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Abstract 

Manual selection of single particles in images acquired using cryo-electron microscopy 

(cryoEM) will become a significant bottleneck when data sets of a hundred thousand or even a 

million particles are required for structure determination at near atomic resolution. Algorithm 

development of fully automated particle selection is thus an important research objective in the 

cryoEM field.  A number of research groups are making promising new advances in this area. 

Evaluation of algorithms using a standard set of cryoEM images is an essential aspect of this 

algorithm development. With this goal in mind, a particle selection “bakeoff” was included in the 

program of the Multidisciplinary Workshop on Automatic Particle Selection for cryoEM.  

Twelve groups participated by submitting the results of testing their own algorithms on a 

common dataset.  The dataset consisted of 82 defocus pairs of high magnification micrographs, 

containing keyhole limpet hemocyanin particles, acquired using cryoEM.  The results of the 

bakeoff are presented in this paper along with a summary of the discussion from the workshop.  

It was agreed that establishing benchmark particles and using bakeoffs to evaluate algorithms are 

useful in promoting algorithm development for fully automated particle selection, and that the 

infrastructure set up to support the bakeoff should be maintained and extended to include larger 

and more varied datasets, and more criteria for future evaluations.  

 

Key Words: electron microscopy; single-particle reconstruction; automatic particle selection; 

image processing; pattern recognition. 
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1. Introduction 
 
Selection of individual particles from digitized electron micrographs begins to represent a labor-

intensive bottleneck in single-particle cryo-electron microscopy (cryoEM) when the size of the 

data set that is needed starts to exceed a few tens of thousand molecular images. The automation 

of particle selection has been a topic of interest for many years (for a review see: Nicholson and 

Glaeser, 2001). Apart from the task of selection of images of spherical virus particles at 

relatively high defocus, computer algorithms alone have not been as effective as most users wish 

them to be. As a result, current algorithms for automated (computer) selection are primarily used 

to select candidate particles, after which one manually edits (prunes) the list of candidates by 

visually inspecting and accepting - or rejecting - every one of the candidates. While semi-

automated particle selection of this type is a big aid when one aims for data sets of ten or twenty 

thousand particles, the need to develop fully automated algorithms becomes rather important 

when one aims for data sets of a hundred thousand or even a million particles. Such large data 

sets are a prerequisite for cryoEM reconstructions that approach the resolution limit associated 

with large, single particles (Henderson, 1995; Glaeser, 1999). As a result, developing fully 

automated algorithms is an important research objective. 

 

As is apparent from the papers presented at the recent Workshop (Multidisciplinary Workshop 

on Automatic Particle Selection for Cryo-electron Microscopy, The Scripps Research Institute, 

April 24 - 25, 2003), a number of research groups are making promising new advances on the 

difficult task of developing algorithms for fully automatic particle selection. It is also apparent 

that the outcomes achieved with alternative recipes must ultimately be evaluated by comparing 

how successful each one is when tested on a standard set of electron micrographs. The felicitous 
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concept of holding a “bakeoff”, in which each chef is restricted to using a common set of raw 

ingredients (micrographs), emerged from this metaphor of “algorithm as recipe”. Thus, to initiate 

what could become a tradition, such a bakeoff was included in the program of this workshop, and 

the results are presented in this paper.  In summary, 12 groups participated in the bakeoff, of 

which 2 groups manually selected particles and the others used automated algorithms. Table 1 

includes a summary of the bakeoff participants in terms of representatives and group affiliations. 

 

Ideally, to fully evaluate the performance of various approaches, we should use a range of 

particle datasets from the simplest spherical virus particles to the most difficult very-low-contrast 

asymmetrical particles. Unfortunately, such datasets are not readily available and thus, rather 

than deferring the problem to a later time, we chose to get started by using an available annotated 

dataset of images containing keyhole limpet hemocyanin (KLH) particles (Zhu et al., 2003).  As 

a result, the performance of individual algorithms reported in this paper is limited to the selection 

of the KLH particles. It is understood that the KLH dataset is not “ideal” and that algorithms 

might perform completely differently on datasets that represent more (or less) challenging 

problems.  However, in spite of these limitations, we believe that the results of the bakeoff 

provide a useful starting point for a discussion on how best to compare and evaluate algorithms 

and how to set up more general standard datasets for further evaluations.  Thus, although 

selecting the KLH particles presented a relatively "easy" problem in particle selection, the 

bakeoff served as a common basis for us to better understand how to build benchmark particle 

datasets as well as how to set up criteria for evaluating methods of particle selection. Given the 

specific nature of the dataset, the major goal of the bakeoff is focused more on how to compare 
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and contrast the results of different algorithms and less on the performance of individual 

algorithms.   

