
Compressing Large Polygonal Models

Jeffrey Ho∗ Kuang-Chih Lee† David Kriegman‡

Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Abstract

We present an algorithm that uses partitioning and gluing to com-
press large triangular meshes which are too complex to fit in main
memory. The algorithm is based largely on the existing mesh com-
pression algorithms, most of which require an ’in-core’ represen-
tation of the input mesh. Our solution is to partition the mesh into
smaller submeshes and compress these submeshes separately using
existing mesh compression techniques. Since a direct partition of
the input mesh is out of question, instead, we partition a simplified
mesh and use the partition on the simplified model to obtain a parti-
tion on the original model. In order to recover the full connectivity,
we present a simple scheme for encoding/decoding the resulting
boundary structure from the mesh partition. When compressing
large models with few singular vertices, a negligible portion of the
compressed output is devoted to gluing information. On desktop
computers, we have run experiments on models with millions of
vertices, which could not be compressed using standard compres-
sion software packages, and have observed compression ratios as
high as 17 to 1 using our technique.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—object representations; I.3.6 [Com-
puter Graphics]: Methodology and Techniques—graphics data
structures and data types; E.4 [Coding and Information Theory]:
Data compaction and compression

Keywords: compression algorithms

1 INTRODUCTION

With the recent and rapid advances in digital acquisition technol-
ogy, meshes with millions if not billions of vertices are becom-
ing increasingly common. The most celebrated examples are the
range scans of Michelangelo’s sculptures, made by Stanford’s Dig-
ital Michelangelo project, which contain up to two billion triangles.
These massive datasets pose great challenges to virtually all exist-
ing mesh processing tools such as rendering, editing, simplifica-
tion, and compression. The large memory requirement for handling
these datasets renders many of these mesh-processing tools inef-
fective on a computer with modest size RAM (i.e. a desktop PC).
Existing mesh compression and, to a lesser extent, decompression
algorithms are only effective if a representation of the mesh’s entire
topological and geometric structures (and other attributes) is small
enough to fit ‘in-core’. Yet for a mesh with a few million vertices,
one faces the possibility that there is insufficient memory on a desk-
top computer for the entire model.

Our approach toward compressing these large models is straight-
forward: to partition the mesh into submeshes of smaller sizes, de-
pending on the available local memory, and then to compress them

∗j-ho1@dizzy.ai.uiuc.edu.
†klee10@uiuc.edu
‡kriegman@uiuc.edu

separately using the existing mesh compression algorithms. Extra
effort is also needed to encode and decode the connectivity infor-
mation that glues (or stitches) the various boundaries resulted from
the mesh partition. Certainly, there are many ways to partition a
mesh. However, from the compression standpoint, it is desirable
that 1) each region of the partition is “localized” somewhere in the
model, and 2) the boundary of each region is as simple as possible.
The motivation is that submeshes within a localized region would
share similar geometry and therefore, minimize the size of the com-
pressed geometry output code. The simple boundary assures that
the boundary encoding would also be minimized. In addition, the
partition should in general be balanced in the sense that each patch
of the partition should contain roughly the same number of vertices
or faces, or other geometric primitives. Since the original mesh is
assumed to be too large to be represented in-core, we are faced with
the problem of how to produce partitions that satisfy these criteria.
One obvious partitioning approach is to use the coordinate axes or
other linear functions of the ambient space to partition the mesh.
However, without knowing the approximate shape or geometry of
the model, a direct approach is generally quite hazardous. We pro-
pose the simple idea of using a weighted graph, which is derived
from a simplified mesh of the input model, as a guide for partition-
ing the original mesh. Therefore, the compression starts with an
initial pass over the input file so that this weighted graph can be
computed. It is assumed that the weighted graph is small enough to
partition it directly. If N is the ratio between the size of the model
representation and the locally available memory, we partition the
weighted graph into N parts and use the partition on the graph to
induce a partition on the input model. We make another N passes
over the input file such that each submesh (region of the partition)
is reconstructed and compressed separately.

To encode/decode the full connectivity, we propose an encod-
ing/decoding scheme for the boundaries resulting from the parti-
tion. The problem is similar to the one studied in [5], but with sev-
eral important differences. The idea is simple. Because of the parti-
tion, most of the vertices that need to be identified are the boundary
vertices of the submeshes. Using this as the working hypothesis,
our method is similar to the variable-length method described in
[5] and is optimized for our particular circumstance.

