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we have implemented homotopy continuation on networks of SUN SPARC Stations communicating via Ethernet,
networks of INMOS Transputers, and INTEL Hypercubes. In practice, this allows us to routinely solve systems
with a few thousand roots, a task that requires a few hours using a dozen SPARC Stations. The classification
algorithm has also been implemented and is used as part of convex hull procedure.

The algorithm has been applied to a number of algebraic curves as shown in figures 5-7. The classical curve
called the limagon of Pascal (figure 5) contains one singular point and only one bitangent line. Figure 6 shows an
instance of the lemniscate of Bernoulli with its characteristic figure eight shape. There are two bitangent lines in
this case. Finally, figure 6 shows a quartic curve with two singular points (one is a simple crossing while the other is
a tacnode) and its convex hull. Computing the convex hull of each of these quartic curves required approximately
twenty minutes, most of which was spent solving the bitangent system (3).

4 Discussion

In this paper we have presented an algorithm for computing the convex hull of an irreducible algebraic curve. The
curve may be composed of multiple components and may include singular points. In addition, we have presented
an algorithm for classifying points with respect to the convex hull.

In many applications, curves are represented parametrically which greatly simplifies convex hull construction.
For a closed curve, a map p : S — IR? is available. The bitangent lines can be computed by solving a system of
two equations in two unknowns (s1, s2 € S'); for each bitangent, s; and ss bound an interval of the circle ST. Hull
construction amounts to completely partitioning S! into a set of non-overlapping intervals corresponding either to
a bitangent line whose end points are the image of interval bounds or to an interval of the original curve.

The algorithm can be trivially extended to a collection of n irreducible algebraic curves C; given by f;(«,y) = 0.
While such a collection can be represented as an algebraic curve

f(xa y) = H?:Lfi(xa y) = Oa

and the presented algorithm could be applied, it is far more efficient to explicitly consider the collection of separate
curves. Bitangents of each C; are found individually followed by the bitangents between two curves C; and C;, ¢ # j.
Extremal points of each C; can be computed. Additionally, singular points are formed by the intersection of two
curves which are easily found by solving a system of polynomial equations. The rest of the algorithm would basically
follow that of section 2.

We are also considering algorithms for extending the ideas presented here to bounded algebraic surfaces in
IR?. As noted by Koenderink [10], the convex hull is composed of three types of surface points: Planes that have
second order contact with the surface at three points, developable surfaces where each ruling has second order
contact at two surface points, and portions of the original surface. The planes are found by solving a square system
of polynomial equations while the ruled surface is found by tracing a curve [12] defined by five equations in six
unknowns. The original surface can be decomposed by considering the critical points of the projection onto a plane
using ideas discussed in [11]. These points form a curve in IR® which can be similarly traced. Again, we must
face the issue of finding an appropriate output representation that is useful both for rendering and for geometric
algorithms.
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Figure 5: a. A singular quartic curve given by (2?2 + y? + 6y)? — 4(x? + %) = 0. b. Its convex hull.

a. b.

Figure 6: a. A singular quartic curve given by (2?2 + y2)? — 4(x? — %) = 0. b. Its convex hull.
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Figure 7: a. A singular quartic curve given by y* — 2¢° + y? — 32%y 4+ 22* = 0. b. Its convex hull.



of the interval. These points are found by solving the univariate polynomial

f(xSay):O (6)

for y using either continuation or some other polynomial solution technique [18].

Some of these sample points will lie on the convex hull H, and others will be inside H. The classification method
of section 2.3 can be used to determine which sample points lie on the convex hull. Alternatively, only sample
points with maximal or minimal y-coordinate can be on H, so the Sturm sequence test 1s unnecessary; comparison
against the bitangents £ is still required. Along with the interval boundaries, this yields a representation of the
set B of curve branches on the convex hull. The degree of (6) is d, and so there may be d sample points of C per
interval, but at most two sample points per interval may be on H.

2.4.3 Tracing

To actually render the curve branches, the curve is traced using a classical prediction/correction approach based
on a Taylor expansion of f(z,y) [3, 8, 12]. From a first order expansion of f (higher order expansions could be
used [3]), we have

_ffon)

= Zdx 7
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From a point (z,y) and given a step size da in the x direction, the predicted next point is (z + dz,y + dy).