 

2. Material and Methods 
 

2.1 Common Dataset 
An ongoing effort at the National Resource for Automated Molecular Microscopy (NRAMM) is 

to develop benchmark cryoEM datasets that can be used to test methods for automatic particle 

selection. As part of the effort, an annotated dataset of cryoEM images containing keyhole 

limpet hemocyanin (KLH) particles has been established (Zhu et al., 2003) and was used for the 

bakeoff. The annotated dataset consisted of 82 defocus pairs of high magnification images of 

KLH particles, locations of around 1000 side view particles in the images manually selected by 

Mouche (one of the participants), and a preliminary 3D reconstruction. The defocus pairs were 

acquired at a nominal magnification of 66,000x and a voltage of 120 Kv, using the Leginon 

system [Potter et al., 1999; Carragher et al., 2000] and a Philips CM200 transmission electron 

microscope equipped with a 2048 x 2048 CCD Tietz camera. The first image of each defocus 

pair was acquired at near to focus conditions (e.g., 1µm under focus) and the second one at 

farther from focus conditions (e.g., 3µm under focus). The time interval between the two 

exposures was approximately 20s due to the time required to read out the digital image from the 

camera. At this magnification, the pixel size is 2.2Å on the specimen scale and the accumulated 

dose for each high magnification image area was about 10 e-/Å².  The dataset is publicly 

available at: http://ami.scripps.edu/prtl_data/. 
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2.2 Bakeoff Rules 
An example of a defocus pair of images is shown in Figure 1. The KLH didecamer appears in 

two main orientations, as rectangular side views and as circular top views.  Images typically also 

contain intermediate views of broken molecules and aggregates of two or more particles.  

Bakeoff participants were required to select only side view KLH particles in the farther from 

focus image of each defocus pair. This requirement was imposed because no top view KLH 

particles were originally manually selected in the common dataset. It is widely accepted that 

using overabundant type of views  (here the top views) may lead to later reconstruction artifacts 

(Boisset et al., 1998); therefore, the top views are usually not used for 3D reconstruction of KLH 

maps—the major driving force of automatic particle selection. This explains why the top view 

KLH particles were not annotated in the common dataset. 

 

A call for participation and a specification for the bakeoff, including how to submit particle 

selection results, the deadline for submission, and the suggested method of assessing different 

results, were made known to the participants. Each participant was required to provide the center 

coordinates of selected particles in an ASCII file, each row of which records the coordinates of a 

particle, with the origin of the coordinate system being at the bottom-left corner of the image. 

Each participant was also asked to submit a text file containing any information that is important 

or would be helpful to other people in understanding the results. (More detailed information 

about the bakeoff can be found at: 

 http://nramm.scripps.edu/seminars/2003/prtl_work/bakeoff.htm.) 
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2.3 Algorithms/Criteria for Particle Selection in the Bakeoff 
As mentioned in the Introduction, twelve groups participated in the bakeoff, of which Mouche 

and Haas manually selected particles using their own criteria and the others used automated 

algorithms. The 10 algorithms used by the other participants can be more or less grouped into 

two classes. Class I algorithms are based on cross-correlation using templates (references), 

generated from either a 3D reference structure or the averages of a set of manually picked 

particles.  These are called template matching based approaches, including Bern’s, Ludtke’s, 

Penczek’s, Roseman’s, and Sigworth’s algorithms.  Class II methods are based on feature 

recognition where algorithms work by way of recognizing local or global salient features 

inherent to particle images without the use of a 3D reference structure, called feature-based 

approaches, including Bajaj’s, Hall’s, Mallick’s, Volkmann’s, and Zhu’s algorithms. Unlike the 

other feature-based approaches reported here, Mallick’s algorithm uses machine learning as the 

basic tool to learn both discriminative features and a cascade of classifiers for particle detection 

(See Mallick et al, this issue).  There are distinct advantages to each of these approaches and 

these are described later in this section. Algorithms requiring a 3D model and those starting from 

pure features represent two different starting points to the task of particle selection or, in other 

words, stand at opposite ends of a continuum of methods for automatic particle selection. From 

this point of view, some participants’ algorithms may be more accurately classified into 

somewhere between the two opposite ends, for instance, Hall’s algorithm. For completeness, a 

brief description of all algorithms and the criteria used for the manual selections are given below.  

 

2.2.1 Manual Selection Criteria 
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Mouche’s Criteria The KLH didecamer presents two main orientations, a rectangular side view 

and a circular top view. From the 82 images obtained with the CCD camera, 1042 single 

particles were manually and interactively selected, using SPIDER and WEB (Frank et al., 1996). 

Only rectangular side views and intermediate orientations were selected. No aggregate or 

"single" particle showing a different length (shorter or longer) was manually picked. 

Furthermore, to avoid any reconstruction artifacts due to overabundant views, no circular top 

views were selected.  

 

Haas’ Criteria Particle picking was guided by rules as follows: (i) Only particles of the 

rectangular side view were selected; (ii) Particles should not overlap; (iii) Particles should not 

have any defects (dissociated, contaminated with ice crystal deposits, etc.); (iv) Particles should 

be clearly visible (not too thick an ice layer). 

 
2.2.2 Template Matching Approaches 
 

Template matching is a basic technique used in many signal processing and image analysis 

applications for detection and localization of patterns in signal corrupted by noise.  The 

technique is based on a linear image formation model, i.e., it is assumed that the observed signal 

is a sum of the original, uncorrupted signal and noise; the latter is further assumed to be 

stationary with zero average, with a known power spectrum, and to be uncorrelated with the 

signal.  If the noise is white, the template matching reduces to the correlation technique for signal 

detection.  For colored noise, one constructs a linear Matched Filter that takes into account the 

power spectrum of the noise.  The popularity of the template matching technique is further 
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enhanced by the fact that the matched filter can be shown to be an optimal Bayesian classifier, 

i.e., it minimizes the probability of the detection error. 

