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Complete Algorithms for
Feeding Polyhedral Parts using Pivot Grasps

Anil Rao, David Kriegman, Ken Goldberg

Abstract— To rapidly feed industrial parts on an assembly
line, Carlisle et. al. proposed a flexible part feeding system
that drops parts on a flat conveyor belt, determines position
and orientation of each part with a vision system, and then
moves them into a desired orientation [1]. When a part is
grasped with two hard finger contacts and lifted, it pivots
under gravity into a stable configuration. We refer to the
sequence of picking up the part, allowing it to pivot, and
replacing it on the table as a pivot grasp. We show that
under idealized conditions, a robot arm with 4 degrees of
freedom (DoF) can move (feed) parts arbitrarily in 6 DoF
using pivot grasps.

This paper considers the planning problem: given a poly-
hedral part shape, coefficient of friction, and a pair of stable
configurations as input, find pairs of grasp points that will
cause the part to pivot from one stable configuration to the
other. For a part with n faces and m stable configurations,
we give an O(m?nlogn) algorithm to generate the m x m ma-
trix of pivot grasps. When the part is star shaped, this
reduces to O(m2n). Since pivot grasps may not exist for
some transitions, multiple steps may be needed. Alterna-
tively, we consider the set of grasps where the part pivots
to a configuration within a “capture region” around the sta-
ble configuration; when the part is released, it will tumble
to the desired configuration. Both algorithms are complete
in that they are guaranteed to find pivot grasps when they
exist.

Keywords— Robotic Manipulation, Parts Feeders, Config-
uration Space, Motion Planning, Degrees of Freedom, Sta-
bility, Pose Planning, Friction, Parallel Jaw Gripper, Solid
Modeling, Algorithms, Geometry.

I. INTRODUCTION

CHIEVING a desired spatial configuration of a part

is a fundamental issue in robotics. For example, con-
sider a part resting stably on a flat table. After the part is
grasped in a known configuration by a robot arm, inverse
kinematics can be used to achieve a desired final configura-
tion of the part. This assumes that the grasp does not slip
and that the final configuration of the part is reachable by
the robot. Noting that such conditions are not always met,
Tournassoud, Lozano-Perez, and Mazer proposed planning
a sequence of regrasping operations that replace the part on
the table in intermediate configurations, thereby allowing
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Fig. 1. The Flexible Part Feeder described in Carlisle et al.

[1]. A
4 DoF robot arm and vision system for feeding polyhedral parts.

the robot to achieve a better grasp. In the presence of ob-
stacles, they showed how to plan regrasping operations for
a six degree of freedom (DoF) robot arm by slicing the con-
figuration space but did not provide a complete algorithm
[2].

Automating grasp analysis is useful for rapid set-up of
a parts feeding system using vision and a robot manipula-
tor [1]. An efficient algorithm is particularly useful when
incorporated into a solid modelling package: as the de-
signer creates a new part, he or she can immediately test
the “feedability” of this part, perhaps modifying the shape
accordingly.

In an industrial setting where cost, accuracy, reliability,
and speed are paramount, Carlisle et al. [1] considered a
SCARA-type arm with only 4 active DoF to feed a stream
of parts arriving on a conveyor belt (See Fig. 1). Four
DoF manipulators, such as a SCARA arm or Robot World
module, are kinematically limited to orienting parts about
the vertical axis. However, we show that under idealized
conditions, general reorientations of a part can be kinemat-
ically achieved with a single pivot grasp actuated by a 4
DoF. In practice, grasp accessibility and stability with re-
spect to friction may prevent grasping along desired axes.
Our planning algorithm checks these conditions and builds
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Fig. 2. A pivot grasp.

a matrix that can be used to plan multi-step pivot grasps
for cases where a single pivot grasp is not accessible or
frictionally stable.

Achieving an arbitrary part position and orientation us-
ing a manipulator with fewer than 6 DoF may appear
counter-intuitive at first. We focus on rotations, since sub-
sequent translation of the part is trivial. Consider the se-
quence of operations during a pivot grasp, illustrated in
figure 2.

1. Rotate the gripper about the vertical axis.

2. Grasp the part and lift it so that the part rotates

about the horizontal pivot axis and stabilizes.

3. Rotate the part about the vertical axis and set it

down.

There are three rotations occurring in sequence. Note
that the first and last rotations are independent because of
the change in the grasp condition. During the first rotation
about the vertical axis, the part moves with respect to
the gripper but not with respect to the world. Whereas
in the third step, the part does not move with respect to
the gripper but moves with respect to the world frame.
The change due to grasping the part is a non-integrable
constraint making this a non-holonomic system as noted
by Koditschek [3], [4].

Consider the two rotations that move the part with re-
spect to the world. These are the second, or pivot, rotation
and the third, or vertical rotation. The pivot rotation is
about a horizontal axis. The purpose of the first rotation
of the gripper without the part is simply to orient the pivot
axis correctly in the horizontal plane. Can a sequence of
two rotations, one about some axis lying in the horizon-
tal plane and the second about the vertical axis, cover the
space of all 3D rotations? We provide a positive answer in
the Appendix.

The pivoting gripper can be modelled as having two hard
point fingers that contact the part during grasping. In Step
1, the gripper is rotated to correctly position and orient the
fingers; now squeezing the fingers establishes contact and
also defines the pivot axis as the line connecting the two
contact points. In turn, the center of gravity of the part
and the pivot axis determine the magnitude and direction
of the unactuated pivot rotation in Step 2. After the part
stabilizes, it is rotated about the vertical axis to complete
the triad of rotations.

