Complete Algorithms for
Reorienting Polyhedral Parts using a Pivoting Gripper
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Figure 1: The pivoting gripper mounted on a SCARA arm.

1 Introduction

Achieving a desired spatial configuration of a part is a fun-
damental issue in robotics. In industrial applications, a fa-
miliar task is that of feeding parts: bringing parts into a
desired position and orientation (pose). To rapidly feed a
stream of industrial parts arriving on a conveyor belt, the
vision-based system proposed by Carlisle et. al. [1] uses
a SCARA-type arm with only 4 DoF due to cost, accuracy,
and speed requirements. However, such arms can only re-
orient parts about the vertical axis due to kinematic limita-
tions (see Fig. 1).

Contact between a part and a supporting plane only occurs
along its convex hull. When rotations and translations in the
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plane are ignored, the part generally assumes one of a finite
number of stable configurations [3]. In this communication,
we will consider computing a sequence of pivoting actions
that will move a polyhedral part with n faces from an initial
stable configuration § to a final stable configuration f. The
decision question is whether or not a single pivot action can
accomplish this task: we give a O(n logn) time solution.

It may not be possible to move the part between an arbi-
trary pair of stable configurations in a single pivot action;
in general a sequence of pick-pivot-place operations may be
necessary. Therefore, we consider computing the complete
graph of possible transitions and give an algorithm that runs
in O(m?nlogn) time, m being the number of stable con-
figurations. A path through this transition graph represents
a plan which moves the part from some initial to final config-
uration. The algorithm is complete in that whenever a path
of pivot actions exists, each conforming with the gripper ac-
cessibility and friction constraints, it will be found.

See the complete paper [4] for the details which also
includes a generalization that considers “capture regions”
around stable configurations.

2 Problem Statement

We assume (i) The worktable is a flat plane orthogonal to
gravity at a known height; (ii) The parallel-jaw gripper is
able to translate with 3 DoF and to rotate about the gravity
vector; (iii) The gripper has a passive degree of freedom —
a pivot axis parallel to the support plane; and iv The grip-
per makes “hard contact” with the part — point contact with
friction which offers no static resistance to rotation about the
pivot axis.

Fig. 1 shows the robot work cell. The input to the algo-
rithmis: A polyhedral part P stored as a boundary represen-
tation (B-rep), its center of gravity, ¢, which is taken to be the
origin of the coordinate system used to define the B-rep, and
the coefficient of static friction gt atic.

The output is a transition graph whose nodes are the sta-
ble configurations, or faces F; of the convex hull. The arcs
between nodes describe points on the part corresponding to
grasp axes that will rotate the part from one stable face to
another.



3 Computing the Transition Graph

First compute the convex hull H for the polyhedron P. A
face of A is stable when the projection of the center of grav-
ity in the normal direction onto the face lies within the face;
the stable faces become the nodes of the transition graph.
For every ordered pair of stable faces of /, whose normals
are given by § and f, determine the set of grasp points (if
there are any) that will pivot the part to f as described be-
low. The direction of the grasp axis is given by:
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Note: a is undefined when § and f are parallel or anti-
parallel. In these cases, precise pivot actions are unneces-
sary or impossible. The parametric equation of the family
of grasp axes indexed by A is:

ax(t) =ta — M, )
where A > 0 can be interpreted as the distance from the cen-
ter of gravity to the axis. Thus, the grasp axis must lie in the
half-plane, A, spanned by a and —f.

|s x

1. Determine the half-plane .A of grasp axes which will
successfully pivot P according to Eq. (2) and the di-
rection of the grasp axis a from Eq. (1).

2. Compute the intersection of .4 with P which yields
a collection of intersection polygons P in the grasp
plane.

3. In the direction f within the grasp plane, compute the
upper U and lower £ envelope of the polygon(s) P.
The upper (lower) envelope is the portion of P visible
from infinitely far away along +a (—a). Each enve-
lope is a function of A, and the edges of the envelope
are ordered by increasing A. The importance of points
on these envelopes is that they are accessible to a grip-
per linearly approaching the part along the grasp axis.

4. For each edge of i/ U £ whose corresponding face has
surface normal n, determine if the face can be grasped
by a point contact with friction in the direction a ac-
cording to: ||a - n|| < cosa. Here « is the friction
angle computed from tan(«) = fistatic.

5. Merge the two sorted envelopes {f and £ intoaset A =
UA; where each A; is aclosed interval of A\. Associated
with each interval is the pair of functions u(A) and I(A)
which return the grasp points.

6. If A # (0, create an arc in the transition graph between
§ and f.

The complexity of the algorithm is dominated by the con-
struction of the envelopes which takes O(n logn) time per
iteration [2]; the rest of the steps have linear complexity.
Since there are O(m?) pairs of stable configurations, the
complexity of constructing the entire transition graph is
O(m?nlogn). For star-shaped (wrt the center of gravity)
polyhedra, this reduces to O(m?*n) because the intersections
computed in Step 2 will each consist of a single star-shaped

polygon.
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Figure 2: The partial matrix of transitions for the part with
six stable configurations. Cell (7, j) indicates the family of
accessible pivot grasps that will move configuration ¢ to con-
figuration j; the optimal grasp (requiring minimal ftgtatic)
from among this family is shown as a pair of disks. Num-
bers in the upper right-hand-corner of each cell indicate the
minimal required coefficient of friction.

Implementation: The algorithm for planning pivot ac-
tions was implemented in the Symbolic Computing System
Maple V. The choice of Maple was made because several
primitive geometric tests and computations are built in with
Maple’s geom3d package. As an example, consider Fig. 2.
The part has n = 11, m = 6. The entire transition graph, a
fourth of which is shown in the figure, was computed in 28
seconds on a Silicon Graphics workstation (R4400 proces-
sor running at 150 MHz, 96.5 SPEC{p92, 90.4 SPECint92).
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