
Constraints  for Recogniz ing  and Locat ing Curved 
3D Objects  from Monocular  Image Features * 

David J. Kriegman,  1 B. Vijayakumar, 1 Jean Ponce 2 

1 Center for Systems Science, Dept. of Electrical Engineering, Yale University, New Haven, CT 
06520-1968, USA 

2 Beckman Institute, Dept. of Computer Science, University of Illinois, Urbana, IL 61801, USA 

A b s t r a c t .  This paper presents viewpoint-dependent constraints that re- 
late image features such as t-junctions and inflections to the pose of curved 
3D objects. These constraints can be used to recognize and locate object 
instances in the imperfect line-drawing obtained by edge detection from a 
single image. For objects modelled by implicit algebraic equations, the con- 
straints equations are polynomial, and methods for solving these systems of 
constraints are briefly discussed. An example of pose recovery is presented. 

1 I n t r o d u c t i o n  

While in the "classical approach" to object recognition from images, an intermediate 
2�89 or 3D representation is constructed and matched to object models, the approach 
presented in this paper bypasses this intermediate representation and instead directly 
matches point image features to three dimensional vertices, edges or surfaces. Similar 
approaches to recognition and positioning of polyhedra from monocular images have been 
demonstrated by several implemented algorithms [3, 4, 8] and are based on the use of 
the so-called "rigidity constraints" [1, 2] or "viewpoint consistency constraints" [8]. This 
feature-matching approach is only possible, however, because mose observable image 
features are the projections of object features (edges and vertices). In contrast, most 
visible features in the image of a curved object depend on viewpoint and cannot be 
traced back to particular object features. More specifically, the image contours of a 
smooth object are the projections of limb points (occluding contours, silhouette) which 
are regular surface points where the viewing direction is tangent to the surface; they join 
at t-junctions and may also terminate at cusp points which have the additional property 
that the viewing direction is an asymptotic direction of the surface. 

In this paper, we show how matching a small number of point image features to a 
model leads to a system of polynomial equations which can be solved to determine an 
object's pose. Hypothesized matches between image features and modelled surfaces, edges 
and vertices can be organized into an interpretation tree [2], and the mutual existence 
of these features can be verified from a previously computed aspect graph [5, 11]. The 
image features emphasized in this paper and shown in figure 1.a are generic viewpoint 
dependent point features and include vertices, t-junctions, cusps, three-tangent junctions, 
curvature-L junctions, limb inflections, and edge inflections [9]. This is an exhaustive 
list of the possible contour singularities and inflections which are stable with respect 
to viewpoint; for almost any viewpoint, perturbing the camera position in a small ball 
around the original viewpoint will neither create nor destroy these features. More details 
of the presented approach can be found in [7]. 

* This work was supported by the National Science Foundation under Grant IRI-9015749. 
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Fig. 1. a. Some viewpoint dependent image features for piecewise smooth objects, b. A t-junction 
and the associated geometry. 

2 O b j e c t  R e p r e s e n t a t i o n  a n d  I m a g e  F o r m a t i o n  

In this paper, objects are modelled by algebraic surfaces and their intersection curves. 
We consider implicit surfaces given by the zero set of a polynomial 

/ (x )  = f (x ,  y, z) = 0. (1) 

The surface will be considered nonsingular, so the unnormalized surface normal is 
given by n(x) = Vf(x) .  Note that rational parametric surface representations, such as 
Bezier patches, non-uniform rational B-splines, and some generalized cylinders, can be 
represented implicitly by applying elimination theory, and so the presented constraints 
readily extend to these representations [6, 12]. The intersection curve between two sur- 
faces f and g is simply given by the common zeros of the two defining equations: 

f (x )  = 0 
g(x)  = 0 (2) 

In this paper, we assume scaled orthographic projection though the approach can be 
extended to perspective; the projection of a point x = [z,V, z]* onto the image plane 

= [~, ~]i can be written as: 
i : x0 + I u ] ' x  (3) 

w, u form an orthonormal basis for the image plane, and v = w x u is the viewing 
direction; x0 = [z0, V0]* and/~ respectively parameterize image translation and scaling. 