We assume that each part is dropped onto the conveyor
belt in isolation (we do not address the related problem
of singulating parts). When rotations and translations in
the plane are ignored, the part generally assumes one of
a finite number of stable poses [5]. For a polyhedron P

with n faces, a pose is stable when the center of gravity
lies above the face of the convex hull ‘H that is in contact
with the support plane. In this paper, we consider pivot
grasps that move a part from an initial stable configuration
s to a final stable configuration f. Given § and f, deciding
whether or not a single pivot grasp can achieve f can be
done in O(nlogn) time.

Due to constraints on accessibility and friction, a single
pivot grasp may be insufficient to move the part between
an arbitrary pair of stable configurations.

Let us define a directed graph as follows: Each node
is a distinct stable configuration and each directed edge
represents a pivot grasp between the corresponding stable
configurations. A path though this graph represents a se-
quence of pivot grasps (i.e. a plan), to move the part from
some initial to a final stable configuration. If the transition
graph is not strongly connected, some stable configurations
can be unreachable regardless of how many pivot grasps are
available. For example, it may be impossible to reorient a
part such as a pyramid resting on its base if the coefficient
of static friction is too small.

We show that the transition graph can be constructed in
O(m?nlogn) time where n is the number of faces of P, and
m < n is the number of stable faces of H. The algorithm
is complete in the sense that whenever a sequence of pivot
grasps exists, we are guaranteed to find it [6].

For cases where the transition graph is not strongly con-
nected or the shortest path between nodes requires too
many regrasping operations, we consider a broader class of
grasps. We note that when a part is placed on a supporting
plane in a pose that is not stable, the force of gravity will
cause the part to tumble onto one of the stable configu-
rations. By explicitly computing the set of configurations
(a capture region) which converge to a particular pose, the
pivoting operation is only required to bring the part to
within the capture region. Since all stable configurations
are contained within a capture region, this can be a richer
action set; previously unconnected nodes in the transition
graph may now be connected. We call these “capturing”
pivot grasps. While the position and orientation of the
part in the plane may be uncertain after tumbling, a 4
DOF robot can easily correct this after sensing.

We begin below by reviewing related work and then de-
fine the problem and state our assumptions in Section III.
Theory common to both types of pivot grasps is discussed
in Section IV. Pivot grasps are treated in Section V, and
capturing pivot grasps in Section VI. We implemented the
planner as described in Section V-A. A preliminary and
condensed version of this paper appeared in [7].

II. RELATED WORK

Our results build on prior research in robot motion plan-
ning and grasp planning [8], [9]. We consider grasps with
two frictional point contacts, also known as hard finger
contacts [10]. Each contact allows forces pointing into
the associated friction cone. In 3D, such a grasp cannot
achieve form closure: the part is free to rotate about the
contact axis. In the plane, Faverjon and Ponce [11] and
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later, Blake [12], considered computing frictional two-finger
force-closure grasps. To achieve form closure, Markenscoff
et al. [13] showed that four hard finger contacts are nec-
essary and sufficient for planar objects and that twelve
were sufficient (seven are necessary) to grasp 3D piecewise-
smooth objects without rotational symmetries. For reori-
enting parts we do not require form closure; we must insure
that the part will not translate when lifted but will in fact
rotate about the grasp axis.

One goal of deztrous manipulation is to reorient a part
while it is held in the hand [14]. In a multi-fingered hand, a
subset of fingers grasp the part while the other fingers move
to a new grasp location. After establishing a stable grasp,
the first set of fingers is free to be relocated to a new grasp.
Since this is analogous to “walking” across the part, such
strategies are sometimes referred to as fingergaiting [15],
[16].

Brock [17] considered how a part could be moved within
a grasp by adjusting applied forces at the fingers or the
direction of the gravity vector relative to the grasp frame.
Brock proposed the constraint state map, which partitions
the space of control variables into regions based on contact
type: point with friction, point without friction, no con-
tact. This suggests how control variables can be adjusted
to move from one qualitative contact type to another but
does not directly suggest an algorithm for planning grasp
configurations to achieve a specific final orientation of a
part. Trinkle and Paul [18] provide a quantitative analy-
sis of how controlled slip can be used to achieve a precise
enveloping grasp of a part initially in contact with a flat
support surface.

For polyhedral parts, Erdmann et al. [19] showed how
to tilt an infinite plane to orient a given polyhedral part,
regardless of its initial orientation. Both Akella and Mason
[20] and Lynch [21] addressed the planar problem of plan-
ning a strategy to move a part from a known pose into a
desired final pose using a sequence of pushing operations.

Our approach uses a modified parallel-jaw gripper, grav-
ity, and the support surface to achieve an inexpensive va-
riety of dextrous manipulation.

I1II. PROBLEM STATEMENT

Consider the robot work cell in Fig. 1; we make the
following assumptions:

1. The worktable is a flat plane orthogonal to gravity at
a known height.

2. The robot arm can translate the parallel-jaw gripper
with 3 DoF and rotate it about the gravity vector.

3. The gripper has a passive degree of freedom — a pivot
axis that is always parallel to the support plane.

4. The part is presented to the gripper in isolation. A
sensing system (e.g. vision, light beams [22]) deter-
mines its exact initial configuration.

5. The gripper makes two simultaneous “hard” contacts
with the part — point contacts with friction which per-
mit rotation about the pivot axis. We assume that
the part will rotate due to gravity and quickly stabi-
lize with its center of gravity below the pivot axis.

v vy = (—9,0,19.75)

(9, =5,15) = v

"o Nvie = (—9,16, —2.5)

(9, =5, —15) = vg

v1y = (9,16, —4)

(9,5, —15) = vyq

Fig. 3. A polyhedral part with 18 vertices, 11 faces (= n), and 27
edges. We will use this part to illustrate the planning algorithms.

