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Abstract. We propose a new method named compressive structured
light for recovering inhomogeneous participating media. Whereas con-
ventional structured light methods emit coded light patterns onto the
surface of an opaque object to establish correspondence for triangulation,
compressive structured light projects patterns into a volume of partici-
pating medium to produce images which are integral measurements of the
volume density along the line of sight. For a typical participating medium
encountered in the real world, the integral nature of the acquired images
enables the use of compressive sensing techniques that can recover the
entire volume density from only a few measurements. This makes the
acquisition process more efficient and enables reconstruction of dynamic
volumetric phenomena. Moreover, our method requires the projection of
multiplexed coded illumination, which has the added advantage of in-
creasing the signal-to-noise ratio of the acquisition. Finally, we propose
an iterative algorithm to correct for the attenuation of the participating
medium during the reconstruction process. We show the effectiveness of
our method with simulations as well as experiments on the volumetric
recovery of multiple translucent layers, 3D point clouds etched in glass,
and the dynamic process of milk drops dissolving in water.

1 Introduction

Structured light has a long history in the computer vision community [1]. It has
matured into a robust and efficient method for recovering the surfaces of objects.
By projecting coded light patterns on the scene, and observing it using a camera,
correspondences are established and the 3D structure of the scene is recovered
by triangulation. Over the years, researchers have developed various types of
coding strategies, such as binary codes, phase shifting, spatial neighborhood
coding, etc. All structured light range finding approaches are based on a common
assumption: Each point in the camera image receives light reflected from a single
surface point in the scene.

However, many real-world phenomena can only be described by volume den-
sities rather than boundary surfaces. Such phenomena are often referred to as
participating media. Examples include translucent objects, smoke, clouds, mix-
ing fluids, and biological tissues. Consider an image acquired by photographing
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a volume of a participating medium. Unlike in the case of an opaque object,
here each pixel receives scattered light from all points along the line of sight

within the volume. Narasimhan et al. [2] have addressed the problem of recov-
ering opaque surfaces immersed in a participating medium (rather than a clear
medium) using structured light range finding. The goal in this case is to make
existing structured light range finding methods robust to light scattering by the
medium, rather than recover the medium itself.

The problem of recovering the volume density of a participating medium
(in particular, smoke), was addressed by Hawkins et al. [3]. They used a high-
powered laser sheet and a high-speed camera (5000fps) to measure thin slices of
a smoke density field via scanning, which is similar to a technique termed laser-
induced fluorescence (LIF) in the fluid imaging community [4]. Fuchs et al. [5]
proposed the idea of shooting a set of static laser rays into the volume and using
spatial interpolation to reconstruct the volume. However, the measurements are
inherently sparse in this case and hence the recovered density is low in resolution.

In this paper, we show that by using coded light patterns, one can make the
measurement of a participating medium highly efficient in terms of acquisition
time as well as illumination power. In particular, we exploit the fact that the
brightness measurements made at image pixels correspond to true line-integrals
through the medium (see Fig. 1a), and then solve for its volumetric density. We
consider both spatially- and temporally-coded light patterns. Because the pat-
terns are predetermined, measurement and reconstruction time are decoupled.
We target low-density inhomogeneous media, for which the density function is
sparse in an appropriately-chosen basis1; this allows us to harness compressive
sensing techniques [6, 7] that accurately reconstruct a signal from only a few
measurements. We refer to our approach as compressive structured light.

We show that compressive structured light is more economical than a straight-
forward sequential scanning of a volume. Whereas the sampling rate of the latter
is limited by the desired resolution, the sampling rate of the former is restricted
by the sparsity of the data–a considerably more relaxed constraint for low-density
phenomena. Since our approach requires fewer measurements, it naturally en-
ables the recovery of dynamic participating media. An added advantage of com-
pressive structured light, is that it requires the projection of multiplexed coded
illumination which results in measurements with higher signal-to-noise ratio [8].
An important practical consequence is that light sources of significantly lower
power than in the case of sequential scanning can be used.