Since the compression algorithm requiresN + 1 passes over the
input file, its performance in speed is dominated by disk I/O. This
becomes rather unattractive ifN and the file size are both large.
The decoder, on the other hand, only makes one pass over the com-
pressed file, which is assumed to be smaller than the original file;
therefore, its speed is less effected by the size of the original file.
This makes the compression algorithm asymmetric, although it is
generally preferable to have a faster decoder.

For mesh simplification, the recently introduced out-of-core sim-
plification technique [13] provides an elegant solution for memory-
less simplifications. The out-of-core method makes one pass over
the input mesh data file and it only retains the data needed for com-
puting the simplified mesh; therefore, the memory used in process-
ing the mesh is kept at minimum. The usual text-based compression
techniques such as the GZIP or [21] also share this characteristic.
These compression methods usually make one or two passes on the
input file, depending on whether the compression statistics is ex-
tracted from the document before the compression. The memory



usage for these methods are generally small and for GZIP or LZW
compression method, it depends on the size of the windows used
in computing predictions. Comparing with the two cases above,
the situation for mesh compression is considerably more compli-
cated. The out-of-core simplification ignores the local connectivity
information. However, local connectivity is one of the properties
that is to be encoded (or decoded) by the mesh compression al-
gorithm. The prediction used in text-based compression is simply
unidirectional, i.e. toward the end of the file. For the mesh com-
pression, which involves the 3D geometry, the relation between the
primitives, i.e. the vertices and faces, is multi-directional. In an ab-
stract sense, all existing mesh compression algorithms aim to pro-
duce some type of linear ordering (based on spatial proximity) on
the mesh (vertex or face traversals); this requires a both global and
local structure of the model and hence a large in-core representation
of the mesh.

This paper is organized as follows. In the next section, we briefly
review some of the major work in mesh compression. In section
three, we describe our partition and glue schemes, and experimental
results are reported in the concluding section.

2 PREVIOUS WORK

The process of compressing a mesh generally consists of two steps:
a preprocessing step and the actual compression. Since virtually all
the existing mesh compression algorithms (with the exception of
[1]) require the input mesh to be a manifold, a preprocessing step is
necessary to detect singular points on the input model (if they exist)
and convert a non-manifold input mesh into a manifold one.

2.1 Converting Non-Manifold Meshes

The method for converting non-manifold meshes into manifold
meshes is studied in [6]. The main idea is to separate the local
branches at each singular vertex by duplicating it. The resulting
manifold mesh will have the same number of (non-degenerate) tri-
angles as the original mesh but with more vertices. In addition, the
manifold mesh will typically have more than one connected com-
ponent. Each regular vertex in the original mesh corresponds to one
vertex in the manifold mesh while each singular vertex corresponds
to more than one vertex in the manifold mesh. The correspondence
is recorded in a vertex clustering array. In [5], two efficient methods
for encoding/decoding this vertex clustering array were proposed: a
stack-based method, which directly encodes and decodes the array
and a variable-length method, which is more efficient if the ver-
tex clustering array contains long chains of (singular) vertices with
consecutive decoding orders of traversal.

2.2 Mesh Compression

Many mesh compression algorithms have been proposed and inves-
tigated in the past five years. They differ mainly in the way the
mesh connectivity is encoded/decoded. Due to its discrete nature,
the connectivity encoding is generally combinatorial in nature and
different algorithms give different recipes for visiting each triangle
or vertex of the mesh. The idea of using triangle strips for com-
pression appeared in Deering’s work [3]. It was later generalized
and extended in various directions [2, 12, 7], which includes the
IBM’s topological surgery [18, 19] and Rossignac’s Edgebreaker
[15]. Somewhat differently, Touma and Gotsman’s method gives a
recipe for making a vertex traversal. They encode the valences of
the vertices and record the merging and splitting of the boundary of
the region the algorithm has visited. As a by-product of the mesh
traversal, all of the methods cited above produce an ordering of the
vertices, the decoding order.