The input to the algorithm is:

o A polyhedral part P stored as a boundary representa-
tion (B-rep).

o The part’s center of gravity; this is taken to be the
origin of the part’s coordinate system used to define
the B-rep.

o The coefficient of static friction pgtatic-

A pivot grasp is accessible if both contact points are ac-
cessible in the direction of the grasp axis, i.e. they can be
reached by fingertips moved in from oo along the grasp
axis. A pivot grasp is valid for a given coefficient of static
friction if it is accessible and no slippage occurs at the con-
tact points. For the second condition, the grasp axis must
lie within the friction cone at each of the two contact faces:
|n; - a| > cos a, where tan o = pggatic.

The output is the transition graph of pivot grasps: a di-
rected graph whose nodes are the m stable faces Fj of the
convex hull with an arc between an ordered pair of nodes
indicating the existence of a pivot grasp between them.
For each arc, we compute a one-dimensional family of valid
grasps affecting the transition between the corresponding
nodes; each grasp from this family is described by a pair
of points on the part. We may wish to to select a single
grasp from this family that is optimal under some crite-
rion, such as the minimum required coefficient of friction
for the grasp to be successful. In this case, the optimum
friction coefficient may also be returned as output. The
entire graph can be represented by an m X m transition
matrix (See Fig. 8 for an example).

IV. PART CONFIGURATION AND THE (GRASP AXIS

While a rigid body in IR® has six degrees of freedom, its
mobility is reduced to five degrees of freedom when it is in
contact with a plane. This five DoF Configuration space
can be decomposed into: Rotation and translation in the
support plane IR? x SO(2), and two other components of
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rotation which can be represented as a point on the unit
sphere S?. Since planar rotations and translations are eas-
ily performed with a 4 DoF arm, we henceforth describe
the part’s configuration as a point on the unit sphere. As
illustrated in Fig. 3, we affix a coordinate frame to the
part with its origin at the part’s center of gravity. Config-
urations of the part will be specified by a unit vector in the
part frame; the vector is aligned with the gravity vector,
and the part is just touching the work surface.

The pivoting operation takes the part from a starting
configuration § to a final configuration f that is another
stable face. To rotate § into f, the axis of rotation (the
pivot axis) must be orthogonal to both s and f. Let a
indicate the direction of this axis:

1

|s x f]

§ x f. (1)

a=

Note that a is undefined when § and f are parallel or anti-
parallel. In these cases, pivot grasps are either unnecessary
or impossible.

When lifted, the part will rotate due to gravity and set-
tle in a configuration where the part’s center of gravity is
directly beneath the grasp axis. Thus the axis must be
positioned such that it intersects a ray from the center of
gravity in the direction —f. Let A be the distance from the
axis to the center of gravity along this ray. The family of
grasp axes has the following equation parameterized in ¢:

ax(t) = ta — M. (2)
We use ay to specify a particular grasp axis. Thus, the
grasp axis must lie in the half-plane, A, spanned by a and
—f. We call this the grasp plane.

We next consider the grasp points on P formed by the
intersection of the axis with the part. Face F; of the part
lies in a plane with unit normal n; and at distance d; from
the origin, and is defined by n; - g — d; = 0 where g is a
point on the face.

Substituting ax(t) for g and solving for ¢, we obtain the
contact point on face i:

~ di+n; f

n; -a

gi(A) a— Af. (3)
The intersection is parameterized by A, and over all posi-
tive A, the intersection defines a ray. (Note: If n; -a = 0,
there is no solution). For a finite polygonal face (possibly
non-convex), the intersection will be a sequence of collinear
segments taken from the ray, and A will range over a dis-
joint set of intervals.

Another way to view the set of grasp points is to consider
the intersection of A with the part: A NP is an open
polygon as illustrated in Fig. 4. Because the part may
not be convex, .4 NP may be composed of multiple non-
convex open polygons. Consequently, a grasp axis (for a
fixed value of A) may intersect P at more than two points.

Fig. 4. The open polygon formed by AN P. Potential grasp axes are
parallel to the dotted lines.

V. PLANNING PivoT GRASPS

Recall that a pivot grasp is wvalid if both contact points
are accessible in the direction of the grasp axis and if the
contacts will not slip under the given coefficient of fric-
tion. The algorithm outputs a set of valid grasps that can
be represented by a set of intervals A of A and a pair of
maps u: A — IR and I: A\ — IR® where VA € A the pair of
grasp points (u(A),l(A)) is valid; v and [ are composed of
g restricted to an interval of A.

We now describe the algorithm for computing the tran-
sition graph.

From P, compute its convex hull H. A face of H is stable
when the projection of the center of gravity in the normal
direction onto the face lies within the face; the stable faces
define the nodes of the transition graph. For every ordered
pair of stable faces of H, whose normals are given by s and
f', determine the set of valid grasp points (if there are any)
that will pivot the part from $ to f:

1. Determine the direction of the grasp axis a from (1)

and the grasp plane A from (2). (See Fig. 5.)

2. Compute P = ANP. Because P may be nonconvex, P
may be composed of multiple polygons, each of which
may not be convex. The size of P (the number of
edges and vertices in all polygons of P) is O(n) since
each edge of P can intersect A at most once. Finally,
since P is defined by a B-rep such as a winged-edge
structure, the edges of the polygons will be ordered
and computable in linear time.!