We have implemented our approach using a digital projector and a camera as
shown in Fig. 1c. The projector and the camera are synchronized and both oper-
ate at 360fps. Using 24 coded light patterns, we are able to recover a 1283 volume
at 15fps. Using this system, we have recovered various types of inhomogeneous
participating media, as shown in §7.

1 “sparse” does not necessarily imply that the volume density must be sparsely dis-
tributed in space. It means that the density can be represented with a few non-zero
coefficients in an appropriately-chosen basis, such as, wavelets, gradients, principal
components, etc.
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Fig. 1. (a) Compressive structured light for recovering inhomogeneous participating
media. Coded light is emitted along the z-axis to the volume while the camera ac-
quires images as line-integrated measurements of the volume density along the x-axis.
The light is coded in either the spatial domain or temporal domain with a predeter-
mined sequence. We reconstruct the volume density from the measurements by using
compressive sensing techniques. (b) Image formation model for participating medium
under single scattering. The image irradiance at one pixel, I(y, z), depends on the inte-
gral along the x-axis of the projector’s light, L(x, y), and the medium density, ρ(x, y, z),
along a ray through the camera center; refer to (1)–(2). (c) Experiment setup.

2 Related Work

Compressive Sensing Compressive sensing [6, 7] is a nascent field of applied
mathematics with a variety of successful applications including imaging [9], med-
ical visualization [10], and face recognition [11]. It offers a theoretical framework
to reconstruct “sparse” signals from far fewer samples than required by the con-
ventional Shannon sampling theorem. Our work builds on the basic formulation
of compressive sensing, which we augment with auxiliary terms specific to the
reconstruction of volume density.

Reconstruction of Volumetric Phenomena There are several recent works in re-
construction of volumetric phenomena from multiple views. Hasinoff et al. [12]
used two views to reconstruct flames by assuming flames are surfaces in the
volume. Based on tomographic algorithms, Ihrke et al. [13, 14] and Trifonov et
al. [15] used eight views and 72–360 views, respectively, for recovering flames
(and smoke) as well as transparent objects. We mentioned light-based meth-
ods [3–5] earlier in the previous section. For a comprehensive survey of works in
this area, see Ihrke et al. [16].

Multiplexed Illumination Our work is also related to multiplexed illumination [8]
in that both use coded light as illumination. However, there is a fundamental
difference: Whereas the conventional multiplexing aims at increasing signal-to-
noise ratio of the measurements, our work aims at increasing the efficiency of
the acquisition process, i.e., to reconstruct high dimensional signals from a few
measurements. In summary, both the coding strategies and the reconstruction
algorithms are different.
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3 Background on Compressive Sensing

In its simplest form, compressive sensing seeks a solution of the underdetermined
linear system Ax = b, where x ∈ R

n is a sparse signal, A is an m×n matrix
(“measurement ensemble”), and b is the vector of m measurements, with m<n.

Compressive sensing theory asserts that one can recover the signal from far
fewer measurements than the dimension of the signal, if the signal is sparse—it is
represented with few non-zero coefficients in a suitable basis—and the measure-
ments are uncorrelated, in the sense that each measurement is an inner product
of the signal with a test function that has a necessarily dense representation in
the chosen basis. Given a measurement ensemble matrix A, compressive sam-
pling theory predicts that x is the minimizer of ||x||1, subject to Ax = b.

The above reconstruction strategy has been shown to work well for sparse
signal estimation, even from a noisy measurement [17]. In our work, we augment
the basic problem above with auxiliary terms that enforce the nonnegative con-
straint for the signal, and that exploit the sparsity not only of the signal value
but also its gradient. Indeed, our evaluation (§6, §7) indicates that using the
sparsity of the gradient is important for accurate and efficient reconstruction.

