis capabilities of the system might then range from simple
display to more sophisticated densitometry, fluorometry and/or
particle counting (for gold or silver). The best image formats
are those that are in common use such as JPEG, PNG, TIFF
and BMP. The use of lossless vs. lossy compression should be
evaluated to ensure that diagnostic accuracy is preserved. The
software should store the image and data files for access by other
programs or provide an export function in a common image file
format (Exportable). Poor image quality can frustrate diagnos-
tic efficiency and accuracy and image quality may be degraded
in some systems by a camera that undersamples the optical res-
olution (i.e., with lower camera than microscope resolution).
The ideal system would scan slides stained by any method with-
out human interaction and provide access to low, medium and
high resolution images of any portion of a tissue array or core
(User Selectable). Pathologists sometimes need high magnifi-
cation images to make diagnoses so the ideal system should be
capable of scanning the images at high-dry resolution (0.95 NA
at 40–100 ×) at high speed (e.g., 6–8 min at 20× 0.5 NA and
25–30 min at 40× 0.95 NA). The combination of large com-
puter storage requirements and long scanning times may limit
use of high magnification images, but rapid advances in storage
and scanning may solve these problems in a few years.

The automated TMA scanning strategy of imaging only the
tissue cores after mapping the locations of the tissue cores (Spot
Find) from a low resolution image adds the most efficiency
for slower incremental-motion stage scanning. As speed is in-
creased and systems using continuous-motion scanning become
more common, pre-mapped tissue core locations will have less
impact on speed except perhaps by better defining the outer
boundary of the entire scan area.1 For this reason, we designed

1Limitations in the flatness of the specimen and the optics make it difficult
to use ever-larger format CCD cameras to increase speed. At high resolution
(i.e., NA = 0.95), the specimen can be uneven enough to cause blur within the
field of view of the objective, although this may not be as much of a problem
with thick tissue sections as with cell monolayers. Very large format cameras
would require larger fields of view than present in commercially available
microscope objectives. Since microscope objectives are the highest performance
manufactured optics available, customized larger field-of-view high resolution
(i.e., NA > 0.6) lenses rapidly become prohibitively costly. Lens arrays have
been proposed to overcome this problem, but at high resolution (narrow depth
of field) this approach would require independent autofocus for each element
for typical microscope slides, which can violate flatness by tens of micrometers.
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our software to automatically collate tissue core sub-images
from an exhaustive scan of the entire TMA area on a slide. Here
we report software for automatically locating, montaging, orga-
nizing, storing and displaying high resolution composite TMA
images. Our goals to achieve “ideal” operation (see Table I)
included: 1) use of brightfield and fluorescence (or reflection)
optics; 2) fully automated scanning up to high-dry resolution (no
low magnification pre-scan or interactive grid finding required);
3) random access to low, medium, and high resolution images
upon user request; 4) convenient data entry for diagnoses and
scoring; and 5) common image formats and data storage for
easy import/export to/from other databases [12].

II. METHODS

A. Tissue Sections Construction of Microarrays

Tissue microarrays were constructed as previously reported
[13]. The use of human tissue was reviewed and approved by
the UCSD and Burnham Institute Institutional Review Boards
(IRBs). Experimental animal tissue was harvested using IRB-
approved protocols. A brief summary of TMA preparation
follows.

1) Tissue Preparation: Normal tissues for immunohisto-
chemical analysis were derived either from human biopsy and
autopsy material (Department of Pathology, UC San Diego) or
from adult mice of various strains. The tissues were fixed in ei-
ther neutral-buffered 8%–10% formalin, Z-fix zinc-buffered for-
malin solution (Anatech Ltd, Battle Creek, MI) [14], B-5 [15],
or Bouin’s solution (Sigma, Inc. St. Louis, MO), and embedded
in paraffin.

2) Tissue Array Construction: Tissue microarrays contained
130 arrayed specimens represented by 0.6 mm or 1 mm diam-
eter cylindrical cores acquired from paraffin blocks of human
or mouse tissues, cut into 4–5 µm thick sections. Tumor TMAs
were constructed by removing 2–5 cylinders of 1 mm diam-
eter tissue from representative areas of each archival paraffin
block and arraying them into a new recipient paraffin block
with a manual tissue arrayer (MTA-1, Beecher Instruments,
Silver Spring, MD). Serial sections (4 µm) were applied to 3-
aminopropyltriethoxysilane-coated slides (Sigma), as described
by Rentrop et al. [16] The prostate tissue microarray was con-
structed as described previously by Kononen [1].