3. In the direction f within the grasp plane, compute the
upper U and lower £ visible envelope of P. The visible
envelope is the portion of P visible from infinitely far
away along +a. Each envelope is a function of A, and
the edges of the envelope are ordered by increasing A.
By definition, points on these envelopes satisfy the ac-
cessibility condition. Each envelope can be computed
in O(nlogn) time [24]. However for polyhedra that
are star-shaped with respect to their center of gravity,

ILinear time complexity can also be seen by considering a triangu-
lation of each face. A face with e edges can be triangulated into O(e)
triangles in O(e) time [23]. Therefore all faces can be triangulated
in O(n) time into O(n) triangles. Intersecting each triangle with the
half-plane requires constant time.
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Fig. 5. The same part as before (Fig. 3) showing the vectors corre-

sponding to the start configuration (8), the final configuration (f)
and the grasp axis direction which is perpendicular to both (&).
All three vectors pass through the center of mass. The shaded re-
gion is the grasp plane: the grasp axis is constrained to lie within
this half plane and be parallel to a.

such as convex polyhedra, the intersection P consists
of a single simple polygon. In such a case, the envelope
can be computed in linear time via a sweep technique.

4. For each edge of Y U L whose corresponding face has
surface normal n, determine if the face can be grasped
by a point contact with friction in the direction a ac-
cording to: |a -n| > cosa. This can be checked in
O(n) time.

5. Merge the two sorted envelopes i and £ into aset A =
UA; where each A; is a closed interval of A. Associated
with each interval is the pair of functions wu;(A) and
l;(A) which return the grasp points. This merge step
can be performed in linear time.

6. If A # 0, create an arc in the transition graph between

$ and f, and label it with A, u(A) and [(A).

The complexity of the algorithm is dominated by the
construction of the visible envelopes; since there are O(m?)
pairs of stable faces, the complexity of constructing the
entire transition graph is O(m?nlogn). For star-shaped
(with respect to the center of gravity) polyhedra, this re-
duces to O(m?n).

If A # 0, there are various criteria for selecting an op-
timal grasp from the set of valid grasps. One criterion is
to select the grasp that requires the smallest coefficient of
static friction u to successfully grasp it, i.e. the grasp that
minimizes the largest of the angles between the two sur-
face normals and the grasp axis. Because the angles are
constant over each interval A;, this criterion alone returns
an interval of grasps. Within this interval, the midpoint of

Fig. 6. Intersecting a half-plane with a face. First the half-plane is
intersected with every edge of the face to get a set of collinear
points/subedges. In case of no degeneracies (a), one needs only
to do a single point-in-face test to get the desired result. In
case of degeneracies, more tests are required. Specifically, each
(aj +a;41)/2is tested for inclusion in the face. If it exists in the
face, then the portion from a; to a;11 is part of the result.

the interval can be taken as the representative grasp; this
grasp will permit maximal gripper positional uncertainty.

A. Implementation and Example

We implemented the algorithm using Maple V, a com-
mercial symbolic mathematics package, and routines from
a C++4 geometry package developed at Utrecht University
by G-J. Giezeman [25]. Given the model of a polyhedron,
our program computes the transition graph: for each arc
it computes the optimal grasp as defined in the preceding
paragraph.

A.0.a Intersecting .4 with the input polyhedron. The
grasp half-plane A is computed as described in Equations
1 and 2. For each of the n faces of the polyhedron, we must
compute the intersection with 4. For face i, we compute
the intersection of A with every edge. If the intersection is
not empty, it can be a single point on the edge or a subset
of the edge.

These subedges (or points) taken over all the edges of
face ¢ are collinear and are sorted in left-to-right order by
taking the projection of the center of gravity onto the plane
containing face ¢ and sorting according to the signed dis-
tance from p.

We next extract the desired intersection: the portion of
A contained within face i. Suppose we know whether p
belongs in face ¢. Then, in the absence of degeneracies, one
could simply do an alternation of ins and outs as shown
in Fig. 6(a); the portion between an “in” and the next
“out” is part of the result. However, this clearly would
not work in case of Fig. 6(b). Instead, we label the critical
points aj,as, ... as shown. We then test point-in-face for
each midpoint (a; + aj41)/2 in face 7. If the midpoint
lies in the face, we include the portion from a; to aj41 in
the result. While this requires more point-in-face tests, it
handles degeneracies properly.

A.0.b Computing envelopes.  The final step in the im-
plementation is computing the left and right envelopes of
the set of edges obtained in the previous step (intersecting
A with the polyhedron). The intersection will be a set of
polygons but the set of edges are not ordered yet. So we
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Fig. 7. Computing the right envelope of a simple polygon. The
figure considers computing the right envelope of the portion of the
polygon from its right-most point r to its bottom-most point b.
The edges are considered in the order 1,2, to 7. Depending on the
current state of the envelope, a new edge is either ignored (Edge
4), is simply appended (Edges 1,2,3), a part of it is appended
(Edge 5), or it replaces a portion of the current envelope and has
to be wholly included in the new envelope (Edges 6,7).

first order the edges into chains by doubling each edge and
giving them opposite directions. We then sort these di-
rected edges by coordinates of starting point. This enables
us to compute the neighbor of each edge since neighbors
share one end-point, and thus we can organize the edges
in polygon order. (We assume, as stated before, a simple
polyhedron which implies that the polygons of intersection
will be simple: no two edges cross each other except at end
points and no three edges share any point in common).
Next we compute the envelopes for each polygon. This is
done via a sweep technique. Briefly, to compute the enve-
lope from the right we begin at the right-most point r and
conduct two traces: one ends at the bottom-most point b
and the other at the top-most point ¢t. Note that these
three extremal points surely belong to the envelope. Con-
sider the trace from 7 to b. We consider the sequence of
edges one by one. Let b* denote the the bottom-most point
considered after looking at some [ edges in the sequence.
The (I + 1)th edge either (i) lies fully to the left of the cur-
rent right envelope (ii) fully to the right or (iii) a connected
subset of it lies to the right and another connected subset
lies to the left. These three cases can be distinguished by
testing only the end-points of the (I + 1)th edge. See Fig.
7. There are 7 edges from r to b. Case (i) is easy to handle:
simply ignore the edge and carry on (Edge 4). In case (ii),
we need to either simply append the edge (Edges 1,2,3) or
we need to erase a portion of the current envelope and re-
place it with the ({ 4+ 1)th edge (Edge 6 and Edge 7). To
handle case (iii), we need to look at b+ and the portion of
the (I + 1)th edge that “peeks” from underneath b« is the
required portion to be appended to the current envelope
(Edge 5).