4 Image Formation Model

In this section, we derive the relationship between the volume density ρ and
the image irradiance I of the camera under our camera/projector setting. We
focus on non-emissive participating media with relatively low density in which
multiple scattering is assumed to be negligible.

As shown in Fig. 1b, each camera pixel receives light scattered from a row of
voxels along the line of sight in the volume (i.e., the red line in Fig. 1b). Consider
one such voxel. Before the light scattered by this voxel reaches the camera, it is
first attenuated as it travels from the projector to the voxel, scattered at the voxel,
and then attenuated as it travels from the voxel to the camera. Under the assump-
tion of single scattering, the final radiance sensed by the camera from this partic-
ular voxel is [18]: L(x, y) ·exp(−τ1) ·σs ·ρ(x, y, z) ·p(θ) ·exp(−τ2), where ρ(x, y, z)
is the participating medium’s volume density at the voxel, p(θ) is the phase func-
tion, and τ1 = σt

∫
s1

ρds1 and τ2 = σt

∫
s2

ρds2 are the “optical distance” from the
projector to the voxel and from the voxel to the camera, respectively; σs and σt

are the scattering coefficient and the attenuation coefficient of the participating
medium [18]. Since p(θ) is the same for all voxels under orthographic projection
for both the camera and the projector, the above formula can be simplified to
(up to a scale related to p(θ) and σs): L(x, y) · exp (−(τ1 + τ2)) · ρ(x, y, z). The
image irradiance, I(y, z), which is the integral of the scattered light from all the
voxels along the line, is therefore

I(y, z) =

∫
x

L(x, y) · exp (−(τ1 + τ2)) · ρ(x, y, z)dx . (1)

In the low density case, or when σt is relatively small compared with the scatter-
ing, the effect of attenuation usually can be ignored [3, 5], i.e., the exponential
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term in the above equation is equal to 1. Equation (1) thus can be reduced to a
linear projection of the light and the volume density,

I(y, z) =

∫
x

ρ(x, y, z) · L(x, y) dx . (2)

For media where the attenuation cannot be ignored, we present a simple, iterative
method based on iterative relinearization (see §5.3).

5 Compressive Structured Light
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Fig. 2. Different coding strategies of the light L(x, y) at time t for recovering inho-
mogeneous participating media: (a) scan (one stripe turned on) [4, 3]; (b) laser-lines
interpolation (one pixel turned on per one row) [5]; (c) Spatial coding of compressive
structured light (all pixels are turned on with random values per time frame); (d) Tem-
poral coding of compressive structured light (random binary stripes are turned on per
time frame). Compressive structured light, shown in (c) and (d), recovers the volume
by reconstructing the 1D signal along x-axis from a few integral measurements.

In this section, we explain the idea of compressive structured light for recov-
ering inhomogeneous participating media. For participating media, each camera
pixel receives light from all points along the line of sight within the volume. Thus
each camera pixel is an integral measurement of one row of the volume density.
Whereas conventional structured light range finding methods seek to triangulate
the position of a single point, compressed structured light seeks to reconstruct
the 1D density “signal” from a few measured integrals of this signal.

This is clearly a more difficult problem. One way to avoid this problem is
to break the integrals into pieces which can be measured directly. The price,
however, is the deterioration of either spatial resolution or temporal resolution
of the acquisition. Existing methods either illuminate a single slice at a time and
scan the volume (see Fig. 2a and [4, 3]), thus sacrificing temporal resolution, or
they illuminate a single pixel per row and use interpolation to reconstruct the
volume (e.g., Fig. 2b and [5]), sacrificing spatial resolution.