 

The image formation model underlying the template matching approach corresponds well to the 

accepted model of the image formation process in the electron microscope in its linear, weak-

phase approximation [Wade, 1992].  Thus, if the necessary parameters of the EM transfer 

function could be estimated, the template matching would provide results that, at least in theory, 

could not be surpassed by the usage of any other linear method. The only remaining problem is 

of a practical nature: how to create a set of 2-D template images that would be exhaustive, i.e., 

would contain all possible views of the known 3-D template structure, but it would be 

sufficiently small to make the application of the method practical.  Since in EM the goal is the 

detection of any of the possible 2-D projections of the known 3-D structure, the number of 

templates can be very large.  Not only all possible projection directions have to be considered, 

but also all the possible in-plane orientations of projections have to be generated.  In order to 

reduce the number of templates, two possible strategies have been suggested.  In the first strategy 

(e.g., Sigworth's algorithm), principal component analysis is used to express the large number of 

original templates as linear combinations of a small set of eigenimages. In the second (e.g., 

Penczek's and Bern's algorithms), clustering techniques are applied to group the templates and a 

small number of class averages are then used as templates. 

 

The main weakness of the template matching technique is that it results in a relatively high rate 

of false positives.  Any objects in the field that have about the same size and average intensity as 
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the templates will yield high correlation coefficients.  Thus, further post-processing of the 

template matching results is necessary in order to improve the performance of this technique. 

 

Bern's Algorithm The algorithm starts by projecting an initial reference 3D map in many 

different directions to produce synthetic 2D templates.  The templates are clustered, and cluster 

averages are then cross-correlated with the micrographs, using the fast Fourier transforms (FFT) 

for speed, to give a set of candidate picks. Afterwards, the candidate picks are screened by 

scoring them using a probabilistic model of cryo-EM image formation; the score is the ratio of 

the probability of generating the candidate pick by cryo-EM imaging of a template to the 

probability of generating the candidate by a pure noise process. In scoring, the original synthetic 

templates are used, rather than the cluster averages.  In principle, this algorithm allows the use of 

almost any noise model, even one learned from the data as in Mallick's algorithm, but in their 

bakeoff entry, Bern et al. (see the paper in this issue) used a simple noise model with 

independent, identically distributed pixels, whose distribution was determined empirically. This 

noise model gives an algorithm similar to classical matched filtering (Sigworth's algorithm), but 

with less emphasis on the “power term” (grayscale variance) of the candidate picks, although not 

as severely normalized as using the correlation coefficient (Roseman's algorithm). 

 

Key parameters in the algorithm include the number of 2D templates and their Euler angles, the 

number of clusters of templates, and the score thresholds for accepting candidate picks.  Bern et 

al. used 35 templates, 5 top views and 30 side views (planar rotations of 0, 6, 12, ... degrees of a 

master side view, which was rotationally averaged about the KLH's axis of symmetry); they used 

5 clusters, one of which consisted of top views; and they set the score thresholds based upon 
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manual examination of the picking results for a few micrographs. The algorithm picked both side 

and top views, but only the side views (determined by which 2D template they matched with 

highest score) were included in the bakeoff entry. The processing time of the algorithm is 

approximately 2 minutes per micrograph. 

 

Ludtke’s Algorithm A particle with a good side view was selected as a reference. High-pass and 

low-pass filters were applied at 1 pixel and 70 pixels respectively. A stack of reference images 

for use with “boxer/batchboxer”, EMAN's interactive/batch particle selection tool (Ludtke et al., 

1999), was generated by rotating the reference particle in 5 degree steps. Boxer and batchboxer 

both use a multi-reference correlation based scheme with several thresholds. The correlation 

function is based on Alan Roseman's fast local correlation technique (Roseman, 2003). A single 

image was loaded into boxer and a reasonable set of threshold parameters were selected. This 

single set of thresholds was then used to automatically select particles out of all high 

magnification images.  

 

Penczek’s Algorithm A template matching approach was used for particle selection, taking 

advantage of the existing, intermediate-resolution model of the structure.  The approach 

comprised three steps.  In the first step, a set of possible particle views was generated using the 

available reference structure.  The template images were constructed as linear combinations of 

available particle views using the rotationally invariant K-means clustering technique (Penczek 

et al., this Issue).  Since the goal was to detect only the side views in the micrographs, only the 

side views of the reference structure were selected and their number was reduced to 3 using the 

clustering technique.  Next, in-plane rotated copies of the template images were created using the 
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step size of 10 degrees.  This resulted in 108 templates.  In the second step, the noise 

characteristics for all micrographs were established using an automated Contrast Transfer 

Function estimation procedure where it is assumed that the radially averaged power spectrum of 

the whole micrograph, calculated using the method of averaged overlapping periodograms, 

yields a robust estimate of the noise power spectrum.  Concurrently, the CTF parameters were 

automatically calculated based on estimated power spectra.   Third, the noise power spectrum 

and the CTF parameters were used to construct a matched filter (Penczek et al., this Issue). This 

was done by applying the appropriate CTF to the respective micrograph, the product was divided 

by the noise power spectrum, and finally the result was normalized using the fast Fourier-space 

technique to estimate moving average and moving variance using the window size corresponding 

to the particle size.  The Fourier transform of the normalized result was multiplied by the Fourier 

transforms of appropriately padded template images to yield a set of cross-correlation functions.  

