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Abstract. We present a method for estimating the distance between
a camera and a human head in 2D images from a calibrated camera.
Leading head pose estimation algorithms focus mainly on head orienta-
tion (yaw, pitch, and roll) and translations perpendicular to the cam-
era principal axis. Our contribution is a system that can estimate head
pose under large translations parallel to the camera’s principal axis. Our
method uses a set of exemplar 3D human heads to estimate the dis-
tance between a camera and a previously unseen head. The distance
is estimated by solving for the camera pose using Effective Perspective
n-Point (EPnP). We present promising experimental results using the
Texas 3D Face Recognition Database.

1 Introduction

When photographing a human head, the subject’s appearance can vary dra-
matically depending on the camera’s distance from the subject. This variation is
caused by perspective distortion, and for 3D objects cannot be undone by simply
adjusting focal length; see Figure 1 for an illustration using a synthetic head1.

This distortion presents a problem for automatic cross-condition face recogni-
tion, e.g. webcam-based recognition from social media images. Even humans find
such recognition difficult [1,2]. It is also a source of information, allowing camera
pose estimation in cases where the subject is known [3]. This information could
potentially be used to undistort the images and improve recognition results.

In this paper, we show camera distance estimation from 2D images is possible
even when the subject is previously unseen. Our technique replaces the known-
subject assumption with knowledge of the general distribution of fiducials across
people. This distribution turns out to be sufficiently tight to allow surprisingly
accurate distance estimation using only a small training set.

The paper is organized as follows. Section 2 covers related work from psy-
chology and computer vision. Section 3 explains our method. In Section 4, we
validate our method on the Texas 3D Face Recognition Database. Section 5 is
the discussion and conclusion.

1 Generated using FaceGen (http://www.facegen.com).
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Fig. 1. A synthetic head viewed from different camera distances, illustrating projective
distortion. Camera distance decreases in the first eight images, indexed in row-major
order. Here, the focal length (zoom) is adjusted to keep the figure at a constant size.
Fiducials are shown as red dots. In the first image, the camera is far away, resulting
in near orthographic projection. In the eighth image (bottom row, middle column) the
camera is very close to the human head. The last image is the same as the first, but
with fiducial markers from all images. This illustrates the migration of fiducials as a
function of camera distance and focal length.

2 Related Works

There is previous work on head pose estimation from 2D images; see [4] for a
recent survey. However, most methods attempt to recover a subset of the yaw,
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Fig. 2. An illustration of the six degrees of freedom governing head pose relative to a
camera. Prior work has focused on estimation of yaw, pitch, and roll [4]. In this paper,
we assume these parameters are known and estimate camera distance from the subject,
shown here as distance along the z axis.

pitch, and roll of the head with respect to the camera. To our knowledge, these
methods do not attempt to estimate the distance between the camera and head;
Figure 2 illustrates the difference. In this section we discuss works most similar
to our own.

In [1,2], Liu et al. study the effect of face recognition by humans when viewing
faces at different perspective convergence angles (effectively focal length or field
of view). The study involved a training phase in which face images were displayed
to a human test subject. In a later recognition phase the subject was shown
images of faces and asked to determine whether each face had been previously
displayed. The field of view was changed to see if this had an effect on recognition.
Their results show that even humans have a hard time recognizing a face when
viewed under different levels of perspective distortion. This is a motivating factor
since if humans have trouble with this task, a computer vision algorithm will
likely also have the same troubles. Predicting the distance between camera and
face is a first step in mitigating the effects of perspective distortion.

A similar psychology based studied is presented in [5,6]. Here, Perona et al.
investigate the effects of perspective distortion as visual cue for social judge-
ment of faces. Human subjects were asked to judge an image of a face in terms of
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trustworthiness, attractiveness, and competence. Their results show that for so-
cial judgements, pictures taken up close are generally rated lower, while pictures
taken far away have higher ratings.