3) Immunohistochemistry and Fluorescence: Deparaf-
finized tissue sections were exposed to polyclonal antibodies
(PAB) generated against synthetic peptides and confirmed
to be specific for Bid, a Bcl-2 family protein, which like
its other family members, is correlated with apoptosis, or
programmed cell death [13]. The sections were immunostained
using a diaminobenzidine (DAB)-based detection method as
described in detail, employing either an avidin-biotin complex
reagent (Vector Laboratories) or the Envision-Plus-Horse
Radish Peroxidase (HRP) system (DAKOCytomation) using
an automated immunostainer (Dako Universal Staining Sys-
tem) [17], [18]. The dilution of antiserum was 1 : 8000 (v/v).
The immunostaining procedure was performed in parallel using
preimmune serum to verify specificity of the results. Initial
confirmations of antibody specificity also included experiments

in which antiserum was preadsorbed with 5–10 µg/ml of
either synthetic peptide immunogen or recombinant protein
immunogen. For some preparations, samples were stained
with hematoxylin-eosin. Alternatively, tissue sections were
deparafinized, stained with DAPI and imaged with a 20× 0.5
NA Nikon objective. The DAPI solution (Molecular Probes,
Eugene, OR) consisted of 75 ng/mL DAPI, 10 mM Tris, 10
mM EDTA, 100 mM NaCl, and 2% 2-mercaptoethanol. Tissues
sections were incubated in DAPI solution for 45 min prior to
sealing the slides with coverslips.

B. Microscopy Instrumentation and Image Acquisition

High throughput microscopy (HTM) instrumentation that
operates with both dry and oil-immersion objectives has
been described previously, is commercially available from
Q3DM/Beckman Coulter as the IC-100, and is summarized here.
We made minor modifications to our IC-100 equivalent high
throughput microscopy system, which was originally designed
for automated fluorescence image cytometry [6]–[11], and used
it to automatically scan TMAs. Previous reports demonstrated
scanning speed of up to 3 fields/s [8]. The current instrument is
based on autofocus that works in 0.25 s with a precision (SD) of
<100 nm [8], and lamp stabilization with 10 to 30 times better
CVs than the conventional Hg vapor lamp [9]. The autofocus cir-
cuit [8] was modified for brightfield tissue section scanning by
adding a larger integrating capacitor, 1100 nF, to handle the in-
creased brightfield sharpness signal from hematoxylin-stained
tissue. A monochrome CCD camera (Cohu, San Diego, CA,
model 6612-3000, 8- or 10-bit digital output with 659× 494
9.9× 9.9 µm2 pixels) captured the images and the software
cropped them to 640× 480. A Nikon Eclipse 300 microscope
was used with 20× 0.50 NA Plan Fluor Ph1 DLL and 40× 0.95
NA Nikon Plan Apo objectives. The areas magnified to each
pixel in the CCD camera (calibrated using a Nikon microm-
eter with 10 µm per line) were 0.538× 0.538 µm2/pixel and
0.270× 0.270 µm2/pixel, respectively, for fields of view of
344× 258 µm2 and 173.0× 129.7 µm2, respectively. Although
some of these are phase contrast objectives, a brightfield con-
denser was used. Theoretically, the phase ring in the objective
alters the frequency spectrum of the image by performing op-
tical Fourier filtering, but this effect is expected to be subtle
and we could not discern any differences in the images obtained
using phase objectives with a brightfield condenser. This instru-
mentation operates robustly on large scan areas in experiments
on cell-by-cell analysis of 5 million cytocentrifuged cells per
slide that found as few as 1:20 million cells in ultra-rare cell
detection [10].

1) Scanning the Slide and Storing the Images (Steps 1 and 2):
Slide scanning and data storage were carried out as follows. The
slides were placed on the HTM system, the operator entered the
positions of the corners of the scan area, focused manually at the
first field of view and initiated the scan of step 1 in Fig. 1. The
system autofocused on every field and remained at or near focus
even over areas with no tissue [8]. For the microarrays, about
6,000 RGB images were acquired automatically (and stored as
step 2 of Fig. 1) by scanning in a raster pattern Cohu CCD
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Fig. 2. One field of view is shown from a scan of a normal breast tissue core
stained with hematoxylin and DAB. This is 1 of 6,000 images that compose the
scan of the whole TMA area with a 20× objective.

