
1

Compressive Structured Light for Recovering
Inhomogeneous Participating Media
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Abstract—We propose a new method named compressive structured light for recovering inhomogeneous participating media.
Whereas conventional structured light methods emit coded light patterns onto the surface of an opaque object to establish
correspondence for triangulation, compressive structured light projects patterns into a volume of participating medium to produce
images which are integral measurements of the volume density along the line of sight. For a typical participating medium
encountered in the real world, the integral nature of the acquired images enables the use of compressive sensing techniques
that can recover the entire volume density from only a few measurements. This makes the acquisition process more efficient and
enables reconstruction of dynamic volumetric phenomena. Moreover, our method requires the projection of multiplexed coded
illumination, which has the added advantage of increasing the signal-to-noise ratio of the acquisition. Finally, we propose an
iterative algorithm to correct for the attenuation of the participating medium during the reconstruction process. We show the
effectiveness of our method with simulations as well as experiments on the volumetric recovery of multiple translucent layers, 3D
point clouds etched in glass, and the dynamic process of milk drops dissolving in water.

Index Terms—compressive sensing, volume reconstruction, structured light, time-varying
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1 INTRODUCTION

Structured light has a long history in the computer
vision community [Salvi et al., 2004]. It has matured
into a robust and efficient method for recovering the
surfaces of objects. By projecting coded light patterns
on the scene, and observing it using a camera, cor-
respondences are established and the 3D structure
of the scene is recovered by triangulation. Over the
years, researchers have developed various types of
coding strategies, such as binary codes, phase shifting,
spatial neighborhood coding, etc.. All structured light
range finding approaches are based on a common
assumption: Each point in the camera image receives
light reflected from a single surface point in the scene.

However, many real-world phenomena can only be
described by volume densities rather than boundary
surfaces. Such phenomena are often referred to as par-
ticipating media. Examples include translucent objects,
smoke, clouds, mixing fluids, and biological tissues.
Consider an image acquired by photographing a vol-
ume of a participating medium. Unlike in the case of
an opaque object, here each pixel receives scattered
light from all points along the line of sight within the
volume. Narasimhan et al. [2005] have addressed the
problem of recovering opaque surfaces immersed in
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a participating medium (rather than a clear medium)
using structured light range finding. The goal in this
case is to make existing structured light range finding
methods robust to light scattering by the medium,
rather than recover the medium itself.

The problem of recovering the volume density of
a participating medium (in particular, smoke), was
addressed by Hawkins et al. [2005]. They used a
high-powered laser sheet and a high-speed camera
(5000fps) to measure thin slices of a smoke den-
sity field via scanning, which is similar to a tech-
nique termed laser-induced fluorescence (LIF) in the
fluid imaging community [Deusch and Dracos, 2001].
Fuchs et al. [2007] proposed the idea of shooting a set
of static laser rays into the volume and using spatial
interpolation to reconstruct the volume. However, the
measurements are inherently sparse in this case and
hence the recovered information is low in resolution.

In this paper, we show that by using coded light
patterns, one can make the measurement of a partici-
pating medium highly efficient in terms of acquisition
time as well as illumination power. In particular,
we exploit the fact that the brightness measurements
made at image pixels correspond to true line-integrals
through the medium (see Fig. 1a), and then solve for
its volumetric density. We consider both spatially- and
temporally-coded light patterns. Because the patterns
are predetermined, measurement and reconstruction
time are decoupled. We target low-density inhomo-
geneous media, for which the density function is
sparse in an appropriately-chosen basis; this allows us
to harness compressive sensing techniques [Candes
et al., 2006; Donoho, 2006] that accurately reconstruct
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Fig. 1. (a) Compressive structured light for recovering
inhomogeneous participating media. Coded light is
emitted along the z-axis to the volume while the cam-
era acquires images as line-integrated measurements
of the volume density along the x-axis. The light is
coded in either the spatial domain or temporal domain
with a predetermined (non-adaptive) sequence. We
reconstruct the volume density from the acquired mea-
surements by using compressive sensing techniques.
(b) Image formation model for participating medium
under single scattering. The image irradiance at one
pixel, I(y, z), depends on the integral along the x-axis
of the projector’s radiance, L(x, y), and the medium
density, ρ(x, y, z), along a ray through the camera
center; refer to (3)–(4).
a signal from only a few measurements. We refer to
our approach as compressive structured light.

We show that compressive structured light is more
economical than a straightforward sequential scan-
ning of a volumn. Whereas the sampling rate of
the latter is limited by the desired spatial resolu-
tion, the sampling rate of the former is restricted by
the sparsity of the data–a considerably more relaxed
constraint for low-density phenomena. Since our ap-
proach requires fewer measurements, it naturally
enables the recovery of dynamic participating me-
dia. An added advantage of compressive structured
light is that it requires the projection of multiplexed
coded illumination which results in measurements
with higher signal-to-noise ratio [Schechner et al.,
2007]. An important practical consequence is that light
sources of significantly lower power than in the case
of sequential scanning can be used.