Using the decoding order defined by the connectivity encoding,
a predictive coding can be developed for compressing mesh geom-
etry and other attributes. Typically, a bounding box for the model
is used to define the coordinate quantization. The bounding box is
divided into uniform grid cells, and the positions of the vertices are
normalized within each cell. Using the decoding order of traver-
sal, the position of a vertex can be predicted by the positions of
previously decoded vertices. The difference between the actual po-
sition and the predicted position is encoded as an integer. The most
successful prediction rule so far is the parallelogram rule of Touma
and Gotsman [20], which predicts the position of a vertex as the
fourth vertex on a parallelogram formed by the vertex and three of
its “neighboring” vertices. The size of the output code is further
reduced by the use of an entropy encoder, which is applied to all
data, namely connectivity, geometry and other properties.

The work cited above all faithfully encode the connectivity of
the mesh while its geometry is encoded in a lossy way with er-
ror controlled by the coordinate quantizations. However, recently
there emerges a new type of “appearance-based” mesh compres-
sion [11, 8]. These methods generally involve re-meshing the input
model into a semi-regular mesh. Standard multi-resolution signal
processing tools, such as wavelets, are used to compress the geom-
etry and other attributes. Therefore, both the connectivity and ge-
ometry are compressed in a lossy way; however, the main concern
here is the fidelity of the compressed model’s appearance. A more
radical departure from traditional mesh compression is the Qsplat
data structure of [17]. The data structure is used for rendering a
massive mesh data file, and it can be considered as a form of mesh
compression where all the connectivity information is ignored. In
this paper, we follow the more traditional type of mesh compression
where the mesh connectivity is encoded losslessly.

3 COMPRESSING LARGE MESHES

The mesh compression algorithm presented here builds on exist-
ing mesh compression algorithms, in particular [20, 15]. Our so-
lution to compressing meshes too large to fit in-core is to partition
the input mesh into submeshes small enough to apply an existing
mesh compression algorithm [20]. If the complete connectivity is
required, our method also provides a simple and efficient scheme to
encode/decode the information needed to glue various submeshes
together to recover the full connectivity. Our main contributions
are: 1) a simple partitioning scheme, using a simplified mesh graph,
which produces good partitions for compression, and 2) an encod-
ing/decoding scheme for gluing the submeshes.

The recent work of Karni and Gotsman [9] appears to be the first
time that mesh partitioning was used in mesh compression. How-
ever, the functionality of the partition in their work is different. In
[9], the connectivity is encoded and decoded separately from the
geometry, and it is used to define a mesh partition such that the
geometry of each submesh is encoded and decoded independently
using a spectral method based on the mesh Laplacian. Furthermore,
since connectivity is used to compute the partition, there is no need
to glue submeshes. In our case, it is not possible to use the full con-
nectivity to define the partition; in fact, the partition is only defined
on a simplified mesh graph. On the decoding side, we need to glue
the submeshes together in order to recover the full connectivity.

3.1 Mesh Partitioning

The main goal of the mesh partitioning is to divide the input mesh
into submeshes of roughly equal size. The size of course depends
on the available memory and the amount of memory required by
algorithms being used to compress the individual submeshes, and
the later differs with different implementations. However, from



a. b. c.

Figure 1: Examples of mesh partition. a. This partition is induced
from a simplified mesh; b, c. Partitions usingz andy axes, respec-
tively. The original model is the statue of David from Stanford’s
Digital Michelangelo Project

Figure 2: After the partition, the boundary ofS1 contains both the
vertices on the cut boundary and the vertices on the actual boundary.
When gluingS1 andS2 together to recover the original mesh, only
the vertices on the cut boundary are identified.

the compression standpoint, it is also desirable that 1) the result-
ing boundary structure should be simple, and 2) each region of the
partition should be localized in the model. A direct partitioning
of the model using for example the coordinate axes or other linear
functions of the ambient space generally does not have this prop-
erty. See Figure 1.

By partitioning the mesh intoN parts, we mean that each ver-
tex of the mesh can be assigned a number, its region index, from
1 toN . The assignment for the vertices induces an assignment for
the triangles: the region index for each triangle is defined as the
minimum of the region indices of its three vertices. TheKth sub-
meshSK is simply the union of all triangles with region indexK,
andSK does not contain any vertex with region index less thanK.
See Figure 2. The intersection of two submeshes is either empty
or consists of just vertices and edges, and we call these non-empty
intersections thecut boundariesto distinguish them from the real
boundary.