Fig. 3. A reconstruction of a color image from three monochrome channels is
shown (20× objective).

camera mounted via a 1× relay lens and color filters in an au-
tomated filter wheel. An example image is shown in Fig. 2. The
DAB and HRP immunohistochemistry stains cover most of the
visible spectrum. Red-green-blue (RGB) images were collected
using a low pass filter with 50% transmittance at 505 nm, a
band pass filter with a maximum transmittance at 517 nm and
50% transmittance at 500 nm and 570 nm, and a high pass filter
with 50% transmittance at 605 nm, respectively. Images were
stored as 8-bit/color, 24-bit images, and reconstructed as illus-
trated in Fig. 3. The images of each core were then processed,
reassembled and placed in a database, described as follows.

C. Image Processing and Analysis

Automated scanning and image storage steps 1 and 2 of Fig. 1
were carried out by the modified HTM system as described pre-
viously. Our Tissue Chips software, written in Matlab 6.1, then
processed the raw images and loaded them into a database for
viewing and scoring as shown steps 3–6. For reassembly, the raw

Fig. 4. An intensity histogram is shown of the reduced-resolution montage of
the entire tissue microarray. The background and foreground were separated via
a local minimum in a specified intensity range.

images were reduced in resolution by 10 : 1 (down-sampled by
linearly-interpolated averaging of 3.16× 3.16 neighborhoods of
pixels into one pixel) and binary images were produced by auto-
matic intensity thresholding (step 3) to locate the fields of view
representing tissue. Sectioning sometimes breaks the cores into
groups of pieces. The resolution reduction of 10 : 1 was chosen
to so that even small fragments of tissue were retained. In step
4, the fragments of tissue were clustered automatically into a
single grouped data structure for each core (as described fur-
ther below). In step 5, the grouped data structures were used
to control reconstruction of a montaged image for each core.
The final montaged images of each core were reconstructed and
stored at the native high resolution of the original scan. The
intervening blank images were then deleted. Finally, in step 6,
thumbnail images (resolution-reduced by 100:1) of each core
were displayed in a regular rectangular grid for confirmation of
the locations.

1) Locating the Tissue Sections in the Images (Step 3): The
tissues were located by the following image segmentation steps.
The RGB images were reduced in resolution by 10:1 to speed au-
tomatic intensity thresholding. Histograms of the three reduced-
resolution RGB channels were averaged together to create a
single grayscale 8-bit intensity profile. The RGB-average his-
togram was smoothed using a Savitsky–Golay filter (available
in Matlab) [21]. Savitsky–Golay filters are convolution filters
of length j that exactly replicate fitting a polynomial of de-
gree k and derivative order l over a given data set (we used
j = 7, k = 5, and l = 0). There are several methods for auto-
matic intensity thresholding for image segmentation including
those by Ramesh et al. [22], Otsu [23], Duda and Hart [24] and
Gonzalez and Wintz [25]. We chose an iterative quadratic fit
(Newton’s method) [26] of the smoothed, averaged histogram
to find the local minimum between tissue section pixels and
background pixels (see Fig. 4). The upper and lower bound-
aries of the quadratic fit range were the two largest peaks in the
histogram (foreground and background). The lower intensity
tissue histogram peak was sometimes broad and generated too
low of a threshold. To compensate, the minimum threshold was
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Fig. 5. The grouping of two fragmented tissue cores (acquired from colon can-
cers sections with a 20× objective) in the microarray using K-Means clustering
in Cartesian coordinates is shown. The black line around each group encircles
the corresponding automatically combined area. The example on the left is an
extreme case of core fragmentation during TMA preparation (the apparent bor-
der region is caused by debris and small pieces of tissue that are not visible at
the resolution shown here).

set to 183 empirically. Intensities above the automatic threshold
were labeled background and intensities equal to or below the
threshold were labeled tissue.