We have implemented our approach using a digital
projector and a camera as shown in Fig. 9. The projec-
tor and the camera are synchronized and both operate
at 360fps. Using 24 coded light patterns, we are able
to recover a 1283 volume at 15fps. Using this system,
we have recovered various types of inhomogeneous
participating media, including multiple translucent
layers, a 3D point cloud of a face etched in a glass
cube, and the dynamic process of milk dilution.

2 RELATED WORK

Compressive Sensing Compressive sensing [Candes
et al., 2006; Donoho, 2006] is a nascent field of applied
mathematics with a variety of successful applications
including imaging [Takhar et al., 2006; Willett et al.,
2007], medical visualization [Lustig et al., 2007], and

face recognition [Wright et al., 2009]. Recently, com-
pressive sensing has also been widely used to solve
many computer vision and computer graphics prob-
lems, such as high speed imaging [Veeraraghavan
et al., 2011; Sankaranarayanan et al., 2010; Hitomi
et al., 2011], image restoration and denoising [Mairal
et al., 2009; Elad and Aharon, 2006; Protter and Elad,
2009], and light transport measurement [Peers et al.,
2009; Sen and Darabi, 2009]. It offers a theoretical
framework to reconstruct “sparse” signals from far
fewer samples than required by the conventional
Shannon sampling theorem. Our work builds on the
basic formulation of compressive sensing, which we
augment with auxiliary terms specific to the recon-
struction of volume density.
Reconstruction of Volumetric Phenomena There are
several recent works in reconstruction of volumetric
phenomena from multiple views. Hasinoff and Ku-
tulakos [2007] used two views to reconstruct flames
by assuming flames are surfaces in the volume. Based
on tomographic algorithms, Ihrke and Magnor [2004,
2006] and Trifonov et al. [2006] used eight views and
72–360 views, respectively, for recovering flames (and
smoke) as well as transparent objects. We mentioned
light-based methods [Hawkins et al., 2005; Deusch
and Dracos, 2001; Fuchs et al., 2007] earlier in the pre-
vious section. For a comprehensive survey of works
in this area, see Ihrke et al. [2008].
Multiplexed Illumination Our work is also related
to multiplexed illumination [Schechner et al., 2007]
in that both use coded light as illumination. How-
ever, there is a fundamental difference: Whereas the
conventional multiplexing aims at increasing signal-
to-noise ratio of the measurements, our work aims
at increasing the efficiency of the acquisition process,
i.e., to reconstruct high dimensional signals from a few
measurements. In summary, both the coding strategies
and the reconstruction algorithms are different.

This paper builds upon and extends our previous
work [Gu et al., 2008].

3 COMPRESSIVE SENSING: BACKGROUND
We give a brief introduction on compressive sensing.
In its simplest form, compressive sensing seeks a so-
lution of the underdetermined linear system Ax = b,
where x ∈ Rn is a sparse signal, A is an m × n
matrix called the “measurement ensemble”, and b is
the vector of m measurements, with m < n.

Compressive sensing theory asserts that one can
recover the signal from far fewer measurements than
the dimension of the signal, if the signal is sparse—
it is represented with few non-zero coefficients in a
suitable basis—and the measurements are uncorre-
lated, in the sense that each measurement is an inner
product of the signal with a test function that has a
necessarily dense representation in the chosen basis.
Equivalently, the measurement ensemble A needs to
satisfy the restrictive isometry condition (RIC). Strict def-
initions of sparsity and RIC can be found in Candes
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et al. [2006]. Given a measurement ensemble matrix
A, compressive sampling theory predicts that x is the
minimizer of ||x||1, subject to Ax = b.

The above reconstruction strategy has been shown
to work well for sparse signal estimation, even from a
noisy measurement [Candes et al., 2006]. In our work,
we augment the basic problem above with auxiliary
terms that enforce the nonnegative constraint for the
signal, and that exploit the sparsity not only of the sig-
nal value but also its gradient. Indeed, our evaluation
(§7, §8) indicates that using the sparsity of the gradient
is important for accurate and efficient reconstruction.

4 IMAGE FORMATION MODEL

Let us first derive the relationship between the vol-
ume density ρ(x, y, z) and the image irradiance I(y, z)
of the camera under our camera/projector setting. We
focus on non-emissive, diluted participating media, in
which multiple scattering is assumed to be negligible.