The geometry of the input model can be condensed into a
weighted graphG using spatial vertex clustering. The result is a
map from the set of the vertices to the nodes ofG. The weight at
each node simply counts the number of vertices mapped to the node
while the weight on each edge counts the number of triangles with
vertices mapped to the edges’ two nodes. IfG is small enough, we
can directly partitionG, and in turn, the partition ofG induces a
partitioning on the input mesh.

The vertex clustering algorithm that we use is similar to the one
in [16]. It requires a bounding box for the input mesh, and the same
bounding box is used to define the global coordinate quantization
that is applied to all submeshes. The bounding box is divided into
a number of uniform grid cells. Given a trianglet from the input
mesh, we obtain its vertex coordinates. For each vertex, we deter-
mine the grid cell that the vertex falls in. If this cell has not been
visited, a new node inG is created. If two of the triangle’s vertices
belong to the same cellu and the other vertex belongs to a differ-
ent cellv, a weight on the edgeuv in G is increased by 1. If all
the vertices oft belong to the same node, the node’s weight is also
increased by 1.G should be as small as possible; however, our pri-

mary concern is to have a balanced partition on the input mesh. If
G is too coarse, the induced partition on the input mesh may not be
appropriately balanced. In our implementation, the bounding box
is divided into 64 to 128 equal parts in each coordinate axis, andG
typically contains fewer than 40000 nodes.

After the initial pass, we have a weighted graphG that records
roughly the spatial distribution of the vertices of the input mesh.
The weighted graph can be partitioned using a standard graph par-
titioning package such as METIS [10]. The result of applying
METIS toG is a balanced partition of G with small (but not min-
imal) edge cuts. A balanced partition forG means that the sum of
the weights of all nodes in the different regions are approximately
the same. Since the weight of the nodes simply counts the number
of triangles collapsed into the cell, the balanced partitioning onG
translates into a balanced partitioning on the input mesh. A partition
of G with small edge cuts also translates into a partitioning of the
input mesh with “simple” boundary structure. Table 1 shows two
different partitions of David from the Digital Michelangelo Project,
and the number of vertices on the cut boundaries.

The data structure for the partitioning ofG will remain through-
out the entire encoding process. We make anotherN passes over
the input file, and each time a submeshSi is constructed in-core.
Again, given a trianglet, we obtain its three vertices and identify
the nodes of the graph these vertices belong to. A vertex’s region
index is simply the region index of its parent node inG. If t is de-
termined to have a region index equal toi, it is retained; otherwise,
it is discarded. AfterSi has been compressed, we free the memory
holding the structure forSi and proceed to compressSi+1.

At this point, we have two options, we can proceed directly to
compress each submesh independently and hence ignore the cut
boundaries or we can proceed to encode the cut boundaries and
hence compress each submesh separately but not independently.
The main difference between the two approaches is that the po-
sitions of the vertices on the cut boundaries are encoded multiple
times if each submesh is compressed independently. If the number
of submeshes is small, the vertices on the cut boundaries are usually
less than 1% of the total number of vertices. Of course, there will
always be some unfortunate cases where a small number of sub-
meshes results in a large number of vertices on the cut boundaries.
However, our partitioning scheme is specifically designed, for most
cases, to have a small number of vertices on the cut boundaries, as
shown in Table 1. If the submeshes are compressed independently,
the compressed output represents a triangular meshM ′ which con-
tains the same number of triangles as the original meshM but with
more vertices. SinceG is determined only by the triangles, theG
for M andM ′ are identical. Hence, if we compressM ′ with N
partitions, the compressed output this time will faithfully represent
M ′, i.e. the number of vertices will not increase as long asN is the
same. Therefore, on the same desktop PC, repeatedly compressing
and decompressing the input model will not increase the number of
vertices indefinitely.

Partition N = 14 N=5
x 19063 57435
y 22371 6123
z 98081 31066
G 13870 6332

Table 1: The number of vertices on the cut boundaries. Compar-
isons between partitions using the coordinate axis and the weighted
graphG. The partitions using weighted graph are shown in Figure
1 of the color plate.



