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Abstract

The goal of object categorization is to locate and identify instances of an object
category within an image. Recognizing an object in an image is difficult when im-
ages present occlusion, poor quality, noise or background clutter, and this task
becomes even more challenging when many objects are present in the same scene.
Several models for object categorization use appearance and context information
from objects to improve recognition accuracy. Appearance information, based on
visual cues, can successfully identify object classes up to a certain extent. Context
information, based on the interaction among objects in the scene or global scene
statistics, can help successfully disambiguate appearance inputs in recognition tasks.
In this work we review different ways of using contextual information in the field
of object categorization and discuss scalability, optimizations and possible future
approaches.
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1 Introduction

Traditional approaches to object categorization use appearance features as
the main source of information for recognizing object classes in real world
images. Appearance features, such as color, edge responses, texture and shape
cues, can capture variability in objects classes up to certain extent. In face of
clutter, noise and variation in pose and illumination, object appearance can be
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disambiguated by the coherent composition of objects that real world scenes
often exhibit. An example of this situation is presented in Fig. 1.

(a) (b)

Fig. 1. (a) A car in the street. (b) A pedestrian in the street. The pedestrian is the
same patch as the car except for a 90 degrees rotation. The different orientations
of both patches within the context defined by the street scene makes the car be
perceived as a pedestrian. Example taken from [36].

Information about typical configurations of objects in a scene has been studied
in psychology and computer vision for years, in order to understand its effects
in visual search, localization and recognition performance [1,3,4,19,23]. Bie-
derman et al. [3] proposed five different classes of relations between an object
and its surroundings, interposition, support, probability, position and famil-

iar size. These classes characterize the organization of objects in real-world
scenes. Classes corresponding to interposition and support can be coded by
reference to physical space. Probability, position and size are defined as se-

mantic relations because they require access to the referential meaning of
the object. Semantic relations include information about detailed interactions
among objects in the scene and they are often used as contextual features.

Several different models [6,7,13,24,36] in the computer vision community have
exploited these semantic relations in order to improve recognition. Semantic
relations, also known as context features, can reduce processing time and dis-
ambiguate low quality inputs in object recognition tasks. As an example of this
idea, consider the flow chart in Fig. 2. An input image containing an aeroplane,
trees, sky and grass (top left) is first processed through a segmentation-based
object recognition engine. The recognizer outputs an ordered shortlist of pos-
sible object labels; only the best match is shown for each segment. Without
appealing to context, several mistakes are evident. Semantic context (probabil-
ity) in the form of object co-occurrence allows one to correct the label of the
aeroplane, but leaves the labels of the sky, grass and plant incorrect. Spatial
context (position) asserts that sky is more likely to appear above grass than
vice versa, correcting the labels of the segments. Finally, scale context (size)
corrects the segment labeled as “plant” assigning the label of tree, since plants
are relatively smaller than trees and the rest of the objects in the scene.
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Fig. 2. Illustration of an idealized object categorization system incorporating Bie-
derman’s classes: probability, position and (familiar) size. First, the input image
is segmented, and each segment is labeled by the recognizer. Next, the different
contextual classes are enforced to refine the labeling of the objects leading to the
correct recognition of each object in the scene.

In this paper, we review a variety of different approaches of context based ob-
ject categorization models. In Section 2 we assess different types of contextual
features used in object categorization: semantic, spatial and scale context. In
Section 3 we review the use of context information from a global and local im-
age level. Section 4 presents four different types of local and global contextual
interactions: pixel, region, object and object-scene interactions. In Section 5 we
consider common machine learning models that integrate context information
into object recognition frameworks. Machine learning models such as classi-
fiers and graphical models are discussed in detail. Finally we conclude with
the discussion of scalability, optimizations and possible future approaches.

2 Types of Context

In the area of computer vision many approaches for object categorization
have exploited Biederman’s semantic relations [3] to achieve robust object
categorization in real world scenes. These contextual features can be grouped
into three categories: semantic context (probability), spatial context (position)
and scale context (size). Contextual knowledge can be any information that
is not directly produced by the appearance of an object. It can be obtained
from the nearby image data, image tags or annotations and the presence and
location of other objects. Next, we describe in detail each type of context and
their most representative object categorization methods.
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2.1 Semantic Context

Our experience with the visual world dictates our predictions about what
other objects to expect in a scene. In real world images a scene is constituted
by objects in a determined configuration. Semantic context corresponds to
the likelihood of an object to be found in some scenes but not others. Hence,
we can define semantic context of an object in terms of its co-occurrence
with other objects and in terms of its occurrence in scenes. Early studies in
psychology and cognition show that semantic context aids visual recognition in
human perception. Palmer [23] examined the influence of prior presentation
of visual scenes on the identification of briefly presented drawings of real-
world objects. He found that observers accuracy at an object-categorization
task was facilitated if the target (e.g. a loaf of bread) was presented after an
appropriate scene (e.g. a kitchen counter) and impaired if the scene-object
pairing was inappropriate (e.g. a kitchen counter and bass drum).

Early computer vision systems adopted these findings and defined semantic
context as pre-defined rules [8,11,32] in order to facilitate recognition of objects
in real world images. Hanson and Riseman [11] proposed the popular VISIONS
schema system where semantic context is defined by hand coded rules. The
system’s initial expectation of the world is represented by different hypotheses
(rule-based strategies) that predict the existence of other objects in the scene.
Hypotheses are generated by a collection of experts specialized for recognizing
different types of objects.