After computing the right envelope for all the polygons,
these are merged to compute the correct collective enve-
lope. Same for the left envelope. The left and right en-
velopes are swept across and the midpoint of the subset of
grasp point pairs that require the minimum friction angle
is output.

For the part shown in Fig. 3 modeled with 18 vertices and
11 faces (= n), the convex hull has 6 stable faces (= m).
The transition matrix, with 30 edges along with the most

(2.6)
(1,4)
Fig. 9. Transitions in Cells (2,6), (1,4), and (4,3) of Fig. 8 shown

expanded.

slip-resistant grasp for each edge, was computed in 34 sec-
onds on a Silicon Graphics workstation (R4400 processor
running at 150 MHz, 96.5 SPEC{p92, 90.4 SPECint92).

The matrix of transitions is illustrated in Fig. 8.

In Fig. 9, we expand a few cells of the matrix to clarify
detail. In Cell (2,6) the set of valid grasps lie on par-
allel vertical faces and include a single segment on each
face. The optimal grasp consists of opposing points on
these faces, and therefore any non-zero friction is sufficient
to affect the transition. In fact, notice from Fig. 8 that all
transitions from Configuration 2 have this property. This
is also true for all transitions o Configuration 2, and also
to Configuration 5 which is intuitively the “most stable”
configuration. Cell (1,4) is similar in that the set of valid
grasps lie along segments on the same two parallel faces as
in Cell (2,6); the computed grasp points are midpoints of
these segments. However, while these two faces are parallel,
they are no longer vertical; therefore the minimum coeffi-
cient of friction required is nonzero: 0.875. Finally, Cell
(4,3) shows a case where the envelopes consist of multiple
segments. Here the optimal pair of grasp points come from
orthogonal faces, and the lowest possible value of pgiatic 18

1.187.

VI. CAPTURING PivoT (GRASPS

When a part is placed in contact with the supporting
plane in a configuration other than a stable one, it will
tumble until it settles to one of the m stable poses. Follow-
ing Brost [26], [27], the space of initial contact configura-
tions S? can be partitioned into a set of m disjoint capture
regions, each of which contains a stable pose. From any
configuration in a region C(f), the part will converge to the
corresponding stable pose f. Assuming only dissipative dy-
namics, the part’s potential energy, written as a function
of the configuration u: S? — IR, can be used to determine
the capture regions [28]. Since u is non-smooth, stratified
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Fig. 8. The matrix of transitions for the part with six stable configurations. Cell (z,j) indicates the family of accessible pivot grasps that
will move configuration ¢ to configuration j. Thickened lines on the part indicate the left and right envelopes (u(A),v(A)), i.e. the set of
accessible pivot grasps that will achieve the transition. The black dots indicate the frictionally optimal grasp from among this family.
Numbers in the upper right-hand-corner of each cell indicate the minimal required coefficient of friction. Note that no single pivot grasp
exists for cell (4,6) or (6,4); this transition requires a sequence of two pivot grasps through an intermediate configuration.

Morse theory can be applied to determine and classify the
critical points of u; a subset of the equipotential contours
through the “saddle-like” points define the boundary of the
capture regions [29].

Consider for example, the part shown in Fig. 3; contact
only occurs along its convex hull shown in Fig. 10a. First,
the sphere of configurations is stratified according to the
generalized normal of the hull. The supporting plane only

contacts a face for a single configuration. It contacts an
edge along a curve of configurations given by the convex
combination of the normals of the two incident faces, and
it contacts a vertex along a region of sphere. Contact along
an edge is depicted by the thicker arcs in Fig. 10b,c. It is
shown in [29] that the boundary 8C(f) of the capture region

C(f) for configuration f is composed of arcs of circles on
the sphere. These arcs arise as configurations of constant
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2 QD

Fig. 10. Capture regions: a: The convex hull for the polyhedral part in Fig. 3; b,c: Capture regions for each stable pose are shown bounded

by thin lines.

potential energy u when a particular vertex v is in contact
with the supporting plane. Each circular arc can be written
parametrically in ¢ by:

q(t) = cos(t)i+sin(t)j + k 4)
where |i| = |j| = /1 —u?/|v|]?, k = |“7|(v), v is expressed

in the part’s coordinate system whose origin is at the center
of gravity, and 1i,j and k are orthogonal. The limits of the
interval of ¢t are determined by the configurations where
rolling about the vertex leads to contact with an edge. In
Figs. 10b,c, the thin curves delineate the capture regions.

Here, we extend the algorithm for pivoting grasps and
consider the set of grasps where the part pivots to a con-
figuration within a capture region. The set of valid grasps
then expands from being one dimensional (z.e. , the set A)
to being three dimensional. This can be seen by noting
that for each configuration q € C(f) within the capture re-
gion (a 2D set), the set of valid grasps that will pivot to
q is one dimensional (or empty). The algorithm outlined
below has not been fully implemented.

A. Finding Capturing Pivot Grasps

Recall that a pivot grasp is valid if both contact points
are accessible in the direction of the grasp axis and if the
contacts will not slip under some coefficient of friction. For
capturing pivot grasps, the part’s configuration q after piv-
oting can lie anywhere within the capture region C(f) of the
stable configuration f. When the gripper releases the part,
it will tumble to configuration f. Again, dropping may
introduce uncertainty in the plane, but this can be easily
corrected by the 4 DoF arm after another sensory step.