In contrast, the proposed compressive structured light method uses the light
much more efficiently, projecting coded light patterns that yield “signatures,” or
integral measurements, of the unknown volume density function.
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The didactic illustration in Fig. 1a depicts a simple lighting/viewpoint geom-
etry under orthographic projection, with the camera viewpoint along the x-axis,
and the projector emitting along the z-axis. Consider various coding strategies of
the 3D light function L(x, y, t): Spatial codes (Fig. 2c) recover the volume from a
single image by trading spatial resolution along one dimension; Temporal codes
(Fig. 2d) trade temporal resolution by emitting a sequence of vertical binary
stripes (with no coding along y-axis), so that full spatial resolution is retained.2

We will see that these compressive structured light codes yield high efficiency
both in acquisition time and illumination power; this comes at the cost of a more
sophisticated reconstruction process, to which we now turn our attention.

5.1 Formulation

To better visualize our formulation, consider first the case of spatial coding.
Suppose we want to reconstruct a volume at the resolution n × n × n (e.g.,
n = 100). The camera and the projector have the resolution of M×M pixels (e.g.,
M = 1024). Therefore, one row of voxels along the x-axis (refer to the red line in
Fig. 1a) will receive light from m = M/n (e.g., m = 1024/100 ≈ 10) rows of the
projector’s pixels. The light scattered by these voxels in the viewing direction will
then be measured, at each z-coordinate, by a vertical column of m camera pixels.
Without loss of generality, we use l1 = L(x, 1), · · · , lm = L(x,m) to denote the
m rows of pixels from the projector, and b1 = I(1, z), · · · , bm = I(m, z) to denote
the image irradiance of the m pixels in the camera image. Let x = [ρ1, · · · , ρn]T

be the vector of the voxel densities along the row. Assuming no attenuation, the
image irradiance for each of these m pixels is a linear projection of the light
and the voxels’ density from (2): bi = lT

i
x, i = 1, · · · ,m. Rewriting these m

equations in matrix form, we have: Ax = b, where A = [l1, · · · , lm]
T

is a m×n

matrix, b = [b1, · · · ,bm]
T

is a m×1 vector.
Thus, if attenuation is not considered, the problem of recovering the volume is

formulated as the problem of reconstructing the 1D signal x given the constraints
Ax = b. To retain high spatial and temporal resolution, we often can only afford
far fewer measurements than the number of unknowns, i.e., m < n, which means
the above equation is an underdetermined linear system and optimization is
required to solve for the best x according to certain priors.

One benefit of this optimization-based reconstruction is high efficiency in
acquisition, which we quantify using the measurement cost, m/n, where m is
the number of the measurements and n is the number of unknowns (i.e., the
dimension of the signal). For example, the measurement cost of the scanning
method [4, 3] is one. We show that by exploiting the sparsity of the signal, we
can reconstruct the volume with much lower measurement cost (about 1

8 to 1
4 ).

5.2 Reconstruction via Optimization

Formulation Solving the underdetermined linear system requires some prior (as-
sumed) knowledge of the unknown signal, which can be represented as optimiza-

2 All of the 4 methods shown in Fig. 2 can be equally improved using color channels.
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Table 1. Different norms used for reconstruction

Method Optimization Functional Constraints

Least Square (LS) ||Ax − b||2
Nonnegative Least Square (NLS) ||Ax − b||2 x ≥ 0

CS-Value ||x||1 Ax = b, x ≥ 0

CS-Gradient ||x′||1 Ax = b, x ≥ 0

CS-Both ||x||1 + ||x′||1 Ax = b, x ≥ 0

tion functionals or constraints on the data. We consider several alternatives, as
listed in Table 1. Besides the commonly-used Least Square (LS) and Nonnega-
tive Least Square (NLS), we consider functionals using ℓ1-norms, as these bias
toward sparse representations:3

First, we observe that for many natural volumetric phenomena, often only
a small portion of the entire volume is occupied by the participating media.
For example, consider the beautiful ribbon patterns generated by smoke; simi-
larly, sparsity was implicitly used to reconstruct (surface-like) flames [12]). This
suggests the use of the ℓ1-norm of the signal value (CS-Value).