Recently, some computer vision approaches [24,36–38] have used statistical
methods that can generalize and exploit semantic context in real world scenes
for object categorization. The work by Wolf and Bileschi [38] used semantic
context obtained from “semantic layers” available in training images, as shown
in Fig. 3 (a). Semantic layers indicate the presence of a particular object in
the image. Each image present several semantic layers, one per each category
present in the scene. In a semantic layer, each pixel is labeled with a value
v = 1 if the pixel belongs to the object in the layer and v = 0 otherwise. Then,
semantic context is presented in the form of a list of labels per pixel indicating
the occurrence of a pixel in a particular object.

Context is commonly obtained from strongly labeled training data, but it can
also be obtained from an external knowledge base as in [24]. Rabinovich et

al. [24] derived semantic context querying the Google Sets 1 web application.
Google Sets generates a list of possibly related items from a few examples.
This information is represented by a binary co-occurrence matrix φ(i, j) that
relates objects i and j in a scene. Each entry is set φ(i, j) = 1 if objects i

1 labs.google.com/sets
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and j appear as related, or 0 otherwise. Figure 3 (b) shows the co-occurrence
matrix used in [24].

(a) (b)

Fig. 3. (a) Example of training images and semantic layers used in [38]. Semantic
layers encode ground truth information of the objects in the scene and also present
useful information to elaborate semantic context features. (b) Google Sets web ap-
plication and context matrix obtained from the predicted items list used in [24].

Sources of semantic context in early works were obtained from common expert
knowledge [8,11,32] which constrained the recognition system to a narrow do-
main and allowed just a limited number of methods to deal with uncertainty
of real world scenes. On the other hand, annotated image databases [38] and
external knowledge bases [24] can deal with more general cases of real world
images. A similar evolution happened when learning semantic relations from
those sources: pre-defined rules [8] were replaced by methods that learned
the implicit semantic relations as pixel features [38] and co-occurrence matri-
ces [24].

2.2 Spatial Context

Biederman’s position class, also known as spatial context, can be defined by the
likelihood of finding an object in some position and not others with respect to
other objects in the scene. Bar et al. [1] examined the consequences of pairwise
spatial relations on human performance in recognition tasks, between objects
that typically co-occur in the same scene. Their results suggested that (i) the
presence of objects that have an unique interpretation improve the recognition
of ambiguous objects in the scene, and (ii) proper spatial relations among
objects decreases error rates in the recognition of individual objects. These
observations refer to the use of (i) semantic context and (ii) spatial context to
identify ambiguous objects in a scene. Spatial context encodes implicitly the
co-occurrence of other objects in the scene and offers more specific information
about the configuration in which those objects are usually found. Therefore,
most of the systems that use spatial information also use semantic context in
some way.

The early work of Fischler [8] in scene understanding proposed a bottom-
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up scheme to recognize various objects and the scene. Recognition was done
by segmenting the image into regions, labeling each segment as an object
and refining object labels using spatial context as relative locations. Refining
objects can be described by breaking down the object into a number of more
“primitive parts” and by specifying an allowable range of spatial relations
which these “primitive parts” must satisfy for the object to be present. Spatial
context was stored in the form of rules and graph-like structures making the
resulting system constrained to a specific domain.

In the last decade many approaches have considered using spatial context to
improve recognition accuracy. Spatial context is incorporated from inter-pixel
statistics [7,13,15,20,26,29,36–38] and from pairwise relations between regions
in images [6,16,19,30].

Recently, the work by Shotton et al. [29] acquired spatial context from inter-
pixel statistics for object categorization. The framework learns a discrimi-
native model of object classes that incorporates texture, layout and spatial
information for object categorization of real world images. An unary classi-
fier λi captures spatial interactions between class labels of neighboring pixel,
and it is incorporated into a conditional random field [17]. Spatial context is
represented by a look-up table with an entry for each class ci and pixel index
i:

λi(ci, i; θλ) = log θλ(ci, î) (1)

The index î is the normalized version of the pixel index i, where the nor-
malization allows for images of different sizes: the image is mapped onto a
canonical square and î indicates the pixel position within this square. The
model parameters are represented by θλ. An example of the learned classifiers
are shown in Fig. 4 (a).

Spatial context from pairwise relations has been addressed by the work of
Kumar and Hebert [16] as well. Their method presents a two-layer hierarchical
formulation to exploit different levels of spatial context in images for robust
classification. Layer 1 models region to region interactions and layer 2 objects
to objects interactions, as shown in Fig. 4 (b). Objects to regions interactions
are modeled between layer 1 and layer 2. Pairwise spatial features between
regions are binary indicator attributes for three pre-defined interactions: above,
beside or enclosed. The pairwise features between the object to object and
object to region are simply the difference in the coordinates of the centroids
of a region and a patch. Then, spatial context is defined in two different levels:
as a binary feature for each interaction in layer 1 and as the difference in the
coordinates of the centroids in layer 2.

Same as semantic context in early works, spatial context sources were ob-
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(a) (b)

Fig. 4. (a) Spatial context classifiers learned in [29] for five different classes: grass,
tree, sky, road and face. (b) Two-layer hierarchical formulation for spatial context
used in [16].

tained from common expert knowledge [8,11,32] which constrained the recog-
nition system to a specific domain failing to deal with uncertainty of real
world scenes. On the contrary, recent works in computer vision such as [16,29]
use strongly annotated training data as main source of spatial context with
the hope of generalize cases. Even though Fischler [8] used pre-defined rules
to define spatial interactions, Kumar and Hebert [16] also pre-define interac-
tions that correspond to general object configurations in real world scenes. On
the other hand, Shotton et al. [29] learned these interactions implicitly from
training data using statistical methods that can capture many more object
configurations than the pre-defined rules.

2.3 Scale Context

Common approaches to object recognition require exhaustive exploration of
a large search space corresponding to different object models, locations and
scales. Prior information about the sizes in which objects are found in the
scene can facilitate object detection. It reduces the need for multiscale search
and focuses computational resources into the more likely scales.