As shown in Figure 1b, each camera pixel receives
light scattered from a row of voxels along the line of
sight in the volume (i.e., the red line in Figure 1b). For
simplicity, we assume the camera and the projector are
placed sufficiently far from the working volume, and
thus they are orthographic projection. The distortion
caused by perspective projection can be corrected with
a calibration step, if needed.

Consider one voxel ρ(x, y, z) in the row. Light emit-
ted from the projector, L(x, y), is first attenuated as
it travels from the projector to the voxel, scattered at
the voxel, and then attenuated as it travels from the
voxel to the camera. Assuming single scattering, the
radiance sensed by the camera from this particular
voxel is [Ishimaru, 1978]

L(x, y) · exp(−τ1) · σs · ρ(x, y, z) · p(θ) · exp(−τ2), (1)

where ρ(x, y, z) is the volume density (i.e., density
of particles) at the voxel, p(θ) is the phase function
(θ = π/2 since the camera and the projector are
perpendicularly placed), and τ1 and τ2 are the optical
thicknesses from the projector to the voxel and from
the voxel to the camera; σs is the scattering cross
section of the participating medium. Since σs and
p(θ = π/2) are the same for all voxels, the above for-
mula can be simplified to (up to a scale σs ·p(θ = π/2))

L(x, y) · exp (−(τ1 + τ2)) · ρ(x, y, z). (2)

The image irradiance, I(y, z), which is the integral of
the scattered light from all the voxels along the line,
is therefore

I(y, z) =

∫
x

L(x, y) · exp (−(τ1 + τ2)) · ρ(x, y, z)dx. (3)

For highly diluted media (i.e., ρ → 0), because the
optical thicknesses τ1 and τ2, which are proportional
to the density ρ, are close to 0, the attenuation term
usually can also be ignored (i.e., exp (−(τ1 + τ2)) ≈
1)for the recovery of volume densities [Hawkins et al.,
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Fig. 2. Sparsity (i.e., the Gini index) of two measured
dynamic participating media: (a) flame [Ihrke and Mag-
nor, 2004]; (b) smoke [Hawkins et al., 2005]. For each
volume, we compute the Gini index for each row of the
volume and average them as a sparsity measure of the
volume. Three types of bases are tested: the value of
the volume density itself, the gradient of the volume
density, and the Haar wavelet transform of the volume
density. As shown, these two dynamic phenomena
have consistently large sparsity over time, especially
in their values and gradients.

2005; Fuchs et al., 2007]. In this case, Equation (3) is
reduced to a linear projection of the illumination and
the volume density,

I(y, z) ≈
∫
x

ρ(x, y, z) · L(x, y) dx. (4)

For denser media, we have to consider the attenuation
term. We present a iterative method to correct for the
attenuation in Section 6.3.

5 SPARSITY OF PARTICIPATING MEDIA

As mentioned in Section 1, the sparsity in the volume
densities of diluted participating media (e.g.smoke,
mixing liquids) has been employed for efficient ac-
quisition. Qualitatively, the assumption of sparsity is
reasonable since often only a small portion of the
entire volume has non-zero density.
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Fig. 3. Coding strategies of the light L(x, y) at time t for recovering dynamic volumes: (a) scan (one stripe turned
on) [Deusch and Dracos, 2001; Hawkins et al., 2005]; (b) laser-lines interpolation (one pixel turned on per one
row) [Fuchs et al., 2007]; (c) Spatial coding of compressive structured light (all pixels are turned on with random
values per time frame); (d) Temporal coding of compressive structured light (random binary stripes are turned on
per time frame). Compressive structured light, shown in (c) and (d), recovers the volume by reconstructing the
1D signal along x-axis from a few integral measurements. It utilizes the light more efficiently and thus makes the
measurement process highly efficient both in acquisition time and illumination power.

To quantitatively justify the use of the sparsity for
reconstruction, in this section, we compute the spar-
sity of two sequences of time-varying participating
media measured by other researchers. One sequence
is flame measured by Ihrke and Magnor [2004] and
the other sequence is smoke measured by Hawkins
et al. [2005]. Although these are not the volumetric
phenomena we recovered in our experiments, they
have similar characteristics in the time-varying vol-
ume densities, and thus can give us some estimate
about the sparsity of our subjects. Moreover, we com-
pute the sparsity of the same signals at different bases
— this will also give us insights of which space is the
best for sparse reconstruction.