Furthermore, the sparsity of gradients of natural images is well studied [20,
21]. Related work in image restoration [22] uses nonlinear optimization to mini-
mize “total variation,” i.e., the sum of ℓ2-norm of image gradient. In this vein,
we consider the use of ℓ1-norm on the signal’s gradient (CS-Gradient).

Finally, consider a dynamic process, such as milk dissolving in water: here
diffusion decreases the signal value’s sparsity over time, but it increases the
gradient sparsity. Motivated by this observation, we consider the sum of ℓ1-
norms of both the value and the gradient (CS-Both), so that the algorithm has
the ability to “adapt” for the sparsity.

Analysis Comparison of these reconstruction methods is first performed on 1D
synthetic signals. These signals are randomly sampled rows from the volume
density of smoke acquired in Hawkins et al. [3]. We restrict the measurement
cost, m/n, to be 1/4. The measurement ensemble, A, is generated in a way
that each element is drawn independently from a normal distribution and each
column is normalized to 1, which is effectively a white noise matrix and is known
to be good for compressive sensing [7]. NRMSE (normalized root mean squared
error) is used as the measure of error.

The reconstruction results are shown in Fig. 3. The commonly-used LS per-
forms the worst, since it merely minimizes the errors without using any prior on
the data. With the nonnegative constraint added, NLS has better performance.
CS-Value and CS-Gradient are better than NLS given that both use one more
prior—the sparsity on the signal value or on the signal gradient. The fact that
CS-Gradient is better than CS-Value indicates that the sparsity on the signal
gradient holds better than the sparsity on the signal value. Finally, as expected,

3 LS and NLS are solved with SVD and Levenberg-Marquardt, respectively. The other
functionals are formulated as Linear Programming (LP) and solved with GLPK [19].
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Fig. 3. Comparison of different reconstruction methods. The first column is the orig-
inal signal. The remaining columns show reconstruction results (red dashed lines) for
different methods, given the measurement cost, m/n, is equal to 1/4. The value below
each plot is the NRMSE(normalized root mean squared error) of reconstruction.

CS-Both outperforms other methods due to its adaptive ability. In our trials,
the favorable performance of CS-Both was not sensitive to changes of the rela-
tive weighting of the value and gradient terms. These observations carry over to
the 3D setting (see Fig. 4), where we reconstruct a 1283 volume; note that this
requires 128 × 128 independent 1D reconstructions.

5.3 Iterative Attenuation Correction

Until now, we have not considered the attenuation in the image formation model
in (1) yet. To take into account attenuation, we use a simple iterative relineariza-
tion algorithm as follows:

1. Assume no attenuation, solve the optimization problem with techniques from
§5.2 to get the initial reconstruction of the volume density ρ(0).

2. At iteration k, assuming σt is known4, compute the attenuated light as:
L(k)(x, y, z) = exp (− (τ1 + τ2)) ·L(x, y), where τ1 and τ2 are computed using
ρ(k−1) as shown in §4.

3. With the attenuated light L(k)(x, y, z), (1) becomes a linear equation. We
solve for ρ(k) and go to next iteration until it converges.5

Since our overall framework accommodates the scanning method [4, 3] and
the interpolation method [5] as special cases, the iterative algorithm could be
directly applied to these prior methods as well.

4 The attenuation coefficient, σt, of the participating medium can be obtained from
literature, specified by a user, or be measured by a second camera taking the shad-
owgram of the volume.

5 In practice, we found that the algorithm usually converges within 3-4 iterations.
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6 Validation via Simulation

To further validate our method, we perform simulations on a synthetic volume.
The volume is generated from a triangular mesh of a horse and it is discretized
into 1283 voxels. For each voxel, if it is inside the mesh, the density is designed
to be proportional to the distance from the center of the voxel to the center
of the mesh, otherwise the density is 0. Fig. 4a shows the volume where blue
corresponds to the lowest density while yellow corresponds to the highest density.
A slice of the volume is shown in Fig. 4b.