To speed-up the procedure, the input data was decimated twice.  Detection criteria were: the 

maximum correlation coefficient with one of the reference images must be above a pre-selected 

threshold; the maximum correlation coefficient is accepted if there are no larger correlation 

coefficients within the neighborhood corresponding to the particle size.  

 

Roseman’s Algorithm The FindEM (Roseman, 2003) program was used to select the particles. It 

uses local correlation with templates to detect occurrences of objects similar to the templates in 

the micrograph fields.  The advantage of the local correlation algorithm is that the density scaling 

between the template and the local region of the micrograph being compared is optimized, 

whereas the conventional correlation applies a global normalization and details beyond the local 

region of interest can distort the correlations.  
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There are two stages to the procedure. First the templates are made and the correlation maps are 

calculated. Initial templates were generated by averaging 20 hand picked particles from the first 

of the images in the series, which were optimally aligned using an iterative orientation and cross-

correlation procedure. A template was created for each of the two predominant views, the side 

view and top view. Each template was correlated in turn with each micrograph image, covering 

all orientations of the template relative to the micrograph by successively rotating the template in 

steps of 4 degrees. The final correlation map output, for each template, indicated the maximum 

correlation at each point, over all orientations. The images and templates were reduced in size by 

a factor of 4, and band-pass filtered in the range 30-2000 A. 

 

In the second stage, peak positions from the correlation maps are extracted and filtered according 

to a correlation-coefficient threshold and inter particle distance criteria (or particle size). When 

peak positions from different templates coincided, the particle was assigned to the class of the 

template it correlated best with. The particle size was chosen to include side-views that were 

almost touching, but not overlapping. The parameters were optimized by examining the particles 

chosen on ~five images, using the graphical interface that is part of the FindEM package. This 

allows interactive adjustment of the parameters while the images are displayed with the selected 

particles overlaid. These parameters were then used to automatically select the particles from the 

set of 82 images. The procedure was reiterated once, submitting the average of all selected side 

views and top views as new templates. The particles detected as side-views were submitted for 

the bakeoff. 
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A manual de-selection option is also available but was not used for the particle set submitted for 

the bakeoff, which was completely automatically generated. More details on the procedure and 

the exact parameters used are given in the accompanying paper (Roseman, JSB, this issue.). The 

time taken to find the ~1000 side view KLH particles for the bakeoff was 56 minutes per 

template, using a DEC alphaEV6 600 MHz computer. 

  

Sigworth’s Algorithm This is a model-based, multiple-reference detector that uses a white 

Gaussian noise model.  We first get an estimate of the circularly averaged power spectrum of the 

background, and build an inverse filter to "whiten" the noise.  Each data image is processed by 

this filter.  From the 3D model we build a large set of representative projections, and filter them 

with the CTF and the same inverse filter to make the references.  From these we use singular 

value decomposition (SVD) to build a small set of eigenimages spanning the set.  FFT-based 

cross-correlations are done with the eigenimages to save time, but then the results are converted 

to, in effect, cross correlations with the references.  Two statistics are computed:  (1) the 

maximum correlation with one of the references, to give a "motif amplitude"; and (2) a weighted 

sum of the power spectrum of the residual, after subtraction of the best-fit reference, from the 

putative particle image.  Thanks to the pre-whitening of the original image, both statistics have 

predictable distributions.   

 
In the case of the KLH particles, images were first binned to reduce them to 512 x 512 in size.  

Power spectra from "empty" regions of some of the images were used to construct the inverse 

filter.  The references were 64 rotated "side views" of the KLH particle.  From the SVD the first 

13 eigenvectors were kept.  Allowable values for the two statistics were chosen by comparison 
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with manual picks.  After setting up the references, picking took ~15 s per image using Matlab 

on a fast PC. 

 
2.2.3 Feature-based Approaches 
 
In comparison to template matching where a large number of image pixels are used, feature-

based approaches usually rely on a small set of local or global salient features of particle images, 

including geometric features such as positions of corners, line segments, contours, etc., and 

statistical features such as moments, and so on.  Procedures for feature-based approaches vary 

widely but three major components may be identified: the definition of a discriminative feature 

set, the extraction of these features from an image, and the recognition algorithms.  In addition to 

less demanding computational requirements, in principle, distinctive features invariant to scale, 

rotation illumination variations, and/or 3D projection can be extracted for fast object detection 

(Lowe, 1999) and thus it is quite desirable for the task of particle selection. The main weakness 

of feature-based approaches is that it may be difficult to extract distinctive features pertinent to a 

specimen when dealing with very low-contrast images.  