The key is how to compute sparsity for a given
signal. While the definition of sparsity is the number
of non-zero elements (i.e., `-0 norm), this is not suit-
able for signals with noise. While `-1 norm has been
used for sparse reconstruction, it is not normalized
and thus not good for comparing the sparsity of two
signals or two sets of bases. A thorough discussion
about the measures for sparsity can be found in
[Hurley and Rickard, 2009], in which they suggested
Gini index as a good measure for sparsity. Gini index
was originally proposed in economics as a measure of
the inequality of wealth [Gini, 1921]. It is normalized
(its value is between 0 and 1), and it is robust to noise.
Given a vector, x = [x1, x2, x3, · · · , xN ], we take its
absolute value and sort the elements from smallest to
largest, |x|(1) ≤ |x|(2) ≤ · · · ≤ |x|(N). The Gini index of
the signal x is defined as:

G(x) = 1−
2
∑N

k=1 |x|(k) · (N − k + 0.5)

N
∑N

k=1 |x|(k)
. (5)

The higher G(x) is, the more sparse the signal is.
More properties of Gini index measure can be found
in [Hurley and Rickard, 2009].

We compute the Gini indices for all the rows of
each volume and average them as the sparsity of

the volume. Figure 2 shows the sparsity for the two
data sets (Figure 2(a) for the flame sequence [Ihrke
and Magnor, 2004] and Figure 2(b) for the smoke
sequence [Hawkins et al., 2005]). Three types of bases
are used to compute the Gini index — the value of
the volume density itself, the gradient of the vol-
ume density, and the Haar wavelet transform of the
volume density. As shown in Figure 2, we found
that: (1) over the entire sequence, the two dynamic
participating media has consistently high sparsity
(≥ 0.95). (2) Compared with the Haar wavelet, the
volume densities have higher sparsity in their value
and gradients. These observations help us design the
acquisition system.detailed below.

6 COMPRESSIVE STRUCTURED LIGHT

Unlike the conventional structured light methods for
surface recovery where each camera pixel receives
light reflected from one point, for participating me-
dia, each camera pixel receives light from all points
along the line of sight within the volume. Thus each
camera pixel is an integral measurement of one row of
the volume density. Whereas conventional structured
light range finding methods seek to triangulate the
position of a single point, compressed structured light
seeks to reconstruct the 1D density “signal” from a
few measured integrals of this signal.

This is clearly a more difficult problem. One way to
avoid this problem is to break the integrals into pieces
which can be measured directly. The price, however,
is the deterioration of either spatial resolution or tem-
poral resolution of the acquisition. Existing methods
either illuminate a single slice at a time and scan
the volume (see Figure 3(a) and [Deusch and Dracos,
2001; Hawkins et al., 2005]), thus sacrificing temporal
resolution, or they illuminate a single pixel per row
and use interpolation to reconstruct the volume (e.g.,
Figure 3(b) and [Fuchs et al., 2007]), sacrificing spatial
resolution.
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In contrast, the proposed compressive structured
light method uses the light much more efficiently,
projecting coded light patterns that yield “signatures,”
or integral measurements, of the unknown volume
density function.

The didactic illustration in Figure 1(a) depicts a sim-
ple lighting/viewpoint geometry under orthographic
projection, with the camera viewpoint along the x-
axis, and the projector emitting along the z-axis. Con-
sider various coding strategies of the 3D light function
L(x, y, t): Spatial codes (Figure 3(c)) recover the vol-
ume from a single image by trading spatial resolution
along one dimension; Temporal codes (Figure 3d) trade
temporal resolution by emitting a sequence of vertical
binary stripes (with no coding along y-axis), so that
full spatial resolution is retained. All of the four
methods shown in Figure 3 can be equally improved
using color channels.

In the following, we will see that these compressive
structured light codes yield high efficiency both in
acquisition time and illumination power; this comes
at the cost of a more sophisticated reconstruction
process, to which we now turn our attention.

6.1 Coding and Formulation
To better visualize our formulation, consider first the
case of spatial coding. Suppose we want to reconstruct
a volume at the resolution n × n × n (e.g., n = 100).
The camera and the projector have the resolution of
M × M pixels (e.g., M = 1024). Therefore, one row
of voxels along the x-axis (refer to the red line in
Figure 1a) will receive light from m = M/n (e.g.,
m = 1024/100 = 10) rows of the projector’s pixels.
The light scattered by these voxels in the viewing
direction will then be measured, at each z-coordinate,
by a vertical column of m camera pixels. Without loss
of generality, we use l1 = L(x, 1), · · · , lm = L(x,m) to
denote the m rows of pixels from the projector, and
b1 = I(1, z), · · · , bm = I(m, z) to denote the image
irradiance of the m pixels in the camera image. Let
x = [ρ1, · · · , ρn]T be the vector of the voxel densities
along the row. Assuming no attenuation for now, the
image irradiance for each of these m pixels is a linear
projection of the light and the voxels’ density from
Equation (4):

bi = lTi x, i = 1, · · · ,m. (6)

Rewriting these m equations in matrix form, we have:

Ax = b, (7)

where A = [l1, · · · , lm]
T is a m × n matrix, b =

[b1, · · · , bm]
T is a m× 1 vector.