As discussed in Section IV for a part resting on an initial
face in configuration s, a grasp axis can be determined
from a unit vector q, the configuration after pivoting, and
a positive scalar A. For an initial configuration § and a
pair of faces F; and F}, the set of valid grasp axes can be
represented by:

Gij={(a,A):q€eS* e R}

subject to the following conditions.

1. q must be in the capture region of f, i.e. q € C(f)
3. gi(q, ) and g;j(q, ) are accessible in the direction
a(a).
4. The grasp axis lies in the friction cone at the contact
points, i.e. |a(q) - n;| > cosa and |a(q) - n;| > cosa.
where the grasp points g;(q,A) are computed from (3),

[\]

and a(q) is given by (1) with q replacing f. Since G; ; C
S?xIR* is three dimensional, since none of these conditions
defines an equality constraint on S? x R, and since each
of these conditions is independent, the valid set G; ; will
generically be empty or three dimensional. The set of all
valid grasp axes is given by: G = UG; ;.

To simplify the presentation in the rest of this paper,
only convex polyhedra will be considered. This assumption
has the following immediate implications: Every grasp axis
satisfying Condition 2 is accessible (i.e. it satisfies Condi-
tion 3) since every line that does not lie in a face intersects
P at only two points. Additionally, since there are at most
2 isolated intersections between a line and a convex polyhe-
dron, specifying a grasp axis uniquely determines the two
grasp points.

Note that constraints 1, 2 and 4 can be expressed as poly-
nomial inequalities, and therefore the set of valid grasps is a
semi-algebraic set. There are well established techniques,
e.g. Collins’s cylindrical algebraic decomposition [30] or
Canny’s roadmap [31], for characterizing a semi-algebraic
set and determining if it is empty. Thus, a naive algorithm
for determining the complete set of valid grasps which will
pivot P into the capture region of f is to characterize G; ;
for all distinct pairs of faces ¢ and j.

B. Optimal grasp selection

In the previous section, we observed that the set of valid
grasps G defines a three dimensional semi-algebraic set.
Explicitly computing this set is rather expensive, and so
instead we will select a subset of G by posing some notion
of an optimal grasp and then optimizing the criterion over
the set G. There are a number of valid criteria [32]; here
we utilize the same one as in Section V. For a distinct pair
of faces F; and Fj, the criterion is:
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O:5(a ) = min(la(@) il [a(@ 5) G

The optimal grasp axis (q,A) € G;; for faces 7 and j
is the one which maximizes O; ;. The optimum grasp can
then be selected over all pairs of distinct faces. What does
this criterion say? The dot products are a function of the
angle between the grasp axis and the normal to the face;
the minimum selects the larger angle. When the angle is
small, the coefficient of friction pigiatic does not have to be
large for the contact to be stable. Furthermore, the optimal
grasp provides an upper bound on the coefficient of friction;
that is, fistatic must be less than the optimal O; ;.

Note that for a given pair of faces F; and Fj, the criterion
(5) does not involve the grasp height A. Furthermore, Con-
dition 4 given above can be easily checked by selecting the
optimal grasp which satisfies Conditions 1 and 2 and then
checking Condition 4. Because of the constraint A > 0, G
is neither open nor closed. For the optimization to be well
defined, we consider optimizing O; ; over the closure of G
which will still be denoted G. The maximum of O; ;(q, A)
over the closure of G may either lie in the interior or on the
boundary 0G. Since O; ; is multimodal, a two step proce-
dure is required: (I) the local maxima of O; ;(q, A) over all
S5? xR are computed and then only those contained within
G are retained. (II) O; ; is optimized with (q, A) restricted
to 0G. The maximum value of O; ; from these two steps is
the global maximum.

Let us first consider maximizing O; ; over the interior of
G. Note that Eq. 5 is non-smooth and multimodal. For
the grasp axis direction a to be a local maximum of O; ;,
it must satisfy one of the following three conditions:

i. |a-n;|is a local maximum and |a - nj| > |a - n;]|

ii. |a-n;|is a local maximum and |a - n;| > |a - n;|

iii. |a-n;| = |a-n;|
These three conditions are subject to the two constraints,
|aj=1and a-s =0.

For Condition i (and similarly Condition ii), Lagrange
multipliers can be used to find the grasp axis a subject to
these two constraints

1

é: 17~ ~~~  ~ |
|(n; - 8)s — ny|

[(ni - s)s —nj] (6)
provided |a-n;| > |a-n;|. Geometrically, this corresponds
to projecting n; onto the support plane.

Because of the fifth condition for a grasp to be valid, we
can write Condition iii as a -n; = —a - n;. The grasp axis
direction satisfying this condition and the two constraints
is:

1

a=————"——§X
|s x (n; + n;)|

(n; +n;) (7)
Geometrically, this condition corresponds to the projection
of the bisector of n; and n; onto the support plane.

The conditions given by both (6) and (7) only specify
the direction of grasp axis a, and not the actual axis. From
Section IV, the set of configurations q after pivoting is or-
thogonal to a or q-a = 0. This defines a great circle on
S?. Its intersection with the capture region yields a set

of arcs that satisfy Condition 1. Furthermore, the grasp
points must lie on the two faces, and the intersection of
the grasp axis with a face for a fixed q lies on a line pa-
rameterized by A. Since the face is convex by assumption,
the grasp points will lie on a single line segment. Conse-
quently, the optimal grasp set can be specified by a pair
of functions Apmin(Q), Amaz (@) where q is restricted to the
computed arcs of the great circle.