2) Clustering Broken Cores (Step 4): In sectioning the paraf-
fin block, tissue cores often break apart and must be appropri-
ately grouped to preserve the accuracy of the data. The K-
means clustering algorithm [27] provides an automatic method
for grouping objects based on distance. K-means determined
the centroids and boundaries of the individual cores after it was
initialized with the pixel coordinates of the thresholded objects
and K, the total number of expected cores on the slide. Thus,
the K-means algorithm clustered broken pieces of cores into
single database objects. The grouping of the cores is based on
the Euclidean distances D(p, c) in Cartesian coordinates. The
cost function applied was

D(p, c) =
√

(xp − xc)2 + (yp − yc)2

where x and y are the image coordinates, p is a given pixel,
and c is a given cluster center. Examples of broken cores that
were clustered are shown in Fig. 5. K-means clustering regroups
broken pieces nearest each other.

Choosing K in the K-means algorithm is an instance of the
model order selection problem. Although many automated tech-
niques have been proposed, model order selection is still an open
problem in machine learning. Methods such as K-nearest neigh-
bor (KNN), hierarchical clustering (HC), and mean shift (MS)
may also be used for grouping broken cores, however, these
approaches do not resolve the model order selection problem:
in KNN the number of nearest neighbors must be specified, in
HC the granularity of clustering must be chosen, and in MS the
radius of the hyper-sphere must be selected [34]. In our appli-
cation we have chosen K-means since the number of cores is
known during TMA construction.

3) Montaging the Raw Images (Step 5): Thresholding and
clustering provide computer representations of the locations and
pixel maps of each core from the reduced-resolution image of
the entire scan area; each core is uniquely identified and num-
bered. These image segmentation maps were then used to re-
construct high-resolution montage images of each core from

the raw high resolution images in the array of raster-scanned
fields-of-view acquired during the scan. The resulting montaged
images (super-bitmaps) were then stored for later use and the
raw scans containing intervening blank images were deleted.
These super-bitmaps of each core may be stored without com-
pression in BMP format or with lossless compressed with PNG
or TIFF (using LZW) formats. Any core in the resulting ar-
ray of montaged super-bitmaps is then made available by the
software for viewing at zoomed-in native resolution by clicking
on thumbnail images reduced in resolution by 100 : 1.

4) Interactive Correction of Misalignment and Clustering
(Step 6): Mistakes in automatic clustering have not been ob-
served, but are possible. For example, if a core is broken into
distant pieces that lie close to another core, the automatic assign-
ment may be incorrect. Thus, the errors are dependent in part on
the proximity of the cores and the distance between fragments.
If cores are completely missing, initialization of the K-means
clustering algorithm may be incorrect (a potential issue with a
slide loader where differences in core number from slide to slide
might not have been entered manually) and the remaining cores
may not be placed in the proper array location. These errors can
also be controlled by TMA preparation. In step 6, the user can
interactively correct the positions of the cores in the grid and any
mistakes in automatic clustering. Our experience thus far indi-
cates that these kinds of errors are rare enough to be corrected by
user interaction. If errors in K are more common that expected,
other approaches for automatic detection and correction can be
considered.

5) Entering and Displaying Data: A set of 100 : 1 reduced-
resolution, correctly positioned array of thumbnail sketch core
images was stored in a database with each core directly linked
to the montaged, native resolution images as described above.
This enabled creation of a convenient system for viewing and
scoring the images at multiple magnifications, at the discretion
of the operator. Our Tissue Chips software creates a numbered
display of thumbnail images of the cores through which a series
of higher magnification views and options for data entry are
available by mouse clicks. Tissue Chips includes information
input and retrieval options, including tumor histological grade,
patient information, diagnosis and treatment, as well as the po-
sition of a given core in the array (e.g., for making corrections as
described above). Users can populate the database in two ways:
by manually typing the information into the windows shown,
or by importing the data from existing databases in standard
formats (e.g., tdf, cdf). The fine cellular detail that is sometimes
important for diagnostics can be displayed quickly and conve-
niently as needed at resolutions as high as the raw acquisition.

III. EXPERIMENTAL RESULTS

Fully automated histological image acquisition was tested
firstly on conventional tissue sections stained with hematoxylin
and eosin (brightfield) and DAPI (fluorescence), and secondly
on TMAs stained with hematoxylin and DAB. Figs. 6 and 7
show example images from large tissue sections, and Fig. 8
shows examples from TMAs. Fig. 6(left) shows a 100:1 reduced-
resolution montage of 9× 9 fields of view (of a 1.12× 1.49 mm2
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Fig. 6. Left: A downsampled (100:1) montage is shown of 9× 9 fields of view
(grid superimposed) of a 1.12× 1.49 mm2 area acquired with a 40× 0.95 NA
Nikon Plan Apo objective. The specimen presented is a section of hematoxylin
and eosin stained prostate adenocarcinoma. Right: the selected field of view is
shown at native resolution.