3.2 Gluing the Cut Boundaries

If the full connectivity is required, we are obliged to encode/decode
the cut boundary structure, i.e. how the vertices on the various cut
boundaries should be identified. A straightforward method is to
directly encode the gluing. Ifv andu are vertices that should be
identified andu is decoded afterv, we can associate withu an inte-
ger index that identifies which previously decoded vertices should
u be identified with. Since the input mesh is supposed to contain
millions of vertices and the number of vertices on the cut bound-
ary are usually more than a few thousand, the integer index would
require more than 10 bits to code. Therefore, hard coding the glu-
ing is not likely to produce results better than encoding the vertices
multiple times. Since the cut boundaries are the direct result of
mesh partitioning, most of the vertices on the cut boundaries are in
fact on the boundary of the submeshes containing them. As can be
seen from Figure 1, the cut boundaries are usually very long, and
this suggests some type of variable-length encoding is appropriate.
For vertices that do not belong to a submesh’s boundary, we simply
encode them directly.

The gluing (or stitching) problem has been studied previously
in [5], and there are differences between Gueziec’s case and ours.
First, in [5], the vertices that need to be identified are the singular
vertices, and they generally reside on the interior of the mesh rather
than on the boundary. Therefore, the only ordering of the vertices
that can be used for the variable-length encoding is the decoding
order of the vertices. In our case, an ordering for most of the ver-
tices on the cut boundaries can be provided by the orientations of
submeshes’ boundaries. Second, in [5], at the time of encoding, the
complete information on how to cluster vertices is available (the
vertex clustering array in [5]) while in our case, the information on
vertex identifications is only revealed incrementally.

Since we are using the boundary information to encode the glu-
ing, this requires that, on the decoding side, the connectivity is de-
coded before the gluing can start. On the decoding side, the connec-
tivity is decoded first, and this is followed by gluing. The geometry
is decoded last, following the same traversal as the connectivity de-
coding. A table containing the structure of the mesh partition is
encoded as a functionp(k) for 1 ≤ k ≤ N , and it is placed at the
beginning of the compressed file. For each1 ≤ k ≤ N , the num-
berp(k) is defined as the largest integer such that the intersection
between submeshesSk andSk+p(k) is non-empty.

3.3 Cut Boundaries Encoding

Suppose we are encoding an input mesh that has been partitioned
into N parts. LetS1 · · ·SN denote the resulting submeshes, and
we compress them in this order. When compressing a submesh, we
need to 1) identify vertices in the current submesh that are glued
to vertices in the previous submeshes and 2) identify vertices in the
current submesh that will be glued to vertices in the forthcoming
submeshes.

At any moment, a list of vertices,CL, is maintained. These are
the vertices which are “waiting to be glued”. Using the cut bound-
aries, we can impose extra geometric structure onCL so that it de-
scribes a collection of line segments, close loops and single points.
See Figure 3. In the actual implementation,CL is a collection of
doubly-linked lists of vertices and lists with a single vertex.

The data structure for the vertices contains the following fields:

1. rID denotes the region it belongs (according to the weighted
graphG),

2. cID denotes the last submesh it is on,

3. dID denotes the decoding order of the given vertex in submesh
ScID.

Figure 3: The evolution ofCL: afterS1 is processed, only the ver-
tices on its boundary are retained. At this moment,CL consists of
these vertices. AfterS2 is processed,CL consists of two segments.
Each segment is a part of the cut boundary ofS1 or S2. After S3 is
processed,CL again consists of two segments. The cut boundary
of S1 has been processed and its boundary structure is deleted from
the memory.

For each submeshSk, let Vk denote the set of its vertices. Let
Pk denote the set of vertices inVk that have to be glued to some
vertex in a previous meshSi with i < k. We also letNk denote the
vertices inVk that will be identified with some future vertices. See
Figure 2 of the color plate. The intersectionNk ∩ Pk is generally
non-empty.

To identifyNk is easy, they are the vertices inVk with rID > k.
Pk, by definition, is simplyVk ∩ CL.

Before connectivity encoding, the boundary structure ofSk is
computed. A vertexv is on the boundary ofSk if a small neighbor-
hood ofv in Sk is homeomorphic to the half disc and a boundary
edge is an edge inSk shared by only one triangle, whose orien-
tation induces an orientation on the edge. Let∂Sk denote the set
of boundary vertices ofSk. By computing the boundary structure
of Sk, we mean that the set∂Sk can be partitioned into disjointed
subsets such thatu andv belong to the same subset if there ex-
ists a sequence of (oriented) boundary edges{e1, ...en} connecting
u andv. Geometrically, each subset (with the connecting edges)
forms a line segment or a closed loop, or a single point. The bound-
ary structure induces a geometric structure on the setsNk andPk,
i.e. we can form line segments, loops with vertices inNk andPk.
Similar toCL, in our implementation,Nk andPk are collections
of doubly-linked lists and lists with single vertex.