 

Bajaj’s Algorithm The algorithm is designed only for detecting circle-like and rectangle-like 

particles, which is similar to the Hough-transform-based method (Zhu et al., 2003) in a sense that 

both of them have an initial step of edge detection. The method is fully automatic and the steps 

are listed as follows: (1) Detect the edges using Canny edge detector (Canny, 1986); (2) Clean 

the edges that are too short; (3) Compute the Voronoi diagram and distance transform of the 

edges using a list-processing approach (Guan and Ma, 1998); (4) Use the distance transform map 

to detect and refine the circles; (5) Use the Voronoi diagram and distance map to detect and 

refine the rectangles; (6) Let the detected circles compete with the detected rectangles, with the 



16 

assistance of distance maps; In addition, a detected particle is considered invalid if part of its 

shape goes beyond the boundaries of the image region for more than 5 pixels. It is also assumed 

the size of the circle and that of the rectangle are fixed for all detected particles. However, it 

could be possible for us to improve our algorithm to detect the particles with flexible sizes.  

  

In this submission, we use the same set of parameters for all the images such that one can see 

how robust our algorithm is with respect to the choice of the parameters. The algorithm is tested 

on SGI Onyx2 with one processor and the overall computational time is between 20-30s per 

image, depending on the number of particles shown in an image (with size 1024 x 1024 pixels). 

   

Hall’s Algorithm The algorithm was developed as a general method for automated selection of 

particles, independent of shape, size, image quality, and the availability of a model. Selection is 

carried out in two stages; the first being a template matching stage using a rotationally averaged 

sum of a small number of manually picked particles. The cut off used at this point is such that no 

particles are missed resulting in a very large number of false positives.  The second stage 

involves calculation of a feature vector for each picked region and clustering using a self-

organizing map (SOM) (Kohonen, 1989).  The feature vector is made up of 16 features, 

including 4 statistical characteristics of the total distribution of gray values, 4 textural 

characteristics [Lata et al., 1995] and 8 morphometric characteristics calculated from the largest 

continuous object found when the image is segmented based on local variance [van Heel, 1983].  

The SOM can be automatically interpreted, giving an optimal number of clusters for the data; it 

is then up to the user to select which clusters contain particles.  The method was developed on 
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very noisy low contrast micrographs, and has been demonstrated on RNA polymerase data that 

proved difficult to pick by eye (Hall and Patwardhan, this issue). 

 

Mallick’s Algorithm This is a feature-based discriminative learning approach that learns 

important features derived from the so-called integral image of the original particle image using 

a set of representative examples including both particle and non-particle images (Mallick et al., 

this Issue). The core learning algorithm, Adaboost (Freund and Schapire, 1995), has been 

successfully used in the domain of face detection by Viola and Jones (2001). The approach can 

be divided into an off-line learning phase followed by on-line particle detection. The result of the 

learning phase is to produce a two-category classifier which takes as input a window of a digital 

micrograph (e.g., a 50 x 50 pixel sub-image) and classifies it as either containing a particle or not 

containing a particle. During on-line detection, a detection window is scanned over an input 

micrograph, and for each location (pixel), the sub-image covered by the window centered at that 

location is classified as particle/non-particle. As there will usually be positive responses at 

multiple, neighboring locations for each particle, the results are post-processed using connected 

component analysis (Horn, 1986), and the mean of each component is reported at the location of 

a particle. If the detector is trained to only detect particles in a particular 2D orientation in the 

image plane while particles in a micrograph may appear at any orientation, then the detector is 

scanned multiple times. During each scan, particles in a particular orientation are detected; either 

the detector is “rotated” with each scan, or else the detector is fixed, but the image is rotated. The 

processing time on a micrograph from the common dataset, decimated to 512 x 512 pixel, at 8 

different orientations was about 6 seconds on a 1.3 GHz Pentinum M processor. The algorithm is 

fast, generic, and is not limited to any particular shape or size of the particle to be detected.  
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Volkmann’s Algorithm The particle selection algorithm relies on the use of reduced 

representations. In this approach, the underlying motif is approximated by a small number of 

locations that capture the intensity characteristics of the motif (see Volkmann, this issue). 

Reduced representations can be constructed from models or directly from the data. The reduced 

representation for this application was constructed from the average of 75 hand selected side 

views. This representation was then used for real-space template matching. One advantage of the 

reduced representation strategy is the gain in speed. In this application, a box of 240x240 pixels 

containing a particle side view can be efficiently reduced to 40 locations. For real-space scoring 

functions, this is a gain in speed of a factor of better than 1000, for four times compressed 

images the speed gain is still about 100. For this application, a model-free three-step procedure 

was used. First, the reduced representation template was constructed directly from the data, 

second the real-space template matching module was run on the micrographs using this reduced 

representation, and third a peak recognition program was run for the actual identification of 

particles in the peak image. Peaks corresponding to real particles tend to be sharper than those 

corresponding to random noise or different views. The peak recognition software only picks 

peaks above a certain threshold that do exceed a certain degree of sharpness. These parameters 