Biederman’s familiar size class is a contextual relation based on the scales of
an object with respect to others. This contextual cue establishes that objects
have a limited set of size relations with other objects in the scene. Scale context
requires not only the identification of at least one other object in the setting,
but also the processing of the specific spatial and depth relations between the
target and this other object.

The CONDOR system by Strat and Fischler [32] was one of the first computer
vision systems that added scale context as a feature to recognize objects. Scale
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information of an object was obtained from the camera’s meta-data such as
camera position and orientation, geometric horizon, digital terrain elevation
data and map. This information was integrated into the system to generate
hypothesis about the scene in which object’s configurations are consistent with
a global context.

Lately, a handful of methods for object recognition have used this type of
context [19,20,35,36,34]. Torralba et al. [36] introduced a simple framework
for modeling the relationship between context and object properties. Scale
context is used to provide a strong cue for scale selection in the detection of
high level structures as objects. Contextual features are learned from a set of
training images where object properties are based on the correlation between
the statistics of low-level features across the entire scene. Figure 5 (a) shows
an example of a training image and its corresponding annotation.

In [36] , an object in the image is defined as O = {o, x, σ} where o is the
category label, x is the location and σ is the scale of the object in the scene.
Scale context (σ) depends on both the relative image size of the object at one
fixed distance and the actual distance D between the observer and the object.
Using these properties and the contextual feature of the entire scene vC for
a category C, automatic scale selection is performed by the PDF P (σ|o,vC).
Examples of automatic scale selection are shown in Fig. 5 (b).

Fig. 5. (a) An example of training image and ground truth annotation used in
[36]. (b) Scale context permits automatic scale detection for face recognition. The
square’s size corresponds to the expected height of heads given the scale prior. The
line at the right hand indicates the real height of the heads in the image.

Scale context shows to be the hardest relation to access, since it requires a
more detailed information about the objects in the scene. While analyzing
generic 2D images, camera’s meta-data used in [32] is generally not available.
Instead, one needs to derive context directly from the input image itself as
done in [36].

The majority of the models reviewed here use one or two explicit types of
context. Spatial and scale context are the most exploited types of context by
recognition frameworks. Generally, semantic context is implicitly present in
spatial context, as information of object co-ocurrences come from identify-
ing objects for the spatial relations in the scene. The same happens to scale
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context, as scale is measured with respect to others objects. Therefore, using
spatial and scale context involve using all forms of contextual information in
the scene.

Although semantic context can be inferred from other types of context, it is the
only context type that brings out the most valuable information for improving
recognition. Considering the variability of the object configurations in the
scene, scale and spatial relations vary in grater extent than the co-ocurrence
of objects. Co-occurrences are much easier to access than spatial or scale
relationships and much faster to process and compute. On the other hand,
using all types of context can give a better representation of the configuration
of objects in the scene, producing better performance in recognition tasks.

With respect to the sources of contextual information, very little has been done
for using external sources in cases where training data is weakly labeled. In
most of the cases, contextual relations are computed from training data, which
can sometimes fail to express general cases. To model sources of variability in
real world images, approaches to object categorization require large labeled
data sets of fully annotated training images. Typical annotations in these fully
labeled data sets provide masks or bounding boxes that specify the locations
and scales of objects in each training image. Though extremely valuable, this
information is prone to error and expensive to obtain. Using publicly available
knowledge-bases can contribute to add contextual information for recognition
tasks.

3 Contextual Levels

Object recognition models have considered the use of context information from
a “global” or “local” image level. Global context considers image statistics from
the image as a whole (e.g. a kitchen will predict the presence of a stove). Local
context, on the other hand, considers context information from neighboring
areas of the object (e.g. a nightstand will predict the presence of an alarm
clock). These two different trends have found their motivation from psychology
studies in object recognition. Next we review these two types of contextual
levels together with examples of models that have adopted these directions.

3.1 Global Context

Studies in psychology [21,25] suggest that perceptual processes are hierarchi-
cally organized so they proceed from global structuring towards more and
more detailed analysis. Thus the perceptual system treats every scene as if it
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were in a process of being focused or zoomed in on. These studies imply that
information about scene identity may be available before performing a more
detailed analysis of the individual objects.

Under this premise, global context exploits scene configuration (image as a
whole) as an extra source of global information across categories. The structure
of a scene image can be estimated by the mean of global image features,
providing a statistical summary of the spatial layout properties. Many object
categorization frameworks have incorporated this prior information for their
localization tasks [20,26,34,36,37].

Murphy et al. [20] exploited context features using a scene “gist” [36], which
influences priors of object existence and global location within a scene. The
“gist” of an image is a holistic, low-dimensional representation of the whole
image. Figure 6 (b) shows an example of the “gist” of a corridor. The work
of Torralba et al. [36] shows that this is sufficient to provide a useful prior for
what types of objects may appear in the image, and at which location/scale.
The background (or scene)provides an a likelihood of finding an object in the
image (for example, one is unlikely to find a boat in a room). It can also
indicate the most likely positions and scales at which an object might appear
(e.g. pedestrians on walkways in an urban area).

In [20] the “gist” is defined as the feature vector vG that summarizes the whole
image. In order to obtain vG, a set of spatially averaged filter-banks are applied
to the whole image. Then, Principle Component Analysis (PCA) is used to
reduce the high dimensionality of the resulting output vector. By combining
vG with the outputs of boosted object detectors, final detectors are ran in
locations/scales that the objects are expected to be found, therefore improving
speed and accuracy. Using context by processing the scene as a whole and
without first detecting other objects can help to reduce false detections.