Thus, if attenuation is not considered, the problem
of recovering the volume is formulated as the problem
of reconstructing the 1D signal x given the constraints
Ax = b. To retain high spatial and temporal resolu-
tion, we often can only afford far fewer measurements
than the number of unknowns, i.e., m < n, which

TABLE 1
Objective functionals used for volume reconstruction

Method Optimization Functional Constraints

Least Square (LS) ‖Ax− b‖2
Nonnegative LS ‖Ax− b‖2 x ≥ 0

CS-Value ‖x‖1 Ax = b, x ≥ 0
CS-Gradient ‖x′‖1 Ax = b, x ≥ 0

CS-Both ‖x‖1 + λ‖x′‖1 Ax = b, x ≥ 0

means the above equation is an underdetermined
linear system and optimization is required to solve
for the best x according to certain priors.

One benefit of this optimization-based reconstruc-
tion is high efficiency in acquisition, which we quan-
tify using the measurement cost, m/n, where m is
the number of the measurements and n is the num-
ber of unknowns (i.e., the dimension of the signal).
For example, the measurement cost of the scanning
method [Deusch and Dracos, 2001; Hawkins et al.,
2005] is one. We show that by exploiting the sparsity
of the signal, we can reconstruct the volume with
much lower measurement cost (about 1/8 to 1/4).

6.2 Reconstruction via Compressive Sensing

Solving the underdetermined linear system requires
some prior (assumed) knowledge of the unknown
signal, which can be represented as optimization
functionals or constraints on the data. We consider
several alternatives, as listed in Table 1. In addition
to the commonly-used Least Square (LS) and Non-
negative Least Square (NLS) approaches, we also con-
sider functionals using `1-norms, as these bias toward
sparse representation, based on our observations on
the sparsity of some dynamic participating media
(Section 5).

First, we observe that for many natural volumetric
phenomena, often only a small portion of the en-
tire volume is occupied by the participating media.
For example, consider the beautiful ribbon patterns
generated by smoke; similarly, sparsity was implicitly
used to reconstruct (surface-like) flames [Hasinoff and
Kutulakos, 2007]). This suggests the use of the `1-
norm of the signal value (CS-Value).

Furthermore, from Figure 2 we also observe high
sparsity in the gradients of the volume densities.
The sparsity of gradients of natural images is well
studied [Olshausen and Field, 1996; Simoncelli, 1997]
and shown to work well for image restoration [Rudin
et al., 1992]. In this vein, we consider the use of `1-
norm on the signal’s gradient (CS-Gradient).

Finally, consider a dynamic process, such as milk
dissolving in water: here diffusion decreases the sig-
nal value’s sparsity over time, but it increases the
gradient sparsity. Motivated by this observation, we
consider the linear combination of `1-norms of both
the value and the gradient (CS-Both). The objective
function is thus defined as |x|1 + λ|x′|1, where λ is
the weight. In order to obtain a one-to-one mapping



6

Fig. 4. Geometric interpretation of the objective func-
tionals for a 2 × 1 vector x = [x1, x2]. Please refer to
text for details.

from the gradient domain to the original signal, the
gradient x′ is defined as a (n+1)×1 vector consisting
of both the differentials and the first and the last
element of x, i.e., x′ = [ρ1, ρ2 − ρ1, ρ3 − ρ2, · · · , ρn −
ρn−1, ρn], where x = [ρ1, · · · , ρn]. Please note that λ is
a dimensionless quantity because x′ is represented as
a vector of the finite difference of x.

To understand these objective functionals intu-
itively, let us consider a simple example where x is
a 2 × 1 vector, x = [x1, x2], and assume x1 ≥ 0,
x2 ≥ 0. As shown in Figure 4, suppose we only have
one measurement a1x1 + a2x2 = b which tells us the
solution of x should be on a line. The least square
solution minimizes ||x||2 and it will be the tangential
point between the line a1x1 + a2x2 = b and the circle,
which is less likely to be sparse. The CS-Value solution
minimizes ||x||1, and it will be the intersection point
between the line a1x1+a2x2 = b and the x2 axis, which
is sparse (i.e., one element is zero). The CS-Gradient
solution minimizes ||x′||1, and in this case it will be
the intersection point between the line a1x1+a2x2 = b
and the diagonal line x1 = x2, which is sparse in the
gradient. Finally, the CS-Both solution finds a trade-
off between CS-Both and CS-Gradient. It allows sparse
solutions both on the two axes and the diagonal line.
Its exact shape depends on the weight λ, as shown in
Figure 4. The optimal weight λ should be set to the
ratio between the sparsity in the signal’s gradient and
the sparsity in the signal’s value.