Fig. 7. Breast cancer tissue stained with DAPI is shown. Left: A montage
(51× 51 fields of view) of a 1.27× 1.69 cm2 area containing a tissue section
scanned with a 20× 0.5 NA Nikon objective is shown. Right: One field of view
is shown at native resolution.

area) from the middle of a prostate adenocarcinoma tissue sec-
tion scanned with a 40× 0.95 NA objective. The right-hand
portion of Fig. 6 shows a selected field of view at native res-
olution. The depth of field of a 0.95 NA objective is 0.55 µm
(d = λ/NA [2], [28] λ = 500 nm), which is much smaller than
the 5-µm tissue section. The autofocus algorithm finds the best
combined focus for the entire field of view as tested through
several focus positions. This drives it to select the axial center
of the section. As can be seen in the native resolution image
(Fig. 6, right), sharply focused tissue components are visible
throughout the field of view. Most of the nuclei appear in focus,
with only a few probably lying outside this plane of focus. All of
the fields of view in this scan demonstrated high focus quality.
Precise autofocus in the axial center of the tissue section at each
field can produce sharply focused images even where section
thicknesses vary.

The ability to scan fluorescently stained samples was tested on
large breast cancer tissue sections stained with the DNA-binding
fluorochrome DAPI. The 51× 51 field-of-view montage (2× 3
cm2 area) shown in Fig. 7 (left) was scanned using a 20× 0.5
NA objective (left). A selected field of view is shown on the
right at native resolution. The images were all sharply focused
and the brightly stained cell nuclei are visible along with dimly
stained cytoplasmic and extracellular matrix staining. Note that
the section was broken into two larger pieces and several very
small fragments around the periphery. It is common to place
more than one tissue section on each slide in clinical practice.
The automatic clustering algorithm groups the fragmented tis-
sues into the number of tissue sections supplied by the operator.
Thus, images of conventional slides, with more than one tissue
section per slide can also be archived by section when multiple

fragmented sections are placed on the same slide and whether
stained for fluorescence or brightfield.

Tissue microarrays represent a much larger number of tissue
sections on a single slide to be organized, archived and scored.
Fig. 8 shows the low magnification (100 : 1 reduced-resolution,
upper left), medium magnification (middle left) and high mag-
nification (lower left) images of a TMA with 162 cores (9× 18).
The low magnification images can also be displayed in a
regular rectangular array pattern as shown at the upper right.
The user can select individual cores for display at medium and
high resolution for scoring and data entry (lower right). Images
can also be displayed at medium resolution in sequence for scor-
ing. High resolution views are available with a mouse click at
any time if detailed display is needed for diagnosis or scoring.

Automatic acquisition and collation of images for scoring
provides a platform for easily creating, accessing and manip-
ulating the information in a database. When the scores and
images are linked to the clinical information about each core,
the data entry and retrieval shown on the right in Fig. 8 can
be generalized for searching databases for expression patterns
and predictors. Complete clinical information (including treat-
ment and outcome data) can be stored on other databases along
with references to the TMA images and scores for advanced
prognostic studies that protect patient confidentiality.

The Tissue Chips software developed to extract, montage,
and archive images and provide a digital interface for data en-
try can be applied to raw images collected on any system. To
demonstrate this, a TMA was sent to Aperio Technologies Inc.
(Vista, CA, www.aperio.com) for scanning. Raw images were
extracted through the Aperio software interface and processed
by Tissue Chips to produce the 100:1 reduced-resolution image
in Fig. 8 (top right, upper). The automatically reconstructed tis-
sue cores are also shown arrayed in Fig. 8 (top right, lower) for
comparison with the raw reduced-resolution array. This array
of extracted cores was aligned in Fig. 8 by using rectangles of
equal size instead of the variable sized ones at the upper left of
Fig. 8.