(threshold and degree of sharpness cutoff) need to be adjusted to optimize performance. Here, 

two micrographs were picked randomly and the parameters were adjusted to minimize false 

positives. Recently, a fourth step was added to the procedure to increase the number of picked 

good particles while still keeping the false positives to a minimum. Tests indicate that this 

additional step leads to significant improvements over the implementation used for the bake-off 

(Volkmann, this issue). 
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Zhu’s Algorithm A two-stage framework is use for automatic selection of KLH particles. Under 

this framework, a cryoEM image is first decimated to generate a much smaller sized image with 

a coarser resolution but increased signal-to-noise ratio. Candidate particles in the decimated 

image are detected using edge and contour information, particularly the Hough transforms (Zhu 

et al., 2003). Afterwards, candidate particles in the original full resolution image are extracted by 

projecting the coordinates of particles in images with a coarser resolution. The candidate 

particles are then subject to a second stage of processing—pruning false alarms. In this stage, a 

correlation based template matching method is applied to effectively reject low-quality particles 

or junk, using templates generated by aligning and averaging the candidate particles. With this 

two-stage framework, computational efficiency is achieved through the coarse-to-fine strategy 

while the high accuracy relies on the refinement in the second stage. The time required for 

picking side view KLH particles depends on the number of particles in an image, but is roughly 1 

min per image. 

3. Results and Discussion 
 

As described in the Introduction, due to the specific nature of the dataset, the major goal of the 

bakeoff focuses more on how to compare and contrast the results of different algorithms and less 

on the performance of individual algorithms. As we know, even for experts, the final set of 

particles selected from the same set of images may vary from person to person.  Even for the 

same expert, one’s criteria of determining whether to pick a particle may change with time (that 

is, from image to image) during a single experimental session.  For this reason, we currently 

assess the results from different participants by comparing one result against another’s, measured 
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by the false negative rate (FNR) and false positive rate (FPR).  Taking one participant’s result as 

the truth set and another’s as the test set, as illustrated in Figure 2, particles which are selected in 

the truth set, but fail to be selected in the test set, are false negatives whereas particles selected in 

the test set but not in the truth set are false positives. Algorithms that can achieve both a low 

FNR and FPR are considered as having a higher performance and thus more desirable.  Given an 

algorithm, the FNR in general changes in the direction opposite to the FPR.  Therefore, one has 

to make a tradeoff between having a lower FNR with a higher FPR or the opposite based on the 

requirement of the application at hand. For the selection of side view KLH particles to enter into 

the bakeoff, the participants made their own decisions as to whether to select more particles 

(which usually means higher false positive rates) with fewer false negatives or vice versa.  

 

The specific procedure used for calculating both FNR and FPR of one participant’s result against 

another’s is described below. One participant’s picks are taken as the truth set and then the 

other’s as the test set.  A false negative is found if a particle is picked in the truth set but its pixel 

distance to its nearest neighbor in the test set is larger than a predefined threshold dT.  Likewise, 

a false positive is found if there is a particle in the test set whose pixel distance to its nearest 

neighbor in the truth set is larger than the predefined threshold dT. The FNR is then calculated 

based on the total number of particles in the truth set, while the FPR is calculated from the total 

number of particles in the test set. In addition, to establish consistency between algorithms, 

particles from both sets whose pixel distances to the border of the image are less than a 

predefined threshold bT  were removed before the computation of the FNR and FPR. Given the 

average width of the side view KLH particles as bT  (134 pixels) and half of this width as dT  (67 

pixels), a confusion matrix was generated, shown in Table 2.  
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Among the many observations that can be made from Table 2 it is clear that the two manual 

selection results are noticeably different from one another.  Taking Haas’s selections as the truth 

set, the FNR and FPR of Mouche’s results are respectively 2.3% and 11.7%.  In another words, 

Mouche only picked 922 out of the 944 KLH particles selected by Haas in the common dataset 

though he selected 98 more particles.  An example image outlined with particles selected by the 

two participants is shown in Figure 3a. For the 13 particles picked by the two participants in the 

example image only 8 of them were selected by both of them. Three out of the 5 other particles 

merit a further discussion. The 3 particles, marked by yellow arrow signs, have visually almost 

the same image quality, but Haas only selected one of them and Mouche only selected the other 

2. This particular example and the overall difference between the two selection sets further 

demonstrates that different experts may use different criteria when manually selecting particles 

in the same set of micrographs and that the criteria used by a single expert may vary with time or 

from image to image.  Moreover, the criteria used by an expert as to whether to select a specific 

particle may be biased sometimes. As shown in Figure 3b, where the above example image was 

outlined with the particles selected both manually (by Haas) as well as automatically (by Zhu’s 

algorithm), the particle pointed to by a green arrow sign is visually better than the other particle 

pointed to by a red arrow sign, but the former was automatically targeted but not manually and 

the latter was manually selected but not automatically. Had the former one been manually 

selected, the FPR of the machine algorithm would be even lower on this dataset.  As proposed in 

a previous work (Zhu et al., 2003), this actually raises the question “How do we build truth 

datasets of single particles to evaluate machine algorithms?” This question was intensively 

discussed during a special session at the workshop. One suggestion was that the basis for particle 
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selection should be determined purely by the final 3D reconstruction. However it was pointed 

out that the final 3D reconstruction could be biased by the initially selected particles.  Another 

proposal was that evaluation of particle selection algorithms should be independent of the later 

3D reconstruction and all particles should be selected without regard to contamination, broken 

shape, etc.  Apparently, no immediate answer was available to this question and a consensus was 

not reached. 