To find the optimal λ, we run simulation on the
smoke sequence [Hawkins et al., 2005]. For each
simulation, we fix the measurement cost m/n = 1/4
and generate the matrix A with Gaussian random
variables. We then reconstruct the volume densities
by minimizing the objective functional |x|1 +λ|x′|1 at
multiple λ values. This simulation is performed for all
rows of each volume, and the averaged reconstruction
error is computed for each λ value. We found λ = 1
gives the minimal reconstruction error overall, and
thus we set λ = 1 in all the experiments.

6.3 Attenuation Correction
Until now, we have not yet considered the attenuation
in the image formation model in Equation (3). To take
into account attenuation, we use a simple iterative
linearization algorithm as follows:

1) Assume no attenuation, solve the optimization
problem with techniques from Section 6.2 to get
the initial reconstruction of the volume density
ρ(0)(x, y, z).

2) At iteration k, compute the attenuated light as:

L(k)(x, y, z) = exp (− (τ1 + τ2)) · L(x, y),

where τ1 and τ2 are the optical thicknesses which
can be computed using the volume density from
the previous iteration ρ(k−1)(x, y, z) as

τ1 = (σa + σs)

∫
z

ρ(k−1)(x, y, z) dz,

τ2 = (σa + σs)

∫
x

ρ(k−1)(x, y, z) dx,

where σa and σs are the absorption cross section
and the scattering cross section of the medium,
which are assumed to be known They can be
measured by a second camera taking the shad-
owgraph of the volume.

3) With the attenuated light L(k)(x, y, z), Equa-
tion (3) becomes a linear equation. We solve for
ρ(k)(x, y, z) and go to next iteration until it con-
verges. In practice, we found that the algorithm
usually converges within 3-4 iterations.

Since our method accommodates the scanning
method [Deusch and Dracos, 2001; Hawkins et al.,
2005] and the interpolation method [Fuchs et al.,
2007] as special cases, the iterative algorithm could
be directly applied to these prior methods as well.

7 VALIDATION WITH SIMULATION

In this section, we perform simulations in order to
compare the several objective functionals shown in
Table 1 and validate their accuracy. Comparison of
these reconstruction methods is first performed on 1D
synthetic signals. These signals are randomly sampled
rows from the volume density of smoke acquired
in [Hawkins et al., 2005]. We restrict the measurement
cost, m/n, to be 1/4. The measurement ensemble, A,
is generated in a way that each element is drawn
independently from a normal distribution and each
column is normalized to 1, which is effectively a white
noise matrix and is known to be good for compres-
sive sensing [Donoho, 2006]. Normalized Root Mean
Squared Error (NRMSE) is used as the measure of
error, which is defined as:

NRMSE =
1

xmax − xmin

√∑n
i=1(x̂i − xi)2

n
, (8)

where x̂i and xi are the i-th element of the recon-
structed signal and the original signal, respectively,
and xmax − xmin is the range of the signal.
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Fig. 5. Comparison of the objective functionals for volumetric reconstruction. The first column is the original
signal. The remaining columns show reconstruction results (red dashed lines) for different methods, given the
measurement cost, m/n, is equal to 1/4. The value below each plot is the NRMSE (Normalized Root Mean
Squared Error) of reconstruction.

The reconstruction results are shown in Figure 5.
The commonly-used LS performs the worst, since
it merely minimizes the errors without using any
prior on the data. With the nonnegative constraint
added, NLS has better performance. CS-Value and
CS-Gradient are better than NLS given that both use
one more prior—the sparsity on the signal value or
on the signal gradient. CS-Both(λ = 1) outperforms
other methods due to its adaptive ability. In our trials,
the favorable performance of CS-Both was not very
sensitive to changes of λ.

These observations carry over to the 3D setting (see
Figure 6), where we reconstruct a 128 × 128 × 128
volume; note that this requires 128×128 independent
1D reconstructions. The volume is generated from
a triangular mesh of a horse and it is divided into
128 × 128 × 128 voxels. For each voxel, if it is inside
the mesh, the density is designed to be proportional
to the distance from the center of the voxel to the
center of the mesh, otherwise the density is 0 — we
intentionally design the volume densities to be non-
sparse (smooth-varying) in order to test the algorithm.
Figure 6(a) shows the volume where blue corresponds
to the lowest density while yellow corresponds to the
highest density. A slice of the volume is shown in
Figure 6(b).

