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Abstract. We present a general approach and analytical method for
determining a search region for use in guided matching under projective
mappings. Our approach is based on the propagation of covariance through
a first-order approximation of the error model to define the boundary of
the search region for a specified probability and we provide an analytical
expression for the Jacobian matrix used in the covariance propagation
calculation. The resulting closed-form expression is easy to implement
and generalizes to n dimensions. We apply our method to point-to-point
mapping under a planar homography, point-to-line mapping under a
fundamental matrix, and mosaic construction from video in the case of
the video looping back on itself.

1 Introduction

In this work we address the problem of determining a search region used for
establishing feature correspondences over multiple views given an estimate of the
projective mapping that relates these views. Corresponding features are defined
as the set of features that are the images of the same pre-image feature. Consider
two different cameras imaging a scene. A 3D point in the scene is imaged as a
2D point in the image plane of each of the cameras. The image point in one of
the cameras corresponds to the image point in the other camera and both image
points correspond to the pre-image 3D scene point. Several projective models
(e.g., the fundamental matrix) have been developed in computer vision that allow
features to be mapped between views without explicit knowledge of the 3D scene
structure. However, in the presence of noise or uncertainty, the mapped feature
may not be coincident with the true corresponding feature and a search must
be performed to locate the true correspondence. In the absence of uncertainty
information, the true correspondence may be located anywhere in the image,
assuming the pre-image feature was imaged by the camera.

Guided matching methods are often used to reduce the size of the search region
from the entire image to a region expected to contain the corresponding feature.
One simple guided matching method is to specify a search region bounded at a
fixed distance from the mapped feature. Although easy to implement, this simple
method generally yields either an undersized region, which may not include
the true correspondence, or an oversized region, which may include features
that are similar to the true correspondence, increasing the potential of a false
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match. Our approach uses covariance propagation to define the search region
for projective mappings. The search region is bounded by a specified probability
that the region contains the feature. This approach can be used, for example,
to propagate the spatial covariance of a homogeneous point through a planar
projective (homography) or epipolar (fundamental matrix) transformation, where
the transformation may additionally have an associated covariance. We present
an expression that allows for the determination of the covariance of the mapping
of the point as a function of the above covariances.

Several approaches to propagating uncertainty in structure from motion
have been proposed appealing to different statistical techniques. One approach
is to use Monte Carlo methods, which is highly general but computationally
expensive. Alternatively, analytical frameworks have been developed by Kanatani
(1], Forstuer [2], and others (e.g., [3], [4]). However, when these mappings are well
approximated locally by an affine transform, a first-order model has proved to be
sufficient [5]. This linearized approximation of the error model is commonly used
in computer vision and is the approach adopted in this paper. Central to this
approach to uncertainty propagation is the Jacobian matrix of the mapping. One
method for estimating the Jacobian is to perform numerical differentiation using
forward differencing, which in practice may yield a Jacobian matrix of unexpected
rank due to numerical inaccuracies. Alternatively, one can derive specialized
analytical expressions on a per-mapping basis, e.g., planar homography [6] and
fundamental matrix [7], [8]. We derive a novel analytical expression for the
Jacobian applicable to all projective mappings, obviating the need for specialized
expressions. The resulting closed-form expression is general and easy to implement.
The same expression can be generalized to n dimensions and can also be applied
to other projective mappings such as composition of homographies.

This paper is structured as follows. We describe covariance propagation for
projective mappings under the linearized error model in Section 2. In Section 3,
we discuss guided matching in terms of uncertainty bounds with particular detail
given to 2D points and lines. Experimental results for point-to-point mapping
under a planar homography and point-to-line mapping under a fundamental
matrix are given in Section 4. In Section 5, we apply our approach to mosaic
construction from video in the case when the image sequence loops back on itself.
Finally, we give our conclusions in Section 6.