(a) Ground Truth

(b) Sample Slice

(c) Coded Image  (d) Reconstructed Slice (e) Reconstructed Volume at 2 Views

Spatial Coding of Compressive Structured Light

x

y

z

(g) Coded Image  (h) Reconstructed Slice (i) Reconstructed Volume at 2 Views

Temporal Coding of Compressive Structured Light
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Fig. 4. Simulation results of volume reconstruction using compressive structured light.
LEFT: (a) The original volume where blue means the lowest density and yellow means
the highest density. (b) A slice of the volume. The top and the bottom row on the right
shows the reconstruction results for spatial coding and temporal coding, respectively.
For each row, from left to right are the coded image acquired by the camera, the
reconstruction of the slice, and the reconstructed volume under two different views.
RIGHT: (a) Reconstruction errors and (b) slices with iterative attenuation correction.

Both spatial coding and temporal coding of compressive structured light are
tested. The measurement cost, m/n, is fixed to 1/4. For spatial coding, we use a
random color image with resolution of 1280×1280 as the coded light from the
projector. This gives us m=1280/128×3=30 measurements to recover densities
of 128 voxels on one row of the volume. Based on (1), a single image (shown
in Fig. 4c) is generated from the camera view and used for reconstruction. For
temporal coding, we use random binary stripes as illumination and generate 32
images for reconstruction. One of these images is shown in Fig. 4g. CS-Both is
used to reconstruct the volume for both cases. As shown in Fig. 4, both meth-
ods accurately reconstruct the volume. Moreover, Fig. 4(right) shows the recon-
struction errors and reconstructed slices at different iterations of attenuation
correction, which demonstrates the effectiveness of the iterative algorithm.

We also evaluate different reconstruction methods at various measurement
costs from 1/16 to 1. The results are shown as a table in Fig. 5. Conclusions
similar to the ones from the previous 1D signal simulation (Fig. 3) can be drawn
from these results: (1) As expected, all methods have improvements as the mea-



10

1/16 1/8 1/4 1/2 1

LS

NLS

CS-Value

CS-Gradient

CS-Both

m/n

Fig. 5. Comparison of different reconstruction methods at different measurement costs,
m/n. CS-Both outperforms other methods.

surement cost increases. (2) Without using any prior of the data, LS is the worst
for reconstruction with insufficient measurements. (3) CS-Gradient and CS-Both
largely outperform other methods, especially for low measurement cost, which
indicating strong sparsity in the signal’s gradient. (4) CS-Both is better than
CS-Gradient, especially at low measurement cost (e.g., as shown in Fig. 5 at
m/n = 1/16). Based on these preliminary simulations, we chose to run our ac-
tual acquisition experiments with a measurement cost of 1/4 and the CS-Both
optimization functional.

7 Experimental Results

We have implemented the temporal coding of compressive structured light for
recovering inhomogeneous participating media. As shown in Fig. 1c, our sys-
tem consists of a 1024 × 768 DLP projector and a 640 × 480 Dragonfly Express
8-bit camera, positioned at right angles, both viewing the inhomogeneous par-
ticipating medium (milk drops in water). The projector and the camera are
synchronized and both operate at 360fps.6 Using 24 coded light patterns, we are
able to recover a 1283 volume at 15fps. These light patterns consist of 128 verti-
cal stripes. Each stripe is assigned 0 or 1 randomly with the probability of 0.5.
In this way, about half amount of the light is turned on for each measurement.
We also tried alternative light patterns such as Hadamard codes , and found the
random binary codes have better performance.

6 The camera’s resolution is set to 320 × 140 in order to achieve 360fps.



11

(a) Photograph

(b) Coded Image

View 1 View 2 View 3

Without Attenuation Correction
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Fig. 6. Reconstruction results of LEFT: an object consisting of two glass slabs with
powder where the letters “EC” are on the back slab and “CV” on the front slab, and
RIGHT: point cloud of a face etched in a glass cube. Both examples show: (a) a
photograph of the objects, (b) one of the 24 images captured by the camera, and re-
constructed volumes at different views with (c) and without (d) attenuation correction.