Fig. 6. (a) Red window indicates local context and the green window indicates the
region of interest for the appearance features. Local context feature by Kruppa and
Schiele [15] (b) A training image (on the left) and the “gist” (on the right) for the
“corridor” category by Murphy et al. [20].

10



3.2 Local Context

Local context information is derived from the area that surrounds the ob-
ject to detect (other objects, pixels or patches). The role of local context has
been studied in psychology for the task of object [23] and face detection [31].
Sinha and Torralba [31] found that inclusion of local contextual regions such
as the facial bounding contour substantially improves face detection perfor-
mance, indicating that the internal features for facial representations encode
this contextual information.

Local context features can capture different local relations such as pixel, region
and object interactions. Many object categorization models have used local
context from pixels [6,7,13,15,29], patches [16,19,30] and objects [11,24,32,35,38]
that surrounds the target object, greatly improving the task of object catego-
rization. These interactions are reviewed in detail in Section 4.

Kruppa and Schiele [15] investigated the role of local context for face detection
algorithms. In their work, an appearance-based object detector is trained with
instances that contain a persons entire head, neck and part of the upper body
(as shown in Fig. 6 (a)). The features of this detector capture local arrange-
ments of quantized wavelet coefficients. The wavelet decomposition showed
that local context captured most parts of the upper bodys contours, as well
as the collar of the shirt and the boundary between forehead and hair. At the
core of the detector there is a Naive Bayes classifier:

n∏

k=1

∏

x,y∈region

pk(patternk(x, y), i(x), j(y)|object)

pk(patternk(x, y), i(x), j(y)|nonobject)
> θ (2)

where θ is an acceptance threshold and pk are two likelihood functions that
depend on coarse quantizations i(x) and j(y) of the feature position within the
detection window (2). This spatial dependency allows to capture the global
geometric layout: within the detection windows certain features might be likely
to occur at one position but unlikely to occur at another.

Using local context yields correct detections that are beyond the scope of the
classical object-centered approach, and holds not only for low resolution cases
but also for difficult poses, occlusion and difficult lighting conditions.

One of the principal advantages of global over local context is that global
context is computationally efficient as there is no need to parse the image
or group components in order to represent the spatial configuration of the
scene. However when the number of objects to recognize and scenes increases,
global context cannot discriminate well between scenes since many objects
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may share the same scene, and scenes may look similar to each other. In this
case, computation becomes expensive as we have to run all object detectors
on the image.

Local context improves recognition over the capabilities of object-centered
recognition frameworks since it captures different range of interactions be-
tween objects. Its advantage over global context is based on the fact that for
global context scene must be taken as one complete unit and spatially localized
processing can not take place.

The fact that local context representation is still object-centered, as it requires
object recognition as a first step, is one of the key differences with global con-
text. The image patches that do not satisfy the similarity criteria to objects
are discarded and modeled as noise. Global context propose to use the back-
ground statistics as an indicator of object presence and properties. However,
one drawback of the current “gist” implementation is that it cannot carry out
partial background matching for scenes in which large parts are occluded by
foreground objects.

4 Contextual Interactions

We have seen that object categorization models exploit context information
from different types of contextual interactions and consider different image
levels. When we consider local context, contextual interactions can be grouped
in three different types: pixel, region and object interactions. However, when
we consider global context, we have contextual interactions between objects
and scenes. Next, we review in detail these different interactions and discuss
the different object categorization models that have made key contributions
using these contextual interactions.

4.1 Local Interactions

The work by Rutishauser et al. [27] proposed that recognition performance for
objects in highly cluttered scenes can be improved dramatically with use of
bottom-up attentional frameworks. Local context involves bottom-up process-
ing of contextual features across images, improving performance and recogni-
tion accuracy. Next we review local interactions from different local context
levels that are incorporated into bottom-up fashion for categorization models.
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4.1.1 Pixel Interactions

Pixel level interactions are based on the notion that neighboring pixels tend
to have similar labels, except at the discontinuities. Several object categoriza-
tion frameworks model interactions at pixel level in order to implicitly capture
scene contextual information [6,13,15,26,29,36,38]. Pixel level interactions can
also derive information about object boundaries, leading to an automatic seg-
mentation of the image into objects [6,13,29] and a further improvement in
object localization accuracy.

Fig. 7. (a) Contextual features and example of regional label features in [13]. (b)
Framework for contextual features by He et al. [13].

The problem of obtaining contextual features by using pixel level interactions
is addressed by the work of He et al. [13]. The model combines local classifiers
with probabilistic models of label relationships. Regional label features and
global label features describe pixel level interactions, as shown in Fig. 7 (a).
Regional features represent local geometric relationships between objects, such
as edges, corners or T-junctions. Actual objects involved in the interaction
are specified by the features, thus avoiding impossible combinations such as
ground-above-sky border. Regional features are defined on 8× 8 regions with
an overlapping of 4 pixels in each direction and extracted from training data.

Global features correspond to domains that go from large regions in the scene
to the whole image. Pixel level interactions are encoded in the form of a label
pattern, which is configured as a Restricted Boltzmaann Machine (RBM) as
shown in Fig. 7 (b). These features are defined over the entire image, but in
principle smaller fields anchored at specific locations can be used. Regional
and global label features are described by probabilistic models and their dis-
tributions are combined into a conditional random field [17].

4.1.2 Region Interactions

Region level interactions have been extensively investigated in the area of
context-based object categorization tasks [6,7,15,16,19,20,26,30,37] since re-
gions follow plausible geometrical configurations. These interactions can be
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divided into two different types: interaction between image patches/segments
and interaction between object parts.