Notation In this paper, if a capital letter is used to denote a matrix, then the
vector denoted by the corresponding lower case letter is composed of the entries
of the matrix by

T

ay a
y a;— ag
AcR"™ &A=  |,a= . e R™"®
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a,, an,

where a] € R" is the ith row of A (i.e., a = vec(AT)).
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2 Nonlinear Propagation of Covariance

Let x € R™ be a random vector with mean pyx and covariance matrix IZx, and
let f: R™ — R™ be a nonlinear function. Up to first-order approximation,
v = f(x) = f(pux) + I(x — px), where J € R™*" is the Jacobian matrix df/0x
evaluated at py. If f is approximately affine in the region about the mean of
the distribution, then this approximation is reasonable and the random vector
y € R™ has mean py ~ f(px) and covariance Ty & JE,J .

If x is composed of two random vectors a and b such that x = (a”,b") T,
then

Ta Zab| [J)
5y = 1 30] [0 5] [J2] m

where J, = dy/0a and J, = dy/0b.

2.1 Projective Mappings

Consider a homogeneous 2D point x represented by the vector (z,y,w)" € R3.
The vector s(z,y,w) ", where s is any nonzero scalar, represents the same 2D
point as (x,y,w)". It follows that (z,y,w)" ~ s(z,y,w), where ~ denotes
equality up to a nonzero scale factor.

Due to the use of homogeneous representations, several projective map-
pings are only determined up to scale [9]. Examples include point imaging
x ~ PX, where P € R3*4 is the projective camera that maps the homogeneous 3D
point X to a homogeneous 2D point x; projective transformation accumulation
Hy.e ~ Hp Hgp, where H, o, Hy o, Hyp, € ROFTDX(HD) are p_dimensional projective
transformations and H, . represents the transformation from a to ¢; and point-to-
line mapping £ ~ Fx, where F € R3*3 is the fundamental matrix, which maps a
homogeneous 2D point x in one image to a homogeneous 2D line £ in another
image. All of these mappings can be generalized as C ~ AB, where C € R"*",
A € R™*P and B € RP*". However, because C is only determined up to scale,
the entries of C may vary without bound. This poses an issue for covariance
propagation and uncertainty analysis. It is usual to impose the constraint that
Ilc|l = 1, where ||-|| denotes the Frobenius norm. Under this constraint, the
generalized mapping is C = (AB)/||AB|| and the variance of the entries of C are
constrained accordingly.

2.2 Jacobian Matrices

For the expression
_AB
|[AB||



4 B. Ochoa and S. Belongie

where A € R™*P B € RP*™ and C € R™*", the matrices dc/da and dc/db may
be computed analytically as

_ 0Oc 1

a = 5o = gy (Lo ©B7) —evec(zc™)] @
=28 L (00500 ol ®

where ® denotes the Kronecker product. The derivations of dc/da and dc/0b
are given in the appendix. Applying (1), these are the Jacobian matrices used to
approximate the covariance Z.

3 Guided Matching

3.1 Search Region

If a Gaussian random vector x has mean g, and covariance Ly, then the squared
Mahalanobis distance between x and py satisfies a x? distribution where 7 is the
degrees of freedom of x. It follows that a percentage a of all instances of x will
satisfy the condition

(x — HX)TZI(X — px) < k? (4)

where k? is the inverse of the chi-square cumulative distribution function with
r degrees of freedom and probability «, and I} is the pseudo-inverse of the
covariance matrix £y with rank r.

3.2 2D Points and Lines

A derivation of the uncertainty bounds for homogeneous 2D lines may be found
in [7], [8], and [5]. In this section we derive uncertainty bounds for 2D points and
state the bounds for 2D lines using the duality principle.

Let px and Iy be the mean and covariance, respectively, of a homogeneous
2D point x. The covariance matrix has rank 2, thereby constraining the 3-vector
to 2 degrees of freedom. For a given k, we can determine if an instance of x is
within the some bounds directly from (4). However, it is often the case that we
want to determine if an arbitrary homogeneous point, not necessarily drawn from
the distribution of x, is within these bounds. This cannot be accomplished using
(4) directly and instead must be determined geometrically as follows.