Note that §f/8y is always non-zero since the interval is guaranteed to be extremum and singularity free by step

one of the curve decomposition algorithm. The correction step simply uses Newton iterations to converge back to
the curve from the predicted point ( + da,y + dy) [18]. For a fixed value of z, steps in y are taken according to

_ [z
=~ 9f/oy (8)

After tracing the curve branches from the sample points, figure 4 shows the convex hull composed of curve
branches B and four bitangent line segments.

2.5 Complexity and Size

We now consider the time complexity of the algorithm and the size of the resulting convex hull representation for
an algebraic curve C of degree d. As mentioned in section 2.1, the computational complexity of solving polynomial
systems by homotopy continuation is unknown, so the following is based on the use of resultant methods. To
compute the bitangent set £, (3) is solved which requires time O(d'%) and yield O(d*) bitangents. To determine
£ requires computing the hull of £ and time O(d*logd). From section 2.3, classifying the O(d*) endpoints in £
against C requires O(d® log? d) operations. Since all bitangent endpoints may be on the hull of C; the size of L is
O(d*), and the time to compute £ is (d'%).

When decomposing the curve C as in section 2.4, there are O(d?) possible extrema and singular points which
are found in O(d®logd) operations. The merged extrema and bitangent endpoints yields O(d*) intervals which
can be sorted in O(d*logd) time. For each interval, the sample points are found by solving a degree d polynomial
requiring a total of O(d” logd) operations. As mentioned in section 2.4.2, at most two samples per interval will
actually be on the hull.

Therefore, the size of the convex hull representation of a degree d algebraic curve is O(d*) while the computation
time is dominated by computing the bitangents which is O(d'®).

3 Implementation and Examples

The algorithm presented here has been implemented mostly in Common Lisp. Given an equation f(z,y), the
appropriate polynomial systems are formed using the REDUCE computer algebra package. To solve these systems,



Figure 4: The convex hull of the curve of Fig. 1.

The algorithm for decomposing the curve C is divided into 4 steps which are illustrated in figure 3.

1. Compute the extremal and singular points of C in the x direction.

2. Take the union of the extremal and singular points from step 1 with the endpoints of the bitangents £, and
sort them by their z-coordinate; the z-coordinate of successive points will delimit an interval.

3. For each interval of the x axis, compute the intersection of the curve with the line of constant x at the interval
midpoint to obtain one sample for each curve branch.

4. For rendering, march numerically from the sample points found in step 3 to the interval bounds found in step
2 by predicting new points through Taylor expansion and correcting them through Newton iterations.

Because of step one, there will be at least one sample on every curve component, and each open interval will not
contain singular or extremal points; thus, the branch can be parameterized by x, and it can be traced by evaluating
the following integral equation from the sample point s = (4, ys) to an interval limit (z+ or —):

y(x) = /;Jr (Zi) d + ;. (4)

We now explain these steps in more detail.

2.4.1 Extremal and Singular Points

The extremal and singular points of C are found by solving the following system of polynomial equations

flz,y) =0
{ﬁf,f(i), y) =0 5)

for (z,y) using homotopy continuation. Note that the curve normal is undefined at singular points, so they are
characterized by (5) and % = 0. The singular points are a subset of the roots found by solving (5). The total

degree of this system and consequently the maximum number of extremal and singular points is d(d — 1).

2.4.2 Sample Points

After merging extremal and singular points with the bitangent endpoints and sorting them by their x-coordinate,
the sample points are given by the intersection of C with the line of constant a (vertical) through the midpoint a
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Figure 3: The decomposition of the curve of Fig. 1. Extremal points are indicated by triangles (there are no
singular points), and the endpoints of the bitangents are marked with squares. The vertical lines indicate the
interval boundaries, and the sample points of each branch are marked with a circle; the large circles lie on the
convex hull while the small ones are within the hull.

e

Since every point on the hullis either on the curve C or on the set of bitangent segments £ (i.e., H C CUL C CUL),
every line through p intersects C U £ in at least one point on each side of p. Since this is true for every line, any
line will do, and so, without loss of generality, we choose the “vertical” line through p = (2o, y0) given by & = ;.
We now detail how to compute the number of intersections of this line first with the set of bitangents £ and then
with the curve C.