Both spatial coding and temporal coding of com-
pressive structured light are tested. The measurement
cost, m/n, is fixed to 1/4. For spatial coding, we use
a random color image with resolution of 1280× 1280
as the coded light from the projector. This gives us

0
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E
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%
)
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4 8 12 16

Iteration

(a)

Ground Truth Iteration 1 Iteration 2 Iteration 3

(b)

Fig. 7. Simulation results for iterative attenuation cor-
rection. (a) Reconstruction errors and (b) slices with
iterative attenuation correction.

m = 1280/128 × 3 = 30 measurements to recover
densities of 128 voxels on one row of the volume.
Based on Equation (3), a single image is generated
from the camera view and used for reconstruction.
For temporal coding, we use random binary stripes
as illumination and generate 32 images for recon-
struction. CS-Both is used to reconstruct the volume
for both cases. As shown in Figure 6, both methods
accurately reconstruct the volume. Moreover, Figure 7
shows the reconstruction errors and reconstructed
slices at different iterations of attenuation correction,
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(a) Ground Truth

(b) Sample Slice

(c) Coded Image  (d) Reconstructed Slice (e) Reconstructed Volume at 2 Views

Spatial Coding of Compressive Structured Light

x

y

z

(g) Coded Image  (h) Reconstructed Slice (i) Reconstructed Volume at 2 Views

Temporal Coding of Compressive Structured Light

Fig. 6. Simulation results of volumetric reconstruction using compressive structured light. (a) The original volume
where blue means the lowest density and yellow means the highest density. (b) A slice of the volume. On the right,
the top and the bottom row shows the reconstruction results for spatial coding and temporal coding, respectively.
For each row, from left to right are the coded image acquired by the camera, the reconstruction of the slice, and
the reconstructed volume under two different views.

TABLE 2
NRMSE for two coding patterns with noise

Noise Pattern Measurement Cost (m/n)

1/8 1/4 1/2 1

σ = 0.001
Hadamard 0.041 0.021 0.0007 2.47e-05

Random 0.0063 0.0010 8.91e-05 3.13e-05

σ = 0.005
Hadamard 0.042 0.023 0.0014 0.0011

Random 0.008 0.0026 0.0017 0.0013

σ = 0.01
Hadamard 0.045 0.022 0.0026 0.0020

Random 0.011 0.0042 0.0031 0.0023

which demonstrates the effectiveness of the iterative
algorithm.

We also evaluate different reconstruction methods
at various measurement costs from 1/16 to 1. The
results are shown as a table in Figure 8. Conclu-
sions similar to the ones from the previous 1D sig-
nal simulation can be drawn from these results: (1)
As expected, all methods have improvements as the
measurement cost increases. (2) Without using any
prior of the data, LS is the worst for reconstruction
with insufficient measurements. (3) CS-Gradient and
CS-Both largely outperform other methods, especially
for low measurement cost, which indicates strong
sparsity in the signal’s gradient. (4) CS-Both is better
than CS-Gradient, especially at low measurement cost
(e.g., as shown in Figure 8 at m/n = 1/16). Based on
these preliminary simulations, we chose to run our
actual acquisition experiments with a measurement
cost of 1/4 and the CS-Both optimization functional.

Table 2 shows the reconstruction error (NRMSE)
for the CS-Both method for two coding patterns (i.e.,
partial Hadamard code and random binary code) at
different noise levels. As shown, the CS-Both method
is robust across multiple noise levels. When the mea-
surement cost is low, random binary code has better
performance than the Hadamard code. If we have
enough measurement (i.e., the measurement cost is
1), the Hadamard code has better performance, as
expected [Schechner et al., 2007]. In our experiments,
we used random binary coding pattern.

8 EXPERIMENTAL RESULTS

We have implemented the temporal coding of com-
pressive structured light for recovering inhomoge-
neous participating media. Our system consists of a
1024 × 768 DLP projector and a 640 × 480 Dragonfly
Express 8-bit camera, positioned at right angles, both
viewing the inhomogeneous participating medium
(milk drops in water). The projector and the camera
are synchronized and both operate at 360fps. The
camera’s resolution is set to 320 × 140 in order to
achieve 360fps. Using 24 coded light patterns, we are
able to recover a 128 × 128 × 128 volume at 15fps.
These light patterns consist of 128 vertical stripes.
Each stripe is assigned 0 or 1 randomly with the
probability of 0.5. In this way, about half the amount
of the light is turned on for each measurement. We
also tried alternative light patterns such as Hadamard
codes, and found the random binary codes have better
performance. The 24 light patterns correspond to 24
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1/16 1/8 1/4 1/2 1

LS

NLS

CS-Value

CS-Gradient

CS-Both

m/n

Fig. 8. Comparison of the objective functionals at different measurement costs m/n. CS-Both outperforms other
methods.
randomly chosen rows from a 127 × 127 Hadamard
matrix.