 

The more seriously one takes the goal of evaluating the success of automated particle selection, 

however, the more one also begins to question the success of semi-automated selection (as 

described in the Introduction) or even fully manual (human) selection of particles. Unless a 

bakeoff is done with synthetic data in which the coordinates of all particles are known in 

advance, there is always a high probability that there will be some human error in selecting the 

true particles that represent the “gold standard” that is needed for making such a comparison. 

Two suggestions for dealing with the potential ambiguity emerged in the workshop discussion. 

The first suggestion was that the “gold standard” reference-data used in future bakeoffs could be 

annotated to indicate (1) the level of human confidence that is attached to the selection of each 

particle, e.g., “certain”, “probable”, and “unsure:” and (2) the reasons why some of the candidate 

particles were not included in the human selections (distorted; broken or incomplete; too close to 

other particles, etc.). The second suggestion was that all new (candidate) particles, which were 

not identified as being part of the original “gold standard” data set, should be used to produce a 

three-dimensional (3-D) reconstruction on their own. If another reconstruction is produced with 

the same number of particles from the “gold standard” data set, and if both reconstructions are 

generated with the same number of cycles of refinement, one could then use the Fourier shell 
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correlation to evaluate the quality of the data contained in a data set that consists exclusively of 

excess, candidate particles. 

  

A second question one would naturally raise is how these algorithms perform in selecting side 

view KLH particles. Although the performances of different algorithms varied, most algorithms 

achieved human-level performances. High performances were achieved by both template 

matching based approaches (e.g., Roseman’s algorithm) and feature based approaches (e.g., 

Mallick’s algorithm). As listed in Table 2, several algorithms can select over 90% of the particles 

that have been manually picked either by Haas or Mouche, including Bajaj’s, Roseman’s, and 

Zhu’s, with false positive rates ranging from 15% to 30%. The lowest false negative rate 

reported in the Table is 1.5% with a false positive rate of 23.9% by Roseman’s algorithm, taking 

Haas’s selections as the truth set. The lowest false positive rate in the Table is 4.5% with a false 

negative rate of 23.2%, achieved by Sigworth’s algorithm, taking Mouche’s results as truth set. 

Compared to manual selections, the highest false negative rate was 46.8% by Penczek’s 

algorithm with the false positive rate of 30.7%.  This level of performance seems poor in 

comparison to most of the other algorithms. After further examination, we found that the high 

false positive rate is due to the fact that the algorithm did not successfully separate top view 

particles from side view ones, as shown in Figure 4. Since top view particles are considered false 

positives in the bakeoff, a high threshold had to be used in selecting side view particles, which in 

turn led to a high false negative rate. If the selection of top view particles had been included in 

the bakeoff, the algorithm would have a better performance. This also explains why Ludtkes’ 

algorithm did not perform well in the bakeoff.  
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A third question that arises is just how good the process of automated particle selection needs to 

be, before it is good enough for routine use. Two points are important in this regard: (1) how 

efficient is a given algorithm in selecting most of the particles that a human operator would 

select, and (2) how many false positives (non-particles) are included in the data set? Most 

experimentalists will take a pragmatic view on how efficient the automated data selection 

process needs to be: if it takes less time to collect additional micrographs than it does to 

manually select the same number of particles from existing micrographs, then most would prefer 

to collect a larger number of micrographs and let the computer do the boring job of selecting 

particles. As a rough guide, at least, most would agree that automated particle selection would be 

well received as soon as it could routinely select 75% of the particles (i.e., a false negative rate of 

25% or below) that an experienced human operator would pick. An important caveat will be that 

the automated selection process must not systematically miss the selection of one or more sets of 

views. There is at present no strong evidence on how many false positives can be included in a 

data set without corrupting the reconstruction to an unacceptable extent. Most experimentalists 

would be uncomfortable to use a data set that is known to contain (or to be likely to contain) 

50% or more false positives. Most would surely do a manual editing of such a data set before 

proceeding with the 3D reconstruction. On the other hand, however, most would agree that 

having fewer than 10% false positives in the initial data set would be quite acceptable. The false 

positives, if they are structurally uncorrelated with the true positives, will only add to the noise in 

quadrature (as does the noise that is already present in the images of the true particles). The 

actual situation is even better than that argument would indicate, however, since many of the 

false positives that are present in the original data set will also be deleted early in the data 

analysis, either because they show up as outliers in a classification step or because they do not 
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adopt stable values of the orientation or position parameters in successive cycles of refinement. 

The general sense therefore seemed to be that automated particle selection would be likely to 

become popular once it could be shown to meet or exceed the 25%/10% rule described above. 

Obviously, further improvements in performance beyond that point would only further cement 

the acceptance of any given selection tool.  