For a given k, the set of points with equal likelihood in the distribution of x
is given by

(x = ) "I (x — i) = K ()

For further analysis, we apply a change of coordinates such that

i/
T =ULU’ = {0% g}
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where & € R?*? is a nonblngular diagonal matrix, and gl = Upy = (@], 1) 7
and x’ = Ux = (X'7,1)". The similarity U= sV', where the orthogonal matrix
VT is obtained from the eigen decomposition £, = VDV and s is chosen such that
the last entry in the 3-vector sV' p is equal to 1. The matrix D = diag(\;, A2, 0)
contains the eigenvalues of £x. Using this, we can show

(x— NX)T2+(X — Hx) = k?
(x" = pl) "I (% — ) = K (6)
(X — i) BN (X - ) = K

which can be written more fully as

~/T/1/ ~/T/1/ /1~/ ~/T/1~/ 2 _
X Z I"l‘x X Nx+“x ”x k _0

or in matrix form

o[ B EE (R
&1 [ﬁfi;l e, w2l (1) =

This is equivalent to

SIT iu'xiu’x in;{ l]’;( - 5(
&) [ iy 1 1
Tl - R =
which is the equation of a conic. The conic C' = [u;ug — k22! ]t is formed
by the points that satisfy (6). Transforming back to the original coordinate

system, C = UTC'U, the set of equal-likelihood points that satisfy (5) form the

homogeneous conic
1

C = [pxpty — K Zy] (7)
representing an ellipse containing ptx. An arbitrary point xq is on the interior of
the ellipse if x] Cx( has the same sign as p, Cpiy.

Using the duality between points and lines, and conics and dual conics, the
same approach is employed for homogeneous 2D lines. The set of equal-likelihood
lines in the distribution of a random homogeneous line £ with mean pp and
covariance I, satisfies

(€ — o) 25 (€ — o) = K
for a given k. The set of lines form the homogeneous dual conic C* = [ugu;fr — kQZg]

which is the the adjoint of the matrix C. For a non-singular symmetric matrix
C ~ (C*)7L, therefore the conic that forms the envelope of lines is given by

C= pepy — kL (8)
This conic is a hyperbola with branches symmetric about pe. An arbitrary point
Xo lies inside the region between the two branches of the hyperbola if x(—)r Cxg
has the same sign as XZCX@, where xg is any point that lies on the line pg. Two
points x; and x5 on the line pgy may be determined by p,z [xl xz] = 0, where
the matrix [xl XQ] is the null space of [,LZ. One of these points can be used to
determine the sign of x, Cxg.

-1

)
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3.3 Points and Hyperplanes in n Dimensions

Generalizing the above results from 2 to n dimensions is straightforward. A
homogeneous n-dimensional point X € R with mean px and covariance Ix
of rank n is bounded by the homogeneous n-dimensional quadric

Q= [pxpk —k5x]

representing an ellipsoid in n dimensions containing px. By duality, a homoge-
neous hyperplane 7 is bounded by the dual quadric Q* = [uﬂul — kziﬂ] ~of
the same dimension as the hyperplane, where p and £, are the mean and covari-
ance, respectively, of the hyperplane. The hyperboloid bounding the uncertainty

of the hyperplane is given by the quadric
Q= “ﬂl’l‘;rr - kQZﬂ'

which is symmetric about the hyperplane.

4 Two-View Geometry

In this section we apply our method to point-to-point mapping under a pla-
nar homography and point-to-line mapping under a fundamental matrix. The
maximum likelihood estimate and its covariance is determined from image point
correspondences by 2D block adjustment [10] and two-view bundle adjustment
[11] for the planar homography and fundamental matrix, respectively. First,
points are detected in each of the images using the Forstner operator [12]. For
each point in image 1, its initial corresponding point is established by searching
for the point in image 2 that has the highest local normalized cross-correlation
value. The resulting set of initial point correspondences are used as input to
RANSAC [13], which provides both a linear estimate of the model and its set of
inlier point correspondences. Lastly, the reprojection error is minimized using a
sparse implementation of the Levenberg-Marquardt algorithm [14]. We retrieve
the covariance matrix of the parameters after minimization.