Each intersection with £ can be determined in O(logn) time. Briefly, since the segments of £ are an ordered
subset of a convex polygon, £ can be split into ordered upper and lower sequences by finding the two extremal
endpoints in the x direction. Within these sequences, segments define non-overlapping intervals of . So, given a
point p = (x0,y0), the segment in £ (if it exists) that intersects the vertical line = #y can be found by binary
search according to z-coordinate of the endpoints in O(logn) time.

The number of intersections on each side of p of the line # = xy with the curve C could be found by explicitly
computing intersection points (e.g. solving the univariate polynomial f(zo,y) = ¢g(y) = 0 for y). However, since
we are not interested in the actual intersection points, a more efficient method is to simply determine the number
of roots of ¢g(y) = 0 between [—o0, yo] and [y, o] using Sturm sequences as described in section 2.1. Given p,
the time to compute g(y) = 0 from f(x,y) = 0 is O(d?) (see [4]), and the Sturm sequence is then computed and
evaluated in O(dlog” d) where d is the degree of f.

2.4 Decomposing the curve

The next step in the algorithm is to decompose the curve C into a set B of regular curve branches where the curve can
be parameterized by the z-coordinate over some interval of the  axis (i.e. there exists a bijective map « — (, h(x))
though no analytic form for h need exist); in addition, the branches do not contain the endpoints of the bitangents
L except perhaps as an endpoint. This approach is motivated by the cylindrical algebraic decomposition of the
curve [1, 2], and is based on a curve-tracing algorithm [12]. Since there is a bijective transformation between the
branch and the z axis, it will be represented by a sample point s € IR? and an interval (x—, z+) of the z axis.
Additional points on the branch can be found by tracing the curve from s to the interval bounds.
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Figure 2: a. All bitangents £ of the curve in Fig. 1. b. The bitangents £ on the convex hull.

(3)

p1—p2)=0

Vf(p2) (p1—p2)=0
which simply expressed that the endpoints lie on the curve, and the line is perpendicular to the curve normal.
A couple of points should be noted. Segments with one or two singular endpoints are also characterized by (3)
since the gradient will vanish at these points. As well as isolated solutions, the system (3) contains an improper
component given by f(p1) = 0 and p; = p2. An upper bound for the size of £ is d* as given by the total degree
of (3). Figure 2.a shows the curve of figure 1 and the bitangent lines.

The set £ is a superset of those segments that actually lie on the convex hull since the system (3) only
characterizes the local geometry of the endpoints. To determine the set £ of bitangents on the hull, we follow a two
step procedure. First, we note that a necessary (but not sufficient) condition for an endpoint p of a segment [ € £
to be on the convex hull of C, is that p is on the convex hull of £. This is not sufficient because even though p
may be on the hull of £, 1t may be inside C. Thus, the first step is to construct the convex hull of the endpoints of
L and retain those segments with both endpoints being on this hull. This requires O(nlogn) time where n is the
number of segments [17]. The second step is to remove those segments which have an endpoint within the curve
using the method described in section 2.3. Note that when constructing the hull of £, the vertices are ordered to
form a polygon, and this ordering is retained in £. Figure 2.b shows the curve and the set L.

2.3 Point Classification

To determine which bitangents are part of the hull and for subsequent steps, an algorithms is required to classify
a point p = (2o, yo) as being inside, on, or outside of the convex hull. As noted in the introduction, this is an
easy task when the hull is a polygon, but is more difficult for the hull of an algebraic curve. A line divides IR?
into halfspaces according to the sign of the line equation, and so the sign of the equation evaluated a point can
be used for classification. In contrast, an algebraic curve may divide IR? into a number of disjoint regions, and
so the sign is not sufficient for classifying a point as being in a particular region. For example, the curve defined
by f(z,y) = (22 + y? — 1)(2* 4+ y> — 4) = 0 (two concentric circles of radii 1 and 2) decomposes IR? into three
regions; f < 0 corresponds to an open annulus while f > 0 corresponds to two open regions (points within the
circle of radius 1 and points outside of circle of radius 2). Thus, for algebraic curves, the sign of f is not sufficient
for point classification. By the definition of convexity, a point p lies within the convex hull if the intersection of
every line passing through p transversally intersects the hull boundary in one point on each side of p. However,
point classification can be accomplished without actually having a representation of the hull boundary.



3. Decompose C into a set B of closed curve branches. Only the endpoints of each branch may be singular,
extremal in some direction, or an endpoint of a segment in L.

4. Each branch in B will lie entirely on or inside of the hull, so remove those branches that are within the hull
to create a new set B.