The two dimensional set described above specifies the set
of grasps that optimize the grasp criterion given in (5) for
grasps confined to the interior of G. We now consider the
possible optimal grasps on the boundary 0G of G. 0G is
itself non-smooth, and it can be stratified into two dimen-
sional surfaces, one dimensional curves, and zero dimen-
sional vertices. There are ten different cases to consider.

B.1 Maximizing on the Surfaces of 0G

The surfaces of 0G arise when either:
1. q is restricted to the boundary of the capture region,
and A is free.
2. One of the grasp points is restricted to an edge of a
face, and q lies in the interior of the capture region.

In the first case, q lies on an arc of a circle as given in
(4). From (1), the unnormalized grasp axis direction can
be written as a(t) = s x q(¢). After normalizing a(t), the
grasps satisfying (i) (or similarly case (ii)) can be found
by differentiating a(t) - n; with respect to ¢, and finding
the values of ¢ where this vanishes. Case (iii) leads to a
polynomial equation in ¢ which can be readily solved. Once
the optimal t is found, the configuration q after pivoting is
given by (4). A is restricted to an interval which is easily
computed by intersecting the grasp plane with faces F; and
Fy.
The second type of surface of dG corresponds to a grasp
point g; on an edge of face F; formed by the intersection
with face Fp whose implicit equation is n - g — d, = 0.
Substituting g;(A) from Eq. (3) and solving for A yields:

di(ny, - a) — d(n; - a)

M= E ) — @ e )

(8)

Since q is unrestricted, the optimal axis direction a can
be computed from (6) or (7) as discussed above. The set
of final configurations after pivoting form arcs of a great

circle {q:q-a=0,q € C(f)}, and (8) provides the means
to compute A(q).

B.2 Maximizing on the Curves of 0G

The one dimensional strata of dG correspond to four

cases:

3. q lies at a vertex of the arc of the capture region, and
A s free.

4. One of the grasp points is a vertex of a face, and q
lies in the interior of C(f)

5. One grasp point is along an edge of face F; while the
other grasp point is along an edge of face Fj, and q is
in the interior of C(f)

6. q is restricted to an arc of 6C(f), and one grasp point
lies on an edge of a face.
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Case 3 is trivial since q is given, and so the grasp axis
direction can be directly computed from Equation 1.

Consider Case 4 where the grasp axis passes through a
vertex v of face 7. From (3), we have the following vector
constraint

di—An;-q_
#a+)\q

n;-a

from which we can derive two independent constraints:

{ A=v-q )
(v &) - 2) + (v - @) @) — d; = 0

Since a is a function of q by Eq. 1, the second constraint
defines a curve implicitly in q € S%. The first constraint
can then be used to compute A as a function of q. To
find the optimal grasp axis direction on this 1D stratum
of 90G, Conditions (i)-(iii) discussed above are applied to
this curve. For cases (i) and (ii), Lagrange multipliers can
be used to find the extrema of n - a subject to the second
constraint in (9). Case (iii) is specified by a system of
three polynomial equations in q: the second of Equation
(9), a-s x (n;+n;) =0 (from Eq. 7), and q-q = 1; this
system can be readily solved by numerous techniques such
as homotopy continuation [33].

In the fifth case, the two grasp points lie on edges formed
by the intersection of F; and Fj (as in case 2 above) and
by the intersection of F; and Fj. Since A(q) must be the
same for both grasp points, Eq. 8 can be rewritten for both
edges and equated yielding:

(di(ny -a) — dy(n; -

(dj(m -a) — di(n; -

Q>
o
~
—~~
—_

=B
=>

-q)(n; - -q)(n; - a)) =
), ) -a))

(10)
This is an eighth degree polynomial equation in the ele-
ments of q, and defines a curve on S?. The optimal q
satisfying Condition (i) and (ii) can be found by Lagrange
multipliers subject to the above constraint and |q| = 1.
This yields a system of polynomial equations which is again
readily solved using homotopy continuation. The optimal
q according to condition (iii) is clearly characterized by
a system of polynomial equations. Once the optimal q is
computed, it must be checked that q € C(f), and then A is
found from (8).

In Case 6, q is restricted to HC(f'), and since O, ; is
independent of A, the optimal axis direction and post pivot
configuration q can be computed as in Case 1. Eq. 8 is
then used to compute A.

B.3 The Vertices of 9G

For a pair of faces [}, Ij, the vertices of G can be com-
puted as points (q,A) in the grasp space. Once the coor-
dinates of the vertices are computed, O; ; can be directly
evaluated from (5). The vertices of G occur in the follow-
ing four cases:

7. q is a vertex of an arc of 3C(f'), and one of the grasp

points is at an edge;

8. One grasp point is a vertex of F;, and the other is

along an edge of Fj;
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9. One grasp point is a vertex of Fj, and q is along an

arc of 9C(f);

10. Each grasp point lies on an edge, and q lies on an

arc of 6C(f).
Case 7 is very easy to handle. The optimality criteria can
be easily determined as in case 1, and the grasp point g;
along the edge is computed from (8).

Grasping at a vertex of F; is characterized by the equa-
tions in (9). The second equation provides an implicit con-
straint on q. Substituting the parametric equation for an
arc of OC(f) given by (4) leads to a single equation in ¢
which can be readily solved. If q(t) € C(f), then A can be
easily determined from the first equation in (9).

In the ninth case, one of the grasp points is vertex v of
face Fj, and the other contact point is on an edge of Fj
formed with the intersection with Fj. The grasp axis can
be written as v 4+ ta. Writing that the grasp axis must
intersect the edge and that it is orthogonal to s leads to
the following system of linear equations in a = ta:

nj-a =d;—mn;- v
ng-a =dy—ng-v
s-ra =0

Once a is computed, Eq. 9 along with |q] =1 and q-a =10
can be used to compute q and A.