Next, we identify vertices inPk which are “essential” to gluing
Sk to the previous submeshes. See Figure 4. By definition, each
vertexv in Pk will be identified with a vertexv′ in CL. The cor-
respondence is one-to-one, i.e. no two vertices inPk will be glued
to the same point inCL. If v ∈ Pk but not in∂Sk, we simply find
the corresponding vertexv′ in CL, and we record five integers for
v. The first two are thecID dID of v′, and the other three are all
zeros. We removev from the setPk and put it into a listT . Once a
vertex inCL has been selected for gluing, it is removed fromCL,
and the corresponding geometric structure it belongs to is modified.



Figure 4: Gluing two cut boundaries. Verticesv1 andv3 are bound-
ary points ofS1. v2 is not a boundary point according to our defi-
nition. The circles can be glued together by specifying only 1) the
pair v1 andv′1, 2) the number of vertices on the circle (excluding
v2) and 3) the orientations of the circles. The line segments con-
taining v3 andv′3 can be coded similarly. The pairv2 andv′2 is
coded directly.

For instance, ifv′ belongs to a loop,v′ is removed fromCL, and
the loop is changed to a line segment.

For eachv ∈ Pk ∪ ∂Sk, let v′ be the vertex inCL that is to
be identified withv. If LPk andLCL are the line segments inPk
andCL containingv andv′, we simply find the longest (oriented)
line segmentL in LCL containingv such that by traveling down
L, we can identify vertices onL with vertices onLCL. For v, we
record the following five numbers: the first two numbers identify
the vertexv′, the cID dID of v′. The next two number are the
forward lengthfl and backward lengthbl. These are the topological
distance betweenv and the two endpoints ofL (recall thatL is
oriented, so starting atv, we can travel forward and backward on
L according to its orientation). IfL is a loop,bl is set to−1. The
last number compares the orientations betweenL andLCL, it is 1
if they are compatible and−1 otherwise.v is removed fromPk and
added to the listT . We remove all other verticesu onL from Pk
and their corresponding vertexu′ is also removed fromCLwithout
further processing. The process is terminated whenPk is empty.

During the mesh traversal phase of the compression, these
records are inserted into the symbol sequence at the appropriate
places. In Rossignac’s Edgebreaker, there are five symbols for con-
nectivity encoding: S(S*), R, L, E, C. We add two more, GLUE1
and GLUE2. The symbol GLUE1 is followed by 5 integers while
GLUE2 stands by itself.

Whenever a vertexv in the listT is first encountered during mesh
traversal, GLUE1 is inserted into the symbol sequence. The five in-
tegers that follows are the five numbers we described above. When-
ever, a vertexv ∈ Nk andv /∈ ∂Sk is first encountered, GLUE2
is inserted. The functionality of GLUE1 has been explained above.
The functionality of GLUE2 will be explained later.

After compression is finished, all vertices inSk are deleted ex-
cept those belonging toNk. For eachv ∈ Nk, its cID is changed
to k anddID is changed tov’s decoding order onSk. And finally,
Nk is appended toCL.

3.4 Decoding the Cut Boundaries

On the decoding side, the process is reversed. For eachSk, its
connectivity is decoded first. After the boundary ofSk has been
computed, we do the gluing, and geometry decoding follows in the
same traversal as the connectivity decoding. During the connectiv-
ity decoding, any vertex marked by GLUE1 and GLUE2 is put into
a listT . These are the vertices needed for gluing. A list of vertices

a. b. c.