We used this system to recover several types of
inhomogeneous participating media, including, mul-
tiple translucent layers (Figure 10), a 3D point cloud
of a face etched in a glass cube (Figure 11), and the dy-
namic process of milk mixing with water (Figure 12).
The reconstructed volumes are visualized with the ray
casting algorithm [Schroeder et al., 2006] in which the
opacity function is set to the volume density.

8.1 Recovery of Static Volumes
We first perform reconstruction on static volumes.
Figure 10 shows the results of an object consisting
of two glass slabs with powder on both. The letters
“EC” are drawn manually on the back plane and
“CV” on the front plane by removing the powder.
Thus we create a volume in which only two planes
have non-zero density. A photograph of the object
is shown in Figure 10a. We then project coded light
patterns on the object and reconstruct the volume
using the proposed method. Figure 10 shows one of

Projector

Camera

Milk 

Drops

Fig. 9. Experimental setup for compressive structured
light. The projector and the camera are synchronized.

the 24 captured images as well as the reconstructed
volume at different views. We show the reconstructed
volume with and without attenuation correction. It
shows that attenuation correction improves the results
by increasing the density on the back plane.
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(a) Photograph

(b) Coded Image

View 1 View 2 View 3

Without Attenuation Correction

With Attenuation Correction

View 1 View 2 View 3

(c)

(d)

Fig. 10. Reconstruction results of two planes. (a) A photograph of the object consisting of two glass slabs with
powder. The letters “EC” are on the back slab and “CV” on the front slab. (b) One of the 24 images captured by
the camera. Reconstructed volume at different views with (c) and without (d) attenuation correction.

Figure 11 shows the reconstruction for a 3D point
cloud of a face etched in a glass cube. As seen, our
method achieved good reconstruction of the volume.
In this example, multiple scattering and attenuation
within the point cloud are much stronger than the
previous example. As a result, in the reconstructed
volume, the half of the face not directly visible to
the camera has a lower estimated density (e.g., the
relative darker area of the right eye and right forehead
in Figure 11).

8.2 Recovery of Dynamic Volumes
Finally, we use our system to reconstruct time-varying
volumes. We take the dynamic process of milk drops
dissolving in water as an example. We use a syringe
to drip milk drops into a water tank as shown in
the adjacent figure. With the proposed method, we
are able to reconstruct time-varying volumes with
high spatial resolution (128 × 128 × 250) at 15fps,
which recovers the interesting patterns of the dynamic
process (see Figure 12).

9 SUMMARY AND DISCUSSION

We proposed compressive structured light for recov-
ering the volume densities of inhomogeneous partic-
ipating media. Unlike conventional structured light

range finding methods where coded light patterns
are used to establish correspondence for triangula-
tion, compressive structured light uses coded light
as a way to generate measurements which are line-
integrals of volume density. By exploiting the sparsity
of the volume density, the volume can be accurately
reconstructed from a few measurements. This makes
the acquisition highly efficient both in acquisition time
and illumination power, and thus enables the recovery
of time-varying volumetric phenomena.

There are several limitations to our proposed com-
pressive structured light formulation, which need to
be addressed in the future:

1) Multiple Scattering. Although utilizing more light
elements increases the efficiency of the acquisi-
tion, it will increase multiple scattering as well,
which will cause biased reconstruction, as the
artifacts shown in Figure 11. One potential way
to alleviate this problem is to separate mul-
tiple/single scattering by using more complex
light codes in a similar way to [Nayar et al.,
2006]. For example, instead of using vertical
stripes, one could use vertical 0/1-interleaved
stripes and thus estimate the global illumination
from neighboring pixels. This, however, requires
trading off spatial resolution.
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(a) Photograph

(b) Coded Image

View 1 View 2 View 3

Without Attenuation Correction

With Attenuation Correction

View 1 View 2 View 3

(c)

(d)

Fig. 11. Reconstruction results of a 3D point cloud of a face etched in a glass cube. (a) A photograph of the
object. (b) One of the 24 images captured by the camera. Reconstruction results are shown on the right side in
the same manner as Figure 10.

2) Calibration for the Spatial Coding Method. The
spatial coding seems more desirable than the
temporal coding due to its high temporal res-
olution (i.e., volume reconstruction from one
single image) and the easy access of high spatial
resolution devices. However, it requires highly
accurate calibration both geometrically and ra-
diometrically. The defocus of both the projector
and the camera needs to be considered as well.
In contrast, the temporal coding method is more
robust to noise and defocus and easy to calibrate.

We view compressive structured light as a general
framework for coding the 3D light function L(x, y, t)
for reconstruction of signals from line-integral mea-
surements. In this light, existing methods such as laser
sheet scanning and laser line interpolation, as well
as the spatial coding and temporal coding discussed
in this work, can be considered as special cases. One
interesting future direction is to design more complex
coding strategies to improve the performance or apply
the method to new problems.
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