Interactions between object parts can derive contextual features for recogniz-
ing the entire object. Fink and Perona [7] proposed a method termed Mutual
Boosting to incorporate contextual information for object detection from ob-
ject’s parts. Multiple objects and part detectors are trained simultaneously
using AdaBoost [9,10]. Context information is incorporated from neighboring
parts or objects using training windows that capture wide regions around the
detected object. These windows, called contextual neighborhoods, capture rela-
tive position information from objects or parts around and within the detected
object. The framework simultaneously trains M object detectors that generate
M intensity maps Hm=1,..,M indicating the likelihood of object m appearing
at different positions in a target image. At each boosting iteration t the M
detectors emerging at the previous stage t − 1 are used to filter positive and
negative training images, thus producing intermediate m detection maps Hm

t−1.
Next, the Mutual Boosting stage takes place and all the existing Hm

t−1 maps
are used as additional channels out of which new contrast features are selected.
Mutual dependencies must be computed in a iterative fashion, first updating
one object then the other. Figure 8 (a) shows contextual neighborhoods Cm[i]

for positive and negative training images.

Models that exploit interactions between patches commonly involve some type
of image partitioning. The image is usually divided into patches [16,15,19,20,26,30,37]
or into segments by a semantic scene segmentation algorithm [6].

Fig. 8. (a) A1 & A2: position of positive and negative examples of eyes in natural
images and B: Eye intensity (eyeness) detection map of an image in [7]. (b) Results
of [6] using segment interactions. (c) Lipson’s [19] patch level interactions that derive
spatial templates.

The work by Lipson et al. [19] exploits of patch level interactions for capturing
scene’s global configuration. The approach employes qualitative spatial and
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photometric relationships within and across regions in low resolution images,
as shown in Fig. 8 (c). The algorithm first computes all pairwise qualitative
relationships between each low resolution image region. For each region, the
algorithm also computes a rough estimate of its color from a coarsely quan-
tized color space as a measure of perceptual color. Images are grouped into
directional equivalence classes, such as “above” and “below”, with respect to
explicit interactions between region. Figure 8 (c) shows examples of images
and common region configurations.

The framework introduced by Carbonetto et al. [6] uses Normalized Cuts [28]
algorithm to partition images into regions for learning both word-to-region as-
sociations and segment relations. The contextual model learns the co-occurrence
of blobs (set of features that describe a segment) and formulates a spatially
consistent probabilistic mapping between continuous image feature vectors
and word tokens. Segment level interactions describe the “next to” relation
between blob annotations. Interactions are embedded as clique potentials of a
Markov Random Field (MRF) [18]. Figure 8 (b) shows examples of test images
regions and labels.

4.1.3 Object Interactions

The most intuitive type of contextual interactions correspond to the object
level, since object interactions are more natural to the human perception.
They have been extensively studied in the areas of psychology and cognitive
sciences [2,1,4,3,23]. Several frameworks have addressed these interactions in-
cluding early works in computer vision [8,11,15,16,24,35].

The recent work of Torralba et al. [35] exploits contextual correlations be-
tween object classes by using Boosted Random Fields (BRFs). BRFs build
on both boosting [9,10] and conditional random fields (CRFs) [17], providing
a natural extension of the cascade of classifiers by integrating evidence from
other objects. The algorithm is computationally efficient given that quickly
rejects possible negative image regions.

Information from object level interactions is embedded into binary kernels
W ′

x′,y′,c′ that define, for each node x, y of object class c, all the nodes from which
it has contextual interactions. These kernels are chosen by sampling patches
of various sizes from the training set image labeling. This allows generating
complicated patterns of connectivity that reflect the statistics of object co-
occurrences in the training set. The algorithm learns to first detect easy (and
large) objects, reducing the error of all classes. Then, the easy-to-detect objects
pass information to the harder ones.

Combining more than one interaction level into a context-based object catego-
rization model has been addressed by few models [6,15,16] in order to achieve
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Fig. 9. (a) Training data with semantic layer labels (same as in [38]). (b) Example
of binary kernel. (c) Negative examples for the boosting phase of the model [35].

better recognition performance. One advantage of these models over the ones
that use one interaction level is that these models utilize a more complete
information about the context in the scene. Each level captures a different
range of relationships: objects interactions capture in a better way interac-
tions from objects that can be fairly apart in the scene from each other. Pixel
interactions, in the other hand, can capture more detailed interactions be-
tween objects that are closely to each other (e.g. boundaries between objects).
A clear disadvantage of combining different interaction levels is that the ex-
pensive and complex computations needed to obtain and merge the different
information.

Pixel level interactions are more computationally intensive to obtain, since we
need to consider several combination of small windows from the image. On the
other extreme, using object level interactions presents efficient extraction as
the number of regions to consider is equal to the number of objects present in
the scene (usually small). When considering region level interactions, models
that pre-process the image using segmentation algorithms are more efficient
capturing contextual interactions that the ones that use grid-like segmenta-
tions, as the number of regions considered tend to be smaller.

4.2 Global Interactions

Recent behavioral and modeling research suggests that early scene interpre-
tation may be influenced by global image properties that are computed by
processes that do not require selective visual attention [22]. Global context,
represented as a scene prior, has been considered by categorization models
as a single entity that can be recognized by means of a scene-centered rep-
resentation bypassing the identification of the constituent objects. Top-down
processing is necessary when exploiting and incorporating global context into
with recognition tasks. Next we review different frameworks in recognition
that use global context by capturing object-scene interactions.
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4.2.1 Object-Scene Interactions

A number of recognition frameworks [26,34–37] have exploited object-scene
interactions to efficiently use context in their models. The work by Russell
et al. [26] exploits scene context by formulating the object detection problem
as one of aligning elements of the entire scene to a large database of labeled
images. The background, instead of being treated as a set of outliers, is used
to guide the detection process. The system transfers labels from the training
images that best match the query image. Commonalities amongst the labeled
objects are assumed in the retrieved images and images are clustered to form
candidate scenes.