Figure 5: Three of our test models: a. Lucy from Stanford 3D Scan-
ning Repository. 28,055,742 triangles and 14,027,872 vertices. b.
David from the Digital Michelangelo Project. 8,254,152 triangles
and 4,129,614 vertices. c. A part of St. Matthew (part 4) from the
Digital Michelangelo project. 36,550,076 triangles and 18,306,508
vertices

CL, which contains vertices that will be identified later, is main-
tained throughout. After the connectivity ofSk has been decoded,
we compute its boundary structure. For every vertex inSk marked
by GLUE2, we use the five integers described above to identify ver-
tices inSk with vertices inSi with i < k. The geometry is decoded
after the gluing is finished. AfterSk has been decoded, we delete
all its vertices (and faces) from the memory except those that will
be used in the future for gluing. These vertices are the vertices on
its boundary and those marked by GLUE2. The main point is that,
on the decoding side, we do not recover the exactNk. Instead,Nk
is defined as the union of the vertices on the boundary ofSk and
the vertices marked by GLUE2. Therefore, there are vertices inNk
that will not be glued to anything; however, all the vertices that will
be needed for gluing are inNk. This may create a problem ifN is
large and hence many boundary vertices have to be kept in mem-
ory. The problem can be greatly reduced by using the functionp
decoded at the beginning. Vertices created during the decoding of
Sk can be deleted once the the submeshSk+p(k) has been decoded
since, by definition, the intersection betweenSk andSi is empty if
i > k + p(k)

4 RESULTS AND DISCUSSION

For compressing submeshes, We have used Rossignac’s Edge-
breaker [15] for connectivity encoding and the parallelogram rule
of Touma and Gotsman [20] for geometric prediction. In our im-
plementation, an “in-core” representation of an input mesh requires
approximately 172 byes per vertex. This includes the data struc-
tures needed for compression and converting a non-manifold mesh
into a manifold one. The output from the geometry and connec-
tivity encodings are entropy encoded using the arithmetic compres-
sion software of [21]. The results reported in Table 2 were gath-
ered on a 450 MHZ machine with 256 MB of RAM. We limit the
size of each submesh to about one million vertices. All three mod-
els can’t be compressed using Virtue3D’s Virtuoso Optimizer on a
850MHZ PC with 516MB of RAM. In this early and non-optimized
implementation, the running times for compressing David and Lucy
are approximately 1.5 hours and 8 hours, respectively. The perfor-
mance in speed is dominated mostly by the disk I/O. The running
times for decompressing both models are approximately 8 and 30
minutes, respectively.

The gluing scheme described in the previous section is quite ef-
fective on these large models since the cut boundaries are usually
long and contain mostly regular boundary points. Only a few ver-
tices are marked with GLUE1 and GLUE2. These are mainly the
results of singular points and small holes in the models. Due to their
large number of vertices, we have set the coordinate quantizations
to be at least 16 bits per coordinate. For the three models listed
in Table 2, the geometry is compressed to about 16 bits per vertex
at 16 bits per coordinate quantization. Note that with millions of



Uncompressed Compressed Compressed Compression
Model File Size Quantization Connectivity Geometry Total Ratio
David 173.3MB 16 1.34MB (2.6) 8.7 MB (16.8) 10.1MB 17
David 173.3MB 18 1.34MB (2.6) 11.7MB (22.8) 13 MB 13
Lucy 533MB 16 4.9MB (2.8) 30.7MB (17.5) 35.6MB 15.2
Lucy 533MB 18 4.9MB (2.8) 41.0MB (23.4) 46 MB 11.5

St. Matthew(IV) 768MB 16 6.18MB (2.7) 37.7MB (16.5) 43.9MB 17.86
St. Matthew(IV) 768MB 18 6.18MB (2.7) 49.8MB (21.8) 56MB 13.7

Table 2: Compression Results. Numbers in Parenthesis are bits per vertex. David contains 8,254,152 triangles and 4,129,614 vertices. Lucy
contains 28,055,742 triangles and 14,027,872 vertices. St. Matthew (IV) has 36,550,076 triangles and 18,306,508 vertices

vertices, the models that we used here are generally several orders
of magnitude larger than those used in mesh compression literature
in the past (e.g. [20]). Therefore, the quantizations required for our
test models are more refined (more bits per vertex, typically 17 bits
per vertex) than those used in reporting compression results before
(typically 10 bits per vertex).