IV. DISCUSSION

This report demonstrates methods for automated preprocess-
ing, extraction, reconstruction, display, and archiving of images
derived from tissue sections and TMAs. Both our own slide scan-
ning method and that of Aperio’s involves scanning the entire
area containing the tissue sections at the prescribed final resolu-
tion. While in continuous-scanning systems little or no time is
lost imaging blank areas because the system is already moving to
the next tissue core, imaging the blank areas increases scanning
time in our IC-100 compatible system. An alternative automated
method is to scan at low magnification/resolution to first obtain a
map of the tissue sections and then reposition for imaging each
tissue section (e.g., in instruments by Zeiss, Universal Imag-
ing Corporation, Biogenex Laboratories, Bacus Laboratories,
and Applied Imaging Corporation). In automated fluorescence
TMA analysis reported by Camp et al. 2002, a 512× 512 µm2

inscribed image (1024× 1024 pixel images for 0.5× 0.5 µm2

sampling and 1.0 µm optical resolution that undersampled a
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Fig. 8. Tissue Chips display, scoring and data entry options are shown. UL: A reconstructed colon cancer microarray is shown with thumbnails of core images
displayed in a rectangular array matching the layout on the slide. A mouse click on one of the thumbnails pops up the full screen version of the core image (ML).
Any area of interest can be viewed at native magnification (LL). From both full screen (ML) and native magnification (LL) views, the properties of the core can
be annotated using the properties button. UR: Automated core segmentation performed on images acquired on the commercially available system Aperio system.
Top: Reduced-resolution (100:1) montage of all fields of view. Bottom: Screen shot of Tissue Chips, where the cores have been automatically extracted from the
montage and properly arrayed for future analysis.
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10× 0.5 NA objective capable of d = 0.6λ/NA = 0.6 µm op-
tical resolution at wavelength λ = 0.5 µm) was collected for
each 600 µm diameter core after the cores were located by a
scan with 7 µm sampling [29]. If the technique allows only for
one image of each core, TMAs with larger cores would be ei-
ther more incompletely imaged under the same conditions, or
more undersampled. Acquiring one image per core may limit
flexibility for acquiring high resolution images of each entire
core. On the other hand, a low resolution scan may not require
autofocus if the only goal is to grossly locate the tissue sec-
tions. Low resolution scans can miss small fragments of tissue
and relocating for only a single image might miss some large
fragments of broken cores in TMAs. For some, it may be pri-
marily a matter of convenience to have images representing all
of the tissue section areas on the slide. However, if this con-
venience can be achieved at a reasonable speed, then there is
an advantage to scanning the entire area once at final resolu-
tion because all raw images necessary to completely reconstruct
fragmented sections are acquired. Scanning the entire area is
also more general because it allowed creation of an algorithm
that makes no assumptions about the pattern of the tissue sec-
tions. The software we developed will group and reconstruct a
single image from many images of tissue sections of any size and
positioning.

With automated image collection now a reality, the next step is
to automate scoring. For IHC, automated scoring is performed
by densitometry of the expression stain, which must first be
separated from the hematoxylin signal. We recently demon-
strated the utility of independent components analysis (ICA)
and nonnegative matrix factorization (NMF) for unsupervised
multispectral decomposition of DAB and hematoxylin [30]. Un-
supervised decomposition, or unmixing, creates pure DAB and
hematoxylin images from which DAB densitometry can be per-
formed directly. Since these techniques do not require spectral
calibration of the different stains, they offer a powerful advan-
tage for automated densitometry.

With densitometry automated, the final step is to differentiate
normal glandular and stromal elements from cancer tissue to
obtain independent expression scores. Camp et al. used poly-
clonal anti-cytokeratin and anti-α-catenin immunofluorescence
to automatically differentiate breast and colon cancer cells from
stroma and obtain colocalized integrated intensity scores spe-
cific to cancer [29]. It was assumed that cancer biopsies con-
tained only cancer and stromal tissue, without contaminating
normal tissue and stroma (personal communication). However,
the specificity of cancer versus normal glandular staining has
not been explored systematically on a cell-by-cell basis. While
cytokeratins are widely used to detect breast cancer cells in tu-
mor tissue, lymph nodes, bone marrow, and blood, it has been
known for many years that this staining technique is not 100%
specific. Primary adenocarcinomas and their metastases have
demonstrated greater than 95% tumor cell staining [32]. How-
ever, in this same study, benign breast lesions showed a “mosaic
pattern” of staining. In another study of surface antigen expres-
sion of breast cancer cells in micrometastases in bone marrow,
the surface antigens were shown to have different expression
patterns than the primary tumor [33]. Therefore, while it is pos-