The convex hull is given by the union of the sets £ and B. After summarizing some key computations reported
elsewhere, details of the above steps will be presented.

2.1 Preliminaries

Since the curves considered here are algebraic, a few fundamental algorithms for manipulating and solving poly-
nomial equations are employed when computing the convex hull; this includes finding the roots of a system of
polynomial equations and determining the number of real roots of a univariate polynomial within an interval.

Consider a system of n polynomial equations p; in n unknowns z;, denoted by p(x) = 0, with p = (p1, ..., pn)?
and x = (21, ...,2,)T. There are two competing techniques for solving such systems. The Sylvester resultant [23]
or the u-resultant [6] can be used to reduce the system to a univariate equation which is then solved. Because
of numerical 1ssues when computing the resultant, exact arithmetic must be used which renders this approach
impractical. Instead, we use the homotopy continuation method to solve this system [15]. The principle of the
method is as follows. Let q(x) = 0 be another system of polynomial equations with the same total degree as
p(x) = 0, but with known solutions. A homotopy, parameterized by ¢ € [0, 1], can be defined between the two
systems by:

(1 —1)a(x) +tp(x) = 0. (2)

The solutions of the target system are found by tracing a curve (i.e. integrating a differential equation) defined
in IR"*! by these equations from ¢ = 0 to t = 1. The method of actually tracing this and other curves will be
discussed more fully in section 2.4.3. In this case, the initial conditions of the differential equation are the known
solutions of q(x) = 0 at ¢t = 0. Tt can be shown [15] that for almost any choice of q, the curve has no extrema,
bifurcations, or singularities. An example of q = (¢1, ..., ¢n) is given by ¢;(x) = xfeg(p’) — r; where deg(p;) is the
degree of equation p;, and r; is a random complex number. Note that this algorithm returns both the real and
complex roots of p, though only the real ones are relevant here.

According to Bezout’s theorem, the maximum number of (real) isolated roots is given by the total degree of p
(i.e. T?_,deg(p;)), even in the presence of the solutions of excess dimension [16]. Unfortunately, we are unaware of
any time complexity results concerning this approach, and will use the time complexity analysis for the resultant-
based technique. As shown in [4] using the RAM model of computation with arithmetic operations requiring unit
time cost, the time to solve a univariate polynomial of degree d is O(d®log d) [20], the time to solve two polynomial
equations of degree d is O(d®logd), and the time to solve four polynomial equations of degree d is O(d'®).

The other fundamental algorithm of interest is determining the number of real roots of a univariate polynomial
flz) = Zf:() c;x' of degree d within an interval € (a,b). While the number of roots could certainly be determined
by solving f and then counting the roots in (a,b), a much faster method is to use a Sturm sequence [14]. Following
the discussion in [20], the Sturm sequence of f is a sequence of polynomials {f;},7 = 0..d which can be recursively
constructed starting from fo = f and fi = f'; f; is the remainder of dividing —f;_s by f;_1. Since the degree of
fi 18 less than the degree of f;_1 by construction, this sequence terminates with a constant. The number of roots
of f within the interval (a,b) is then given by S(a) — S(b) where S(z) is the number of sign changes in the Sturm
sequence evaluated at x. Schwartz and Sharir present a method using a fast GCD procedure for determining and
evaluating the Sturm sequence in O(dlog? d) time where d is the degree of the polynomial.

2.2 Computing Bitangents

The first step in the algorithm is computing the set of line segments £ on the convex hull whose endpoints p1, p-
are tangent to C or are singular points of C; with abuse, we will sometimes refer to this set as the bitangents of
C. The normal to the curve at a point p is given by V f(p), the gradient of f. p is singular (e.g. the tangent is
undefined) if Vf(p) = 0. Thus, the set of bitangent lines can be characterized by the system of equations



Figure 1: An algebraic curve with four components given by: f(x,y) = 4y* + 1722¢y? — 20¢y? + 42* — 2022 + 17.

Assuming that the zero set of f is neither a single point nor empty, then the bounding curve of the convex hull
will be composed of a subset of C and a finite set of line segments whose endpoints are coincident with points on
C. In particular, each endpoint of these segments will either be tangent to C or a singular point of C.