The tenth case is like the fifth case with the restriction
that q lies on 3C(f). Substituting q(¢) from (4) into Equa-
tion 10 leads to a single equation in ¢ which is easily solved.
If ¢t is within the correct interval, q and A are then readily
determined from (4) and (8).

VII. DiscussioN

This paper introduces a new class of grasps. Pivot grasps
allow a robot with only 4 active DoF to move a polyhe-
dral part through 6 DoF. The “gap” is closed by introduc-
ing a pivoting axis between the parallel jaws of a simple
gripper and exploiting the force of gravity to rotate parts
as they are lifted off a support surface. We presented an
O(m?nlogn) algorithm that builds the transition graph of
pivot grasps. The algorithm is complete in the sense that
whenever a valid pivot grasp exists, it will find one.

Perhaps surprisingly, under idealized conditions, plan-
ning pivots is solution-complete [6] i.e. a valid pivot grasp
always exists when the part’s center of gravity lies inside
the part and the grasp contacts have an infinite coefficient
of friction. Requiring that the center of gravity lies within
the part ensures the existence of an accessible grasp; the
envelopes u()),l(A) cannot be empty. Therefore, with in-
finite friction, the part can always be picked up and the
transition completed. Other conditions can also ensure
solution-completeness, for example parts that are cuboids
(rectangular parallelopipeds) with any non-zero friction.
The difference between these two examples is that with
infinite friction, we can always achieve the transition in a
single pivot grasp while for cuboids with non-zero friction,
a sequence of two grasps may be required. Consider for
example the problem of pivoting a part onto a face with an
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anti-parallel normal: performing this inversion in a single
grasp is possible if we allow the manipulator to “shake”
since this configuration is meta-stable: i.e. by accelerating
the manipulator in almost any direction after pick-up.)

For convex polyhedra, and in general, for polyhedra that
are star-shaped with respect to the center of gravity, the
complexity of computing the transition graph reduces to
O(m?n). An open question is whether or not this complex-
ity can be reduced when we only need to compute paths
to a single desired final face from all other stable faces (as
might be the case for parts feeding).

We have tested some of these pivot grasps in the lab
using an Adept robot arm (see [1]). We plan to extend the
planning algorithms in several directions. Firstly, we would
like to consider “active” pivoting, where the pivot axis is
actuated by a small motor and hence pivoting does not rely
on gravity. This would allow us to remove the constraint
that the center of gravity must lie below the grasp axis
after pivoting.

In addition to implementing the computation of optimal
capturing pivot grasps, we would like to broaden the no-
tion of capture regions. In the current definition, the part
settles to a unique final configuration. However, there are
larger regions of S? from which the part the part will settle
to one of a set of stable configurations; however, the spe-
cific configuration cannot be determined without further
assumptions about the dynamics. Pivoting into this region
can be represented as non-deterministic arcs in the transi-
tion graph. Sensing can then be used to determine which
stable configuration has been achieved after pivoting. Us-
ing grasps that pivot into these “super-capture regions”
in a multi-step plan may increase the connectivity of the
transition graph

One issue we have neglected is possible collisions with
other parts during execution of a pivot grasp. Collisions
could be easily predicted by the vision system. One way
to avoid collisions would be to maintain alternative pivot
grasps for each desired transition and then choose one that
would avoid collisions, if possible, during execution. Note
that the flexible feeding system envisioned by Carlisle et
al would recirculate parts that cannot be reoriented due to
such interference.

We are planning to re-implement the pivot algorithm in
a compiled language and integrate it into a CAD system
to aid in the rapid setup of flexible part feeders for assem-
bly. This system will also contain routines to predict feeder
throughput by estimating the statistical distribution of sta-
ble poses for a given part [34]. The long-range objective
is to develop tools that can permit coordinated design of
products with the assembly systems that will manufacture
them.

APPENDIX

Can a sequence of two rotations, one about some axis
lying in the horizontal plane and the second about the
vertical axis, cover the space of all 3D rotations? Recall
that a rotation about an axis w by angle # can represented

by a unit quaternion Q = (q0,q) = (q0,(¢1,42,43)") =

(cos g,sin %w) [35]. Furthermore, recall that the product

of two quaternions Q and P is given by:

Q*P = (qopo — q - P, qoP + Poq + q X P)

Using quaternions, we will prove the following:

Proposition 1: Any rotation can be achieved by first ro-
tating about an axis restricted to a horizontal plane by
some angle ¢ followed by a rotation of angle a about the
vertical axis.

Proof:  We show that an arbitrary unit quaternion

Q, it is equal to the product of two quaternions: rotation
about the vertical axis V and rotation about an axis in the
horizontal plane H. As quaternions, they can be expressed
as:

, (0,0, sin %)T)

(cos 5
(cos %, (kg sin %,

V =
H= ky sin%,O)T)
where (kg, ky,0)7 is the horizontal axis of rotation.

We now show that for any quaternion Q, there exist
values of o, ¢, k., ky such that Q = V+H. After taking the
quaternion product, we arrive at the following four scalar

equations:

_ a 2]
qo_cosicosg )
— Xgin O g @i @
ql_cos2sm£kx sm251ngky
—_ [ : o
q2 = cos 5 sin £k, + sin 5 sin £k,
o

43 = SIHECOSE

Taking the sum of the square as well as the ratio of the
fourth and first equations provides the means to solve for

¢ and «

= @+4¢
= QB/Qo

cos
tan

[CI[=TR]

There are multiple valid solutions to these equations un-
less qo = 0; however, in this case it is easy to see from
the original equations that cos § = 0 (i.e. @ = 7), and so
cos % = ¢3. Once a and ¢ are determined, the equations for
q1 and ¢2 are linear in k, and k, and can be easily solved.
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