sible that a specific immunostain, or set of immunostains will
be highly correlated with tumor tissue in a given tissue section
or TMA core, errors are likely due to the inherent heterogene-
ity of cancer, and this error rate is as yet unknown. Given the
frequent admixture of normal epithelium and invasive cancer
cells, it is possible that the subset of tumor tissue in a particu-
lar TMA core will exhibit little or no staining even if the bulk
of the tumor is marker positive. Nevertheless, this approach
enables complete automation with compelling simplicity and
appropriate cocktails of antibodies may become sophisticated
enough to differentiate tumor, normal tissue, and stroma in
TMA applications, especially given the powerful statistical ad-
vantage of automating the reading of large TMA cohorts. The
Camp et al. study, for example, showed that automated anal-
ysis had better reproducibility (R = 0.824 versus R = 0.732)
and slightly outperformed manual analyses at predicting patient
survival based on estrogen receptor in breast cancers. With the
addition of unsupervised spectral unmixing [30], it should be
possible to apply the same principles to immunohistochemistry
stains.

The predictive value of the data analysis and the speed of
the system will dominate the performance criteria. In addition,
the extent of automation is an important variable. Manual in-
terventions generate substantial speed penalties. As automation
improves, the speed should be reported as the time required for
analyzing an appropriate test set of TMA slides (say 20 slides of
50–2500 core arrays) to ensure inclusion of all required steps.
Fully automated techniques such as those used by Camp et
al. [29] will likely provide the fastest, most consistent perfor-
mance. The combination of comprehensive scanning and Tissue
Chips image reconstruction/display reported here contributes
the complete front-end automation required for enabling scan-
ning of a large number of slides from a slide loader and loading
completely reconstructed core images into a database. The re-
sulting images can be read manually and enable research on the
development of methods for fully automated scoring, including
texture segmentation methods that may separate normal glan-
dular elements, cancer and stromal tissue in classically stained
sections. The flexibility of scanning fluorescence (and reflec-
tion) or brightfield images enables exploration of other staining
and analyses techniques. Given that pathologists prefer bright-
field stains for diagnoses, this flexibility may be important for
fast comparisons between manual (brightfield) and automated
scoring techniques even if based on fluorescence.

An important practical concern for scanning the area exhaus-
tively is speed. The instrument used here [8] can achieve a peak
speed of about 3 fields/s. With a scan area of 5,000 fields, it
would acquire the images and reassemble them into the database
in about 30 min with an RGB camera. Aperio’s system oper-
ates in a continuous-scanning fashion that decreases scanning
time to a few minutes, but requires setup time for each slide
to prescan a grid of focus points to guide continuous scanning.
The number of grid points needed and the prescan time required
depends on the depth of field (or NA) of the objective. We have
demonstrated continuous scanning with closed feedback autofo-
cus [19], [20] that eliminates the need for prefocussing and will
also reduce the scanning time to a few minutes. The existence of
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these approaches for scanning TMA slides at high speed bode
well for the convenience and flexibility of exhaustively scan-
ning the whole area and allowing the software to locate tissue
sections arrayed in any pattern, whether regular or irregular.

V. CONCLUSION

Databases combining manually acquired TMA images and
study results with clinical diagnostic information have been
reported [12], [31]. Our automated software methods will
enable routine processing of automatically reconstructed super-
bitmaps, or montaged images, of each TMA core or tissue sec-
tion by the computer, within a database, for permanent archiving.
For pathologists, this can be linked to a reporting mechanism to
automate routine diagnostic activities. Persistence in a clinical
database will enable real-time recall of images and reports with
subsequent tissue samples for diagnostic comparisons of tumor
progression. Linking the images, experimental methods (stains
and molecular targets) and scores to the clinical information will
greatly simplify TMA research.

Advances in automation are important for reading large
numbers of tissue samples. Automation will facilitate creating
databases of information easily accessible by researchers. We
have presented a set of automated preprocessing, reconstruc-
tion, display and organization (archiving for database storage)
techniques that automate tissue section and TMA scanning for
visualization at high resolution with fluorescence or brightfield
microscopy. Combined with additional image processing meth-
ods, including unsupervised multispectral stain-component de-
composition for automated densitometry [30], these techniques
bring us closer to the level of automation required for unat-
tended scanning of large numbers of slides at the full range of
magnifications available on light microscopes.
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