Object-scene interactions are modeled using training image clusters, which
give hints as to what objects are depicted in the query image and their likely
location. The relationship between object categories o, their spatial location x
within an image, and their appearance g is modeled by computing the following
joint distribution:

p(o, x, g|θ, φ, η) =
N∏

i=1

Mi∏

j=1

1∑

hi,j=0

p(oi,j|hi,j, θ)p(xi,j|hi,j, φ)p(gi,j|oi,j, hi,j, η) (3)

where N is the number of images, each having Mi object proposals over L
object categories. The likelihood of which object categories appear in the
image is modeled by p(oi,j|hi,j = m, θm), which corresponds to the object-
scene interactions.

Many advantages and disadvantages can be considered when analyzing local
interaction and global interactions. Global interactions are efficiently when
recognizing novel objects since applying an object detector densely across the
entire image for all object categories is not needed. Global context constrains
which object categories to look for and where. The down side of this great
advantage is that training is computationally expensive due to the inference
that has to be done for finding parameters in the graphical model. On the
other hand, local interactions are easily accessible from training data, without
expensive computations. The problem arises when combining local context
features with local appearance features.

5 Integrating Context

The problem of integrating contextual information into an object categoriza-
tion framework is a challenging task since it needs to combine objects appear-
ance information with contextual constraints imposed on those objects given
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the scene. In order to address this problem, machine learning techniques are
borrowed as they provide efficient and powerful probabilistic algorithms. The
choice of these models is based on the flexibility and efficiency of combining
context features at a given stage in the recognition task. Here, we grouped dif-
ferent approaches for integrating context in two distinctive groups: classifiers
and graphical models.

5.1 Classifiers

Several methods [7,15,20,38] have chosen classifiers over other statistical mod-
els to integrate their context with their appearance features. The main mo-
tivation for using classifiers is to combine the outputs of local appearance
detectors (use as appearance features) with contextual features obtained from
either local or global statistics. Some discriminative classifiers have been used
for this purpose, such boosting [7,38] and Logistic Regression [20] in the at-
tempt to maximize the quality of the output on the training set. Generative
classifiers have been also used to combine these features, such as Naive Bayes
classifier [15]. Discriminative learning often yields higher accuracy than model-
ing the conditional density functions. However, handling missing data is often
easier with conditional density models.

Wolf and Bileschi [38] utilize boosted classifiers [9] in a rejection cascade for
incorporating local appearance and contextual features. The construction of
the context feature is done in two stages. In the first stage, the image is
processed to calculate the low level and semantic information. In the second
stage, the context feature is calculated at each point by collecting samples
of the previously computed features at pre-defined relative positions. Then,
a semantic context detector is learned via boosting, trained to discriminate
between positive and negative examples of the classes. Same approached is
used to learned appearance features. In order to detect objects in a test image,
the context based detector is applied first. All pixels classified as object-context
with confidence greater than the confidence threshold THC are then passed
to the appearance detector for a secondary classification. In the same way as
with context, pixels are classified by a appearance detector as objects with
confidence greater than the confidence threshold THA. A pixel is judged to be
an object detection only if the pixel passes both detectors.

Advantages of boosting include rapid classification, simplicity and easily pro-
gramming. Prior knowledge about the base learner is not required, so boosting
can be flexibly combined with any method for finding base classifiers. Instead
of trying to design a learning algorithm that is accurate over the entire space,
boosting focus on finding base learning algorithms that only need to be better
than random. One of the drawbacks of the model is that performance on a
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Fig. 10. Classification scheme using boosted classifiers in [38].

particular problem is dependent on the data and the base learner. Consistent
with theory, boosting can fail to perform well given insufficient data, overly
complex base classifiers or base classifiers that are too weak.

5.2 Graphical Models

Graphical models provide a simple way to visualize the structure of a prob-
abilistic model. The graphical model (graph) captures the way in which the
joint distribution over all random variables can be decomposed into a product
of factors each depending on a subset of the variables. Hence they provide
a powerful yet flexible framework for representing and manipulating global
probability distributions defined by relatively local constraints. Many object
categorization frameworks have used graphical models to model context since
they can encode the structure of local dependencies in an image from which
we would like to make globally consistent predictions.

A handful of frameworks have exploited directed graphical models [26,30,36]
to incorporate contextual features with their appearance-based detectors. Di-
rected graphical models are global probability distributions defined on di-
rected graphs using local transition probabilities. They are useful for express-
ing causal relationships between random variables since they assume that the
observed image has been produced by a causal latent process. Directed graph-
ical models compute the joint distribution over the node variables as follows:

P (x) =
∏

i

P (xi|pai) (4)

where pai is the parent of node xi. These graphical models assume that objects
are conditionally independent given the scene.

On the other hand, a majority of object categorization models uses undirected
graphical models [6,13,16,24,29,35,37] since they are better suited to express
soft constraints between random variables. Undirected graphical models are
global probability distributions defined on undirected graphs using local clique
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potentials. They are better suited to handle interactions over image partitions
since usually there exists no natural causal relationships among image com-
ponents. The joint probability distribution is expressed as:

P (x) =
1

Z

∏

C

ψC(xC), where Z =
∑

x

∏

C

ψC(xC) (5)

and ψC(xC) are the potential function over the maximal cliques C of the
graph. Special cases of undirected graphical models used for modeling context
include Markov Random Fields (MRFs) [6] and Conditional Random Fields
(CRFs) [13,16,24,29,35,37]. MRFs are typically formulated in a probabilistic
generative framework modeling the joint probability of the image and its corre-
sponding labels. Due to the complexity of inference and parameter estimation
in MRFs, only local relationships between neighboring nodes are incorporated
into the model. Also, MRFs do not allow the use of global observations to
model interactions between labels. CRFs provide a principled approach to in-
corporate these data-dependent interactions. Instead of modeling the full joint
distribution over the labels with an MRF, CRFs model directly the conditional
distribution which requires fewer labeled images and the resources are directly
relevant to the task of inferring labels.