When computing the convex hull of a curved object, an interesting issue arises as to what form the output
representation should take to ensure its usefulness for geometric calculations. In the case of point sets, the convex
hull is a convex polygon which is readily represented by an ordered set of vertices. This representation is useful
for many geometric tasks. For example, the boundary of the hull can be easily rendered by drawing the segments
between successive points, and classifying a point p = («,y) as being inside, on, or outside the hull is readily
accomplished by considering the signs of the line equations defined by two successive points. In contrast, even
rendering an algebraic curve is non-trivial because of the lack of a parametric form [3, 12, 22]; since the convex
hull includes portions of the original curve, rendering these subsets is no easier. How to represent a subset of the
curve is not obvious; for parametric curves, an interval of the domain can be easily used (see [9] for issues related to
implicit curves). In this paper, a subset of an algebraic curve will be represented by a sample point s € IR? on the
curve, and an oriented interval of the x axis; for rendering, points on the subset of C can be determined by tracing
the curve from s to the interval bounds. This will be discussed more fully in section 2.4.3. Similarly, classifying a
point p is also more difficult since the sign of f(p) does not indicate if p is inside the curve (this will be considered
more fully in section 2.3).

The rest of the paper 1s organized as follows: In section 2, an algorithm for constructing the hull is presented
in detail including a sub-algorithm for point classification. The algorithm has been implemented, and this imple-
mentation and a few examples are presented in section 3. Finally, other issues and future directions are discussed
in section 4.

2 Algorithm

The convex hull algorithm takes as input a curve C defined by an implicit algebraic equation in the form of (1).
The output is a sequence whose elements are either straight line segments or subsets of C represented by a sample
point and an interval of the x-axis. Figure 1 shows an algebraic curve with four components that we will consider
throughout this discussion.

The algorithm is composed of the following steps:

1. Compute the set £ of all line segments whose endpoints either are tangent to C or are singular points of C.

2. Remove from £ those segments that do not lie on the convex hull, yielding a set £.
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Abstract

A new algorithm based on curve tracing and decomposition techniques is presented for computing
the convex hull of an algebraic curve defined implicitly by f(z,y) = 0; the curve may have multiple
components as well as singular points. The output is an ordered collection of line segments and sec-
tions of the curve represented by a sample point and interval bounds; this representation is suitable
for rendering the convex hull by classical curve tracing techniques. Additionally, we present a point
classification function for the convex hull based on Sturm sequences. Progress toward extending these
results to algebraic surfaces is briefly discussed.

1 Introduction

A classical problem in computational geometry is computing the convex hull of a set of points P in IR"™. Typically,
n =2,3, and P is a collection of isolated points, line segments, curves or surfaces. The convex hull H is defined as
the minimal convex set that includes all of P, P C 'H C IR”. In most work on this problem, P is a point set, and
the hull H is a polytope which is readily represented as the intersection of a set of halfspaces. It has been shown
that the convex hull of an arbitrary set of points in IR? can be computed in O(nlogn) time [17].

Recently, there has been growing interest in the use of implicit algebraic curves and surfaces in geometric mod-
elling and computer vision, however the host of computational algorithms developed for polygons and polyhedra is
unavailable for these curve and surface representations. In particular, a number of researchers have been interested
in extending convex hull construction algorithms beyond point sets, and have addressed the problem of computing
the convex hull of curves in IR? and surfaces in IR?. Schiffer and Van Wyk[19] consider piecewise smooth Jordan
curves where each curve is represented parametrically. Similarly, Dobkin and Souvaine [7] have considered spline-
gons. More recently, Bajaj and Kim [4] have presented an algorithm for computing the convex hull of collections
of algebraic curve segments defining a Jordan curve. Boissonnat et al. [5] have considered computing the convex
hull of a set of n-spheres in IR™.

In this paper, we consider the problem of computing the convex hull of an algebraic curve C in IR? defined as
the zero set of an irreducible bivariate polynomial f of degree d:

d

fle,y) = Z cijxiyj. (1)

i4j=0

Note that algebraic curves defined implicitly are more general than those defined parametrically (e.g. B-
splines, NURBS, etc.) since every rational parametric curve has an implicit representation but the converse is
not so [13, 21]. Also, implicit curves may include singular points (e.g. crossings, cusps, isolated points), may be
composed of multiple components (e.g. an annulus), and may be unbounded (e.g. a hyperboloid). In this paper,
we will assume that the curve is bounded (the hull of an unbounded curve such as a hyperboloid may be all of IR?),
but multiple components and singular points are permitted.