3 V i e w p o i n t - D e p e n d e n t  F e a t u r e  C o n s t r a i n t s  

We now consider the constraints that relate a pair of points on an object model to 
measured image features in terms of a system of n equations in n unknowns where the 
unknowns are the coordinates of the model points. While these constraints hold in gen- 
eral, they can be manipulated into systems of polynomial equations for algebraic surfaces. 
To solve these systems, we have used the global method of homotopy continuation to find 
all roots [113] as well as a combination of table lookup and Newton's method to only find 
the real roots. For each pair of points, the parameters of the viewing transformation 
can be easily calculated. Below, constraints are presented for all of the features found 
in Malik's junction catalogue [9]. Additionally, constraints are presented for inflections 
of image contours which are easily detected in images. Pose estimation from three ver- 
tices (viewpoint independent features) has been discussed elsewhere [4]. Note that other 
pairings of the same features are possible and lead to similar constraints. 
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3.1 T-junctions 
First, consider the hypothesis that an observed t-junction is the projection of two limb 
points xx, x2 as shown in figure 1.b which provides the following geometric constraints: 

f ,(x,)  : 0 
(x l  - : 2 ) .  N ,  = o (4) 
N1 �9 N2 = cos 812, 

where i = 1, 2, Ni denotes the unit surface normals, and cos 012 is the observed angle 
between the image normals. In other words, we have five equations, one observable cos 012, 
and six unknowns (Xl, x2). In addition, the viewing direction is given by v = Xl - x2. 
When another t-junction is found, we obtain another set of five equations in six unknowns 
xj ,  x4, plus an additional vector equation: (xl - x2) x (x3 - x4) = 0 where only two 
of the scalar equations are independent. This simply expresses the fact that  the viewing 
direction should be the same for both t-junctions. Two observed t-junctions and the 
corresponding hypotheses (i.e., "t-junction one corresponds to patch one and patch two", 
and "t-junction two corresponds to patch three and patch four") provide us with 12 
equations in 12 unknowns. Such a system admits a finite number of solutions in general. 
For each solution, the viewing direction can be computed, and the other parameters of 
the viewing transformation are easily found by applying eq. (3). Similar constraints are 
obtained for t-junctions that  arise from the projection of edge points by noting that  the 
3D curve tangent, given by t = V f  x Vg, projects to the tangent of the image contour. 

3.2 C u r v a t u r e - L  a n d  T h r e e - t a n g e n t  J u n c t i o n s  

For a piecewise smooth object, curvature-L or three-tangent junctions are observed when 
a limb terminates at an edge, and they meet with a common tangent; observe the top 
and bot tom of a coffee cup, or consider figure 1. Both feature types have the same local 
geometry, however one of the edge branches is occluded at a curvature-L junction. 

fil 
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Fig. 2. The image plane geometry for pose estimation from three-tangent and curvature-L junc- 
tions: The curved branch represents the edge while the straight branch represents a limb. 

Consider the two edge points xi, i = 1, 2 formed by the surfaces f i ,  gi that  project to 
these junctions, xl is also an occluding contour point for one of the surfaces, say fi. Note 
the image measurements (angles a,/31 and f12) shown in figure 2. Since xi is a limb point 
of fl,  the surface normal is aligned with the measured image normal fii. Thus, the angle 
ot between fil and fi2 equals the angle between nl  and n2, or cosa  = n l  �9 n2/Inll]n21. 
Now, define the two vectors A = Xl -- x2 and /~ = Xl - x2. Clearly the angle between 
fii and z~ must equal the angle between ni and the projection of A onto the image plane 
/$ which is given by ,~ = A -- ( A .  ~)9 where ~7 = n l  x n2/]nx x n21 is the normalized 
viewing direction. Noting that  n~. 9 = 0, we have Ink I[/$[ cos fli = n i .  A. However, z~ is of 
relatively high degree and a lower degree equation is obtained by taking the ratio of cos fll 
and using the equation for cos a. After squaring and rearrangement, these equations 

(nl.nl)(n2.n2)cosa- (nl.n2) 2 = 0, 
(s) 

~ ( n 2 .  A ) ( n l . n 2 )  -- coso~(n2, n2) (n l"  A) = 0. 
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along with the edge equations (2) form a system of six polynomial equations in six 
unknowns whose roots can be found; the pose is then be determined from (3). 