Mesh compression and mesh simplification have been hot top-
ics for research in the past few years and both fields have reached
a certain degree of sophistication. The algorithm we proposed in
this paper can be considered as a “simplification-based” mesh com-
pression. The way we use the simplified mesh is to partition it and
use the partition on the simplified mesh to induce a balanced parti-
tion on the input mesh, which is our primary goal. Therefore, we
have completely ignored the geometry of the simplified mesh. It
is interesting to see if the geometry of the simplified mesh can be
used to further reduce the compressed geometry of the input model.
Perhaps, non-linear prediction rules, based on the curvature of the
simplified mesh, can be developed to more efficiently compress the
geometry. To proceed further in this direction, a more refined and
geometry-oriented partition scheme, such as [4, 14], is probably re-
quired.

5 ACKNOWLEDGEMENT

The authors would like to thank Marc Levoy for providing the
David and St. Matthew datasets. The first author was supported by
the National Science Foundation under grants EIA 00-04056 and
CCR 00-86094. These findings do not necessarily reflect the views
of NSF.

References

[1] V. Bajaj, V. Pascucci, and G. Zhuang. Single resolution com-
pression of arbitray triangular meshes with properties.Pro-
ceedings of the Data Compression Conference, Snowbird,
1999.

[2] M. Chow. Optimized geometry compression for real-time ren-
dering.Visualization 97, pages 415–421, 1997.

[3] M. Deering. Geometric compression.Proc. SIGGRAPH,
pages 13–20, 1995.

[4] M. Eck, T. DeRose, T. Duchamp, and H. Hoppe. Multiresolu-
tion analysis of arbitrary meshes.Proceedings of SIGGRAPH
95, pages 173–182, 1995.

[5] A. Gueziec, F. Rossen, G. Taubin, and C. Silva. Efficient com-
pression of non-manifold polygonal meshes.In Visualization
99, pages 73–80, 1999.

[6] A. Gueziec, G. Taubin, F. Lazarus, and W. P. Horn. Con-
verting sets of polygons to manifold surfaces by cutting and
stitching. In Visualization 98, pages 383–390, 1998.

[7] S. Gumhold and W. Strasser. Real time compression of trian-
gle mesh connectivity.Proceedings of SIGGRAPH 98, pages
133–140, 1998.

[8] I. Guskov, K. Vidimce, Wim Sweldens, and Peter Schroder.
Normal meshes.Proceedings of SIGGRAPH 00, pages 95–
102, 2000.

[9] Z. Karni and C. Gotsman. Spectral compression of mesh ge-
ometry.Proceedings of SIGGRAPH, pages 279–286, 2000.

[10] G. Karypis and V. Kumar.Software available at http://www-
users.cs.umn.edu/ karypis/metis/index.html.

[11] A. Khodakovsky, Peter Schroder, and Wim Sweldens. Pro-
gressive geometry compression.Proceedings of SIGGRAPH
00, pages 271–278, 2000.

[12] J. Li and C.C. Kuo. Progressive coding of 3D graphics mod-
els. Proceedings of the IEEE, pages 1052–1063, 1998.

[13] P. Lindstrom. Out-of-core simplification of large polygo-
nal models.Proceedings of SIGGRAPH 00, pages 259–262,
2000.

[14] J. Maillot, H. Yahia, and A. Verrous. Interactive texture map-
ping. Proceedings of SIGGRAPH 93, pages 27–34, 1993.

[15] J. Rossignac. Edgebreaker: Connectivity compression for tri-
angle meshes.IEEE Transaction on Visualization and Com-
puter Graphics, 5(1), 1999.

[16] J. Rossignac and P. Borrel. Multi-resolution 3D approxima-
tions for rendering complex scenes.Modeling in Computer
Graphics, pages 455–465, 1993.

[17] S. Rusinkiewicz and M. Levoy. Qsplat: A multiresolution
point rendering system for large meshes.Proceedings of SIG-
GRAPH 00, pages 343–352, 2000.

[18] G. Taubin, W. Horn, F. Lazarus, and J. Rossignac. Geometry
coding and vrml. IEEE Special Issue on multimedia signal
processing, 1998.

[19] G. Taubin and J. Rossignac. Course on 3D geometry com-
pression.Proceedings of SIGGRAPH, 1999.

[20] C. Touma and C. Gotsman. Triangle mesh compression.Pro-
ceedings of Graphics Interface’98, pages 26–34, 1998.

[21] I. H. Witten, A. Moffat, and T.C. Bell. Managing Gi-
gabytes:Compressing and Indexing Documents and Images.
Morgan Kaufmann Publishing, San Francisco, 1999.