We used this system to recover several types of inhomogeneous participating
media, including, multiple translucent layers, a 3D point cloud of a face etched
in a glass cube, and the dynamic process of milk mixing with water. The recon-
structed volumes are visualized with the ray casting algorithm [23] in which the
opacity function is set to the volume density.

We first perform reconstruction on static volumes. Fig. 6(left) shows the
results of an object consisting of two glass slabs with powder on both. The
letters “EC” are drawn manually on the back plane and “CV” on the front
plane by removing the powder. Thus we create a volume in which only two
planes have non-zero density. A photograph of the object is shown in Fig. 6a.
We then reconstruct the volume using the proposed method. Fig. 6 shows one
of the 24 captured images as well as the reconstructed volume at different views
with and without attenuation correction. It shows that attenuation correction
improves the results by increasing the density on the back plane.

Similarly, Fig. 6(right) show the reconstruction for a 3D point cloud of a face
etched in a glass cube. As shows, our method also achieved good reconstruction
of the volume. In this example, multiple scattering and attenuation within the
point cloud are much stronger than the previous example. In result, in the re-
constructed volume, the half of the face not directly visible to the camera has a
lower estimated density (e.g., the relative darker area of the right eye in Fig. 6).

Finally, we use our system to reconstruct time-varying volumes. We take
the dynamic process of milk drops dissolving in water as an example. We use
a syringe to drip milk drops into a water tank as shown in the adjacent figure.
With the proposed method, we are able to reconstruct time-varying volumes with
high spatial resolution (128× 128× 250) at 15fps, which recovers the interesting
patterns of the dynamic process (see Fig. 7).
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8 Limitations

Multiple Scattering. Although utilizing more light elements increases the effi-
ciency of the acquisition, it will increase multiple scattering as well, which will
cause biased reconstruction, as the artifacts shown in Fig. 6. One potential way
to alleviate this problem is to separate multiple/single scattering by using more
complex light codes in a similar way to Nayar et al. [24].
Calibration for the Spatial Coding Method. The spatial coding seems more desir-
able than the temporal coding due to its high temporal resolution (i.e., volume
reconstruction from one single image) and the easy access of high spatial resolu-
tion devices. However, it requires highly accurate calibration both geometrically
and radiometrically. The defocus of both the projector and the camera needs to
be considered as well. In contrast, the temporal coding method is more robust
to noise and defocus and easy to calibrate.

9 Conclusions

We proposed compressive structured light for recovering the volume densities of
inhomogeneous participating media. Unlike conventional structured light range
finding methods where coded light patterns are used to establish correspondence
for triangulation, compressive structured light uses coded light as a way to gen-
erate measurements which are line-integrals of volume density. By exploiting the
sparsity of the volume density, the volume can be accurately reconstructed from
a few measurements. This makes the acquisition highly efficient both in acquisi-
tion time and illumination power, and thus enables the recovery of time-varying
volumetric phenomena.

We view compressive structured light as a general framework for coding the
3D light function L(x, y, t) for reconstruction of signals from line-integral mea-
surements. In this light, existing methods such as laser sheet scanning and laser
line interpolation, as well as the spatial coding and temporal coding discussed in
this paper, can be considered as special cases. One interesting future direction is
to design more complex coding strategies to improve the performance or apply
the method to new problems.
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Fig. 7. Reconstruction results of milk drops dissolving in water. 24 images are used
to reconstruct the volume at 128 × 128 × 250 at 15fps. The reconstructed volumes are
shown in three different views. Each row corresponds to one instance in time. The
leftmost column shows the corresponding photograph (i.e., all projector pixels emit
white) of the dynamic process.