Therefore, CRFs models have become popular owing to their ability to directly
predict the segmentation/labeling given the observed image and the ease with
which arbitrary functions of the observed features can be incorporated into
the training process. Scene regions and object regions are related through
geometric constraints. CRF models can be applied either at the pixel-level
[13,16,29] or at the coarser level [24,37]. Next we review in detail how CRFs
are commonly used for integrating context.

5.2.1 Conditional Random Fields

Conditional Random Fields are used to learn the conditional distribution over
the class labeling given an image. The structure permits incorporating differ-
ent types of cues in a single unified model, maximizing object label agreement
according to contextual relevance. Since object presence is assumed condition-
ally independent given the scene, the conditional probability of the class labels
'x given an image y has the form:

P ('x|y, 'θ) =
1

Z(y, 'θ)
exp(

∑

j

Fj(xj , y; θj)) (6)

Fj(xj , y; θj) =
n∑

i=1

θjfj(xi−1, xi, y, i) (7)
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where Fj are the potential functions and Z(y, 'θ) is the normalization factor,
also known as the partition function. Potentials can be unary or pairwise
functions and they represent transition or state functions on the graph. The
main challenge in probability calculation is to compute the partition function
Z(y, 'θ). This function can be calculated efficiently when matrix operations are
used. For this, the conditional probability can be written as:

P ('x|y, 'θ) =
1

Z(y, 'θ)

n+1∏

i=1

Mi(xi−1, xi|y) (8)

Mi(x
′, x|y) = exp(

∑

j

θjfj(x
′, x, y, i)) (9)

The normalization factor Z(y, θ) for labels 'x, may be computed from the set
of Mi matrices using closed semi-rings. For contex-based categorization, each
matrix Mi embeds contextual interactions to be imposed in the recognition
task.

Context based object categorization models [13,16,24,29,35,37] use CRFs to
integrate contextual and appearance information from pixel level [29], object
level [24] and multiple image levels [13,16,35,37]. The conditional probability
over the true labels can be computed given the entire image [13,16,29] or given
a set of image patches or segments [24,35,37].

Maximum likelihood chooses parameter values such that the logarithm of the
likelihood, known as the log-likelihood, is maximized. Parameter estimation
is commonly computed by recognition frameworks [13,16,24,29,35,37] using
methods such as gradient descend, alpha expansion graph cut [5] and con-
trastive divergence (CD) [14]. Different techniques are used to find the max-
imum marginal estimates of the labels on the image, such as loopy belief
propagation (BP), maximum posterior marginal (MPM) and Gibbs sampling
since exact maximum a posteriori (MAP) is infeasible.

In the case where the entire image y is considered for the conditional probabil-
ity, CRF potentials are learned from low level features, including output labels
from pixel classifiers, texture features, edge information and low level context
interactions. Potential functions encode a particular constraint between the
image and the labels within a pixel/region of the image. Given that each pixel
or a small image region is considered to be a node in the graph, parameter
estimation and inference become computationally expensive. However, this
technique achieves both recognition and segmentation on the images.

When the conditional probability considers a set of image patches or segments
yi ∈ 'y, classifier outputs (labels) are combined with pairwise contextual inter-
actions between the regions. Potential functions represent transition functions
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Fig. 11. Conditional Random Field used in [37]. Squares indicate feature functions
and circles indicate variable nodes xi. Arrows represent single node potentials due
to feature functions, and undirected edges represent pairwise potentials. Global
context is represented by h.

between object labels, capturing important long distance dependencies be-
tween whole regions and across classes. Since each patch/segment is a node
in the graph, parameter computation is cheaper and the framework can scale
more favorably when the number of categories to recognize increases.

One of the advantages of using CRFs in general is that the conditional prob-
ability model can depend on arbitrary non-independent characteristics of the
observation, unlike a generative image model which is forced to account for
dependencies in the image, and therefore requires strict independence assump-
tions to make inference tractable. The down side of using CRFs is that inferring
labels from the exact posterior distribution for complex graphs is intractable.

6 Conclusions and Open Issues

The importance of context in object recognition and categorization has been
discussed for many years. Scientists from different disciplines such as cognitive
sciences and psychology have considered context information as a path to ef-
ficient understanding of the natural visual world. In computer vision, several
object categorization models have addressed this point, confirming that con-
textual information can help to successfully disambiguate appearance inputs
in recognition tasks.

In this critical study, we have addressed the problem of incorporating different
types of contextual information for robust object categorization in computer
vision. We reviewed a variety of different approaches of context based object
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categorization models, the most common levels of extraction of context and
the different levels of contextual interactions. We have also examined com-
mon machine learning models that integrate context information into object
recognition frameworks.

We believe that contextual information can benefit categorization tasks in
two ways: (i) as a prior to recognize certain objects in images and (ii) as an
advocate for label agreement to disambiguate objects appearance. However
if the target object is the only labeled object in the database there are no
sources of contextual information we can exploit. This fact points out the need
for external sources of context (as in [24]) that can provide this information
when training data is weakly or not labeled.