 
In addition to the confusion matrix, the bakeoff results were also loaded into a web-based 

particle selection tool, developed at NRAMM. Using the tool, users can not only select particles 

in a set of micrographs managed from a database, but also compare the results of two different 

selections.  The comparison is visualized by superimposing two different kinds of icons, each 

associated with a particular selection, onto the selected particles.  Figure 5 shows a screenshot of 

the interface of the tool where particles selected by one algorithm were overlaid with green dots 

and those by the other algorithm were outlined by red circles.  The URL of the web-based 

particle selection tool is http://ami.scripps.edu/leginon/particle_viewer/. Readers can visually 

compare one bakeoff participants’ results against another’s by exploring the site. (Note: In order 

to keep bakeoff results from being changed by a third party, readers in the public domain are 

only allowed to view particles selected by the bakeoff participants.)   

 

4. Summary and Conclusions  
 
Particle selection is critical and could become a bottleneck in moving toward high-throughput 

high-resolution structure determination of macromolecules using cryoEM. Automatic selection 

of asymmetric particles in low-contrast cryoEM images is an unresolved challenging problem. 

This in turn demands a rapid development of fast and accurate algorithms for this purpose. To 

expedite the algorithm development and to reveal the state of the art in automatic particle 
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selection, a bakeoff was held in which 12 representative groups in the field submitted results of 

particle selection, either manually or automatically, using a common image dataset containing 

KLH particles. The results were then tabulated in a confusion matrix where both the false 

positive rates and false negative rates were calculated for each participant’s results against every 

other result. In addition, images outlined with particles picked by different participants were 

made publicly available using a web-based particle selection tool.  

 

The 10 different algorithms tested in the bakeoff can be more or less grouped into two 

categories: those based on template matching and usually requiring a initial reference structure 

and those based on image feature recognition without the requirement of 3D reference structures. 

Several approaches from both categories achieved a high performance in selecting side view 

KLH particles in the common dataset.  Although selecting KLH particles is a relatively "easy" 

problem to approach, as the particles are large, symmetric and readily visible, the bakeoff did 

serve as a common basis for a productive discussion at the workshop and a starting point toward 

establishing representative benchmark particle datasets as well as setting up criteria for 

evaluating algorithms for automatic particle selection. It is agreed that both well-annotated 

benchmark particle datasets and agreed-upon criteria for evaluating particle selection methods 

are essential aspects to the overall success of fully automated particle selection.  Therefore, it 

was agreed that the infrastructure set up to support the bakeoff should be maintained and 

extended to include larger and more varied datasets and more criteria for future evaluations.  

  

Selecting different particles may require different approaches. Given the specific nature of the 

dataset, algorithms that work well in selecting KLH particles in the bakeoff might perform 
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completely differently on other datasets. The generalization of the ability of various approaches 

reported in this paper will remain to be tested in the future.  
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(a)                                                                    (b) 

Figure 1. An example defocus pair of images from the common dataset of a specimen of keyhole 

limpet hemocyanin (KLH). The images are acquired at a nominal magnification of 66,000× 

using a 2048 × 2048 pixel CCD camera.  The image shown in (a) was acquired first at a near to 

focus condition (1 µm under focus) and the one shown in (b) was recorded second at much 

farther from focus (3 µm under focus).   
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Figure 2. Illustration of the definition of false negatives and false positives. Particles selected in 

the truth set are outlined with a red circle and those in test set with a blue dot. Particles selected 

in the truth set but not in the test set are false negatives. Particles selected in the test set but not in 

the truth set are false positives.  

False 
Positive 

False 
Negative 
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(a)                                                                      (b) 

Figure 3. Illustration of the comparisons between particles selected by two bakeoff participants 

on the same example image. (a) Particles outlined with a red circle were selected by Haas and 

those outlined with a blue dot were picked by Mouche.  For the 13 particles picked by the two 

participants only 8 of them were selected by both of them. The 3 particles pointed to by yellow 

arrow signs are visually undistinguishable, but Haas only selected one of them and Mouche only 

selected the other 2. (b) Particles outlined with a red circle were again selected by Haas and those 

outlined with a blue dot were picked by Zhu’s algorithm. The particle pointed to by a green 

arrow sign is visually better than the one marked by a red arrow sign, but only the latter one was 

manually selected. The example image reveals that the criteria used by a person as to whether to 

select a specific particle may vary with time and images.  
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(a)                                                                              (b) 

Figure 4. Illustration of why two of the algorithms did not perform as well as the other ones. A 

particular example image is outlined with the “side view” particles selected by Penczek’s 

algorithm (a) and those by Ludtke’s algorithms (b), respectively. Clearly, the two algorithms did 

not separate effectively the side views from the top views. Top views are considered false 

positives in the bakeoff. If the selection of top view particles had been included in the bakeoff, 

the algorithms would have higher performance.  
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Figure 5.  A screenshot of the interface of the web-based particle selection tool.  Users may use 

the tool in two different modes: to pick particles or to compare one selection against another. The 

screenshot shows one selection overlaid with green dots and the other outlined by red circles.  