In automatic camera calibration, camera parameters are recovered using prior
information about the imaged scene. In [7], Deutscher et al. recover camera
parameters under the assumption the scene satisfies a Manhattan world criterion.
This is similar to our technque, which assumes human fiducial locations are
approximately distributed according to an estimated distribution. In [8], Lv et
al. use a human subject for calibration, but unlike this work requires multiple
frames of video. In [9], Krahnstoever and Mendonca use a full human body for
calibration from a single image, where this work uses just the head.

In [3], Ohayon and Rivlin present head tracking as a camera pose estimation
problem. Prior to head tracking, 3D points are acquired from the head. During
tracking, correspondences between the 3D points and their imaged 2D points are
used to estimate head pose by solving the inverse problem, namely camera pose.
They use the Perspective n-Point (PnP) formulation to solve for the camera
extrinsic parameters (rotation R and translation T ). The PnP method is also
known as the Location Determination Problem and was first coined in [10]. In
effect, the human head is used as a calibration rig. In this paper, the authors
show that head pose can be accurately estimated and tracked under varying
yaw, pitch, and roll and translations about x and y axes. However, they assume
knowledge of the ground-truth fiducial locations and do not address dramatic
changes in camera distance.

3 Camera Pose Estimation from Face Images Using
EPnP

Our work is based on [3], but we focus primarily on translation along the z-axis,
which affects the level of induced perspective distortion. We present a method
for estimating the pose of a previously unseen human head using a dataset of
exemplar human heads.

Efficient Perspective n-Point (EPnP): The method uses EPnP, a fast, non-
iterative, solution to the PnP problem [11]. We use code provided by the au-
thors2. As stated earlier, the PnP problem is to estimate the pose of a calibrated
camera from n 3D-to-2D correspondences. In particular, EPnP enables us to esti-
mate camera pose based on a set of 2D fiducial locations and their corresponding
3D locations.

Exemplar 3D heads: Note the geometric configuration of fiducial features varies
from face to face, but in general fiducial locations tend to form clusters, as il-
lustrated in Figure 3. This means the fiducial locations of a new person are

2 http://cvlab.epfl.ch/software/EPnP

http://cvlab.epfl.ch/software/EPnP
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(a) (b)

(c) (d)

Fig. 3. (a-c) show point clouds of three different faces taken from the GavaBDB
[12] dataset. Manually clicked fiducial locations are marked with red dots. (d) shows
fiducials for 20 different faces, aligned by subtracting their respective means. Note
the fiducials form tight clusters, meaning fiducials do not change dramatically across
individuals. This phenomenon enables robust depth estimation even for previously
unseen images.

likely to be similar to those in an exemplar set. We take advantage of this by
using a set of exemplar 3D heads to estimate the camera pose of a novel head.

The method: The method is based on simple averaging, leveraging the observa-
tion from the previous paragraph. Suppose we get an image I of a previously
unobserved head. For each exemplar 3D head E, the camera pose is estimated
via EPnP under the assumption the fiducials of I match the fiducials of E. This
assumption is incorrect, but as mentioned in the last paragraph, it is not far off.
The estimated camera distance for I is just the average of the camera distances
across all the exemplars.
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Fig. 4. Example images from the Texas 3DFRD, a database of 3D scans of human
faces. These images show the 25 fiducials labeled for each face, as well as example
depth maps.

4 Experimental Setup

In this section, we show the surprising effectiveness of our method for estimating
camera distance in images of previously unseen subjects.

Our experiments are run against the Texas 3D Face Recognition Database
(Texas 3DFRD) [13]; example images are shown in Figure 4. This database is
a collection of 1149 pairs of frontal face color and depth images of 105 adult
human subjects. Each face also has 25 manually labeled anthropometric facial
fiducial points. Color and depth images were captured simultaneously and are
perfectly coregistered. This provides ground truth 3D locations of the fiducial
locations.