Considering the image level interactions, pixel level models have comparable
performance to state-of-the-art patch and object level models, however com-
plexity of these models can grow quickly as the number of classes increase.
Scalability can be a problem for pixel level models, so considering a coarser
level can optimize expensive computations.

Models that combine different interaction levels of context can potentially
benefit from the extra information, nevertheless parameter estimation for the
different levels and cue combination can result in complex and expensive com-
putations. Same happens when both levels of contextual extraction are com-
bined into a single model.

The majority of the context-based models include at most two different types
of context, semantic and spatial, since the complexity to determine scale con-
text is still high for 2D images. Future work will include incorporating se-
mantic, spatial and scale context into a recognition framework to assess the
contribution of these features. Also, other machine learning models will be
considered for a better integration of context features.

References

[1] M. Bar. Visual objects in context. Nature Reviews Neuroscience, 5(8):617–629,
2004.

[2] M. Bar and S. Ullman. Spatial context in recognition. Perception. 25:343-352,
1993.

[3] I. Biederman. Perceiving real-world scenes. Science, 177(7):77–80, 1972.

[4] I. Biederman, R. J. Mezzanotte, and J. C. Rabinowitz. Scene perception:
Detecting and judging objects undergoing relational violations. Cognitive
Psychology, 14(2):143–177, 1982.

23



[5] Y. Boykov and M. Jolly. Interactive graph cuts for optimal boundary and region
segmentation of objects in n-d images. ICCV, 2001.

[6] P. Carbonetto, N. de Freitas, and K. Barnard. A statistical model for general
contextual object recognition. ECCV, 2004.

[7] M. Fink and P. Perona. Mutual boosting for contextual inference. NIPS 16,
2003.

[8] M. Fischler and R. Elschlager. The representation and matching of pictorial
structures. IEEE Transactions on Computers, 100(22):67–92, 1973.

[9] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System
Sciences, 55:119–139, 1997.

[10] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a
statistical view of boosting. Technical Report, Standford University, 1998.

[11] A. Hanson and E. Riseman. Visions: A computer vision system for interpreting
scenes. Computer Vision Systems, pages 303–334, 1978.

[12] R. M. Haralick. Decision making in context Pattern Analysis and Machine
Intelligence 5 (4) pages 417–428, 1983.

[13] X. He, R. S. Zemel, and M. A. Carreira-Perpinan. Multiscale conditional random
fields for image labeling. CVPR, 2004.

[14] G. Hinton. Training products of experts by minimizing contrastive divergence.
Neural Computation, 14(8):1771–1800, 2002.

[15] H. Kruppa and B. Schiele. Using local context to improve face detection. BMVC,
2003.

[16] S. Kumar and M. Hebert. A hierarchical field framework for unified context-
based classification. ICCV, 2005.

[17] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. ICML, 2001.

[18] S. Li. Markov random field modeling in computer vision. Springer Computer
Science Workbench Series, page 264, 1995.

[19] P. Lipson, E. Grimson, and P. Sinha. Configuration based scene classification
and image indexing. CVPR, 1997.

[20] K. Murphy, A. Torralba, and W. Freeman. Using the forest to see the tree: a
graphical model relating features, objects and the scenes. NIPS, 2003.

[21] D. Navon. Forest before trees: The precedence of global features in visual
perception. Cognitive Psychology, 9(3):353–383, 1977.

[22] A. Oliva, A. Torralba, M. Castelhano, and J. Henderson. Top-down control of
visual attention in object detection. ICIP, 2003.

24



[23] S. E. Palmer. The effects of contextual scenes on the identification of objects.
Memory and Cognition, 1975.

[24] A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora, and S. Belongie.
Objects in context. ICCV, 2007.

[25] R. Rensink, J. ORegan, and J. Clark. The need for attention to perceive changes
in scenes. Psychological Science, 8(5):368–373, 1997.

[26] B. C. Russell, A. Torralba, C. Liu, R. Fergus, and W. T. Freeman. Object
recognition by scene alignment. NIPS, 2007.

[27] U. Rutishauser, D. Walther, C. Koch, and P. Perona. Is bottom-up attention
useful for object recognition? CVPR, 2004.

[28] J. Shi and J. Malik. Normalized cuts and image segmentation. Pattern Analysis
and Machine Intelligence, 22, 2000.

[29] J. Shotton, J.Winn, C. Rother, and A. Criminisi. Textonboost for image
understanding: Multi-class object recognition and segmentation by jointly
modeling appearance, shape and context. International Journal of Computer
Vision, pages 1–22, 2007.

[30] A. Singhal, J. Luo, and W. Zhu. Probabilistic spatial context models for scene
content understanding. CVPR, 2003.

[31] P. Sinha and A. Torralba. Detecting faces in impoverished images. Journal of
Vision, 2(7):601, 2002.

[32] T. Strat and M. Fischler. Context-based vision: Recognizing objects using
information from both 2-d and 3-d imagery. Pattern Analysis and Machine
Vision, 13(10):1050–1065, October 1991.

[33] C. Sutton and A. McCallum. Piecewise training of undirected models
Conference on Uncertainty in Artificial Intelligence 2003

[34] A. Torralba, K. Murphy, and W. Freeman. Contextual models for object
detection using boosted random fields. Advances in Neural Information
Processing Systems, 2004.

[35] J. Verbeek and B. Triggs. Scene segmentation with crfs learned from partially
labeled images. NIPS, 11 2008.

[36] A. Torralba. Contextual priming for object detection. International Journal of
Computer Vision, 53(2):153–167, 2003., 2003.

[37] J. Verbeek and B. Triggs. Scene segmentation with crfs learned from partially
labeled images. NIPS, 11 2008.

[38] L. Wolf and S. Bileschi. A critical view of context. International Journal of
Computer Vision, 2006.

25