3.3 Inf lec t ions  

Inflections (zeros of curvature) of an image contour can arise from either limbs or edges. 
In both cases, observing two such points is sufficient for determining object pose. 

As Koenderink has shown, a limb inflection is the projection of a point on a parabolic 
line (zero Gaussian curvature) [5], and for a surface defined implicitly, this is 

f~( fyyfzz  2 2 -- f~z) -.l- f~ (f=~fzz -- f2xz) -4- f2z(f~z.fyy -- f2zy) -4- 2f=f~(f~zfyz -- fzzfxu) (6) 
�9 4-2fyfz(f~.yfxz -- f ~ f y z )  + 2f~fz(f=yfyz -- fyyfxz) = O, 

where the subscripts indicate partial derivatives. Since both points xl ,  x2 are limbs, 
equation (6) and the surface equation for each point can be added to (5) for measured 
values of a,/~1 and/32 as depicted in figure 2. This system of six equations in xl ,  x2 can 
be solved to yield a set of points, and consequently the viewing parameters. 

In the case of edges, an image contour inflection corresponds to the projection of an 
inflection of the space curve itself or a point where the viewing direction is orthogonal to 
the binormal. Space curve inflections typically occur when the curve is actually planar, 
and can be treated like viewpoint independent features (vertices). When inflections arise 
from the binormal bi being orthogonal to the viewing direction, as in figure 1, two mea- 
sured inflections are sufficient for determining pose. It can be shown that the projection 
of bl is the image contour normal, and for surfaces defined implicitly, the binormal is 
given by b = [ t t g (g ) t ]V f  - [ t t y ( f ) t ] V  g where g ( f )  is the Hessian of f .  By including 
the curve equations (2) with (5) after replacing ni by bi, a system of six equations in 
Xl, x~ is obtained. After solving this system, the pose can be readily determined. 

3.4 Cusps 
Like the other features, observing two cusps in an image is sufficient for determining 
object pose. It is well known that cusps occur when the viewing direction is an asymptotic 
direction at a limb point which can be expressed as v tH(x i )v  = 0 where the viewing 
direction is v = Vf l (x l )  x Vf2(x2). While the image contour tangent is not strictly 
defined at a cusp (which is after all a singular point), the left and right limits of the 
tangent as the cusp is approached will be in opposite directions and are orthogonal to 
the surface normal. Thus, the cusp and surface equations can be added to the system (5) 
which is readily solved for Xl and x2 followed by pose calculation. 

4 I m p l e m e n t a t i o n  a n d  R e s u l t s  

Fig. 3.a shows an image of a cylinder with a cYlindrical notch and two inflection points 
found by applying the Canny edge detector and fitting cubic splines. The edge constraints 
of section 3.3 lead to a system of six polynomial equations with 1920 roots. However, only 
two roots are unique, and figs. 3.b and 3.c show the corresponding poses. Clearly the pose 
in fig. 3.c could be easily discounted with additional image information. As in [6], elim- 
ination theory can used to construct an implicit equation of the image contours of the 
intersection curve parameterized by the pose. By fitting this equation to all detected 
edgels on the intersection curve using the previously estimated pose as initial conditions 
for nonlinear minimization, the pose is further refined as shown in fig. 3.d. Using contin- 
uation to solve the system of equations required nearly 20 hours on a SPARC Station 
1, though a recently developed parallel implementation running on network of SPARC 
stations or transputers should be significantly faster. However, since there are only a few 
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real roots, another  effective method is to construct a table offiine of (~, fli as a function 
of the two edge points.  Using table entries as init ial  conditions to Newton's  method,  the 
same poses are found in only two minutes. Addi t ional  examples  are presented in [7]. 

Fig.  3. Pose estimation from two inflection points. Note the scale difference in c. 

A e k n o w l e d g m e n t s :  
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