Our first experiment consists of the following:

– Project fiducials for a test subject onto an image plane.
– Use 3D fiducial locations from a set of reference individuals (not including

the test individual) as exemplars.
– Estimate the camera distance for the test subject using the method described

in Section 3.
– Repeat while simulating a dolly-zoom (or Hitchcock zoom) camera move-

ment, in which the camera moves away as focal length is increased to keep
the figure size constant.

We perform this experiment for the frontal and 3/4 profile view of the face.
For the frontal case, we assume all fiducials are visible to the camera. For the
3/4 we assume only a subset of the fiducials are visible. We also assume we
have a calibrated camera and all intrinsic camera parameters are known. Simu-
lated camera distances range from approximately 10cm to 3m. Note if we did not
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Fig. 5. Results of camera pose and distance estimation for the frontal and 3/4 profile
views. (a) and (c) show clusters of estimated camera poses for three distances for the
frontal and 3/4 profile views. The clusters of poses for each of the three distances are
marked using cyan, magenta, and green camera frames, with the ground truth pose
marked in red. (b) and (d) show true and estimated camera distances as a function
of camera position, where distance is measured from the camera center to the tip of
the nose. We test 20 camera positions. The estimated distances are shown with error
bars to represent the variation across test subjects. Note the final distance estimate
closely follows the true camera distance, though the error bars get larger as the distance
increases. This is especially true for the 3/4 profile view, presumably due to a fewer
number of visible fiducials.

adjust the focal length, the distance from the camera to the face could be trivially
estimated by the size of the imaged face. For this reason, the focal length is
adjusted to keep the outermost fiducials at a near constant distance, which also
keeps the imaged face silhouette at a constant size. Results are shown in Figure
5. Our method nearly perfectly recovers camera distance.

Figure 6 shows the same experiment where the number of fiducials is var-
ied. For this experiment, we manually selected the fiducial subsets to be evenly
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distributed about the face. This figure shows the distance can be reliably esti-
mated with as few as five fiducials. In the case of five fiducials, the fiducials used
were outer corners of eyes and mouth, and center of top lip. When using only
four fiducials, the center of top lip was removed, resulting in 4 nearly co-planar
points. At this point, the distance estimate becomes unreliable.

Fig. 6. Results of camera distance estimation for the frontal view for varying numbers
of fiducials. As in Figure 5, error bars represent the variation in estimated distance
across test subjects. This shows distance can be reliably estimated with as few as five
fiducials.

For qualitative analysis, we use a heuristic to select a closest exemplar for
each subject and camera distance. Let pi be the 2D imaged fiducial using the
true camera position. Let p′ij be the imaged fiducial using the estimated camera
position from the j-th exemplar. We use argminj

∑
i ‖pi − p′ij‖ as a heuristic

to select the best exemplar. See Figure 7 for some illustrative examples. These
examples show fiducial configuration is more than just a means to undistort
images; it is a source of biometric information in its own right.
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Fig. 7. The closest exemplar as a function of camera distance for four subjects
(probes). The probes are shown in the first column. The best exemplars for 10cm,
75cm, and 300cm are shown in the second, third, and fourth columns, respectively.
Note the probes tend to match exemplars with similar attributes, e.g. race and gender.
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5 Conclusion and Future Work

We presented a method for estimating camera distance to a previously unseen
face. The method uses correspondences of 2D image fiducials to 3D fiducial
locations on exemplar heads. Though the method is simple, it is accurate for
distances ranging from 10cm to 300cm for the frontal and 3/4 profile views.
This estimate could be used to mitigate the effects of perspective distortion for
face recognition. The method could also be used as a direct source of biometric
information, by leveraging the attributes of the closest matching exemplars.

Future work may replicate these results on real images. We may also investi-
gate automatic fiducial localization [14], or naturally ocurring features such as
in [3]. Finally, we may estimate more general poses, such as the full extrinsic
camera parameters.

This work was supported by ONR MURI Grant #N00014-08-1-0638.
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