For analysis, we select a point x in image 1 that did not participate in block
adjustment. The point x = (x",1)T has covariance

T O
=% o)

where the inhomogeneous coordinate X = (#,7) " has assumed covariance I, =

Ioxo.
Figure 1 shows the results of point-to-point mapping under the estimated
planar homography. The mapped point is computed by

, Hx
X = —
[
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Fig. 1. Point-to-point mapping under a planar homography. (a) (b) The left and
right images acquired from a camera undergoing pure rotation about its center with
corresponding points used in 2D block adjustment (in black). There are 97 point
correspondences. Two additional points have been selected in the left image (in white)
and mapped to the right image (in white). The uncertainty ellipses associated with the
mapped points are contained in the right image (in black). The ellipses correspond to a
probability of 99%. (c) The left image zoomed in on the first selected point. (d) The right
image zoomed in on the corresponding first mapped point. (e) The left image zoomed
in on the second selected point. (f) The right image zoomed in on the corresponding
second mapped point. Note that the eccentricity of the ellipse associated with the first
point is slightly greater than that of the ellipse associated with the second point. This
is because the second point is surrounded by points used in block adjustment, while
the first point is not.

From (1), the covariance of X’ is Iy ~ JhIZnJy + JxZxJ,, where Jy, and Jy are
computed from (2) and (3), respectively, and the associated uncertainty ellipse is
computed from (7). Points that did participate in block adjustment are correlated
to the estimated homography. If one of these points were selected, then the
cross-covariance Ipx would be nonzero and the covariance of x’ calculated as

N Th Inx| [Jh
s i ] [

Similarly, results for point-to-line mapping under a fundamental matrix are
shown in Figure 2. The line £ corresponding to the point x is computed by

Fx

£ =—
[[Fx]|
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f

Fig. 2. Point-to-line mapping under a fundamental matrix. (a) (b) The left and right
images with corresponding points used in bundle adjustment (in black). There are
101 point correspondences. Two additional points have been selected in the left image
(in white) and mapped to lines in the right image (in dashed black). The uncertainty
hyperbolas associated with the mapped lines are contained in the right image (in black).
The hyperbolas correspond to a probability of 99%. (c) The left image zoomed in on the
first selected point. (d) The right image zoomed in on the corresponding first mapped
line. (e) The left image zoomed in on the second selected point. (f) The right image
zoomed in on the corresponding second mapped line. Note that the mapped lines miss
the corresponding points, but that the corresponding points are within the uncertainty
bounds.

The covariance of £ is £ ~ JfoJtT + JXZXJ,—(r with associated uncertainty
hyperbola given by (8).

5 Mosaic Construction from Video

This section describes use of our approach in the application of video mosaicing.
More specifically, we apply our approach to the special case of the video looping
back on itself, i.e., the sensor returns to image a region of the scene that it imaged
at a previous time. We seek to determine the search region in the previously
acquired frames that spatially overlap with the looped back frames but are
not temporal neighbors with these frames. Mosaic construction from video is
performed in a sequential manner as follows.

For each video frame, features are detected using the method described
n [15]. This method detects windows of bidirectional texturedness, which are
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good features to track in video. Nonmaxima suppression is applied to detected
features to limit their number. A pyramidal implementation of Lucas-Kanade [16]
determines the translation of each feature from the current frame to the previous
one. Just as in Section 4, RANSAC is applied to the inter-frame correspondences,
and the reprojection error is minimized using a sparse implementation of the
Levenberg-Marquardt algorithm and the covariance matrix is retrieved. The
homographies are accumulated such that the current frame n is mapped back to
frame 1 of the video by

H _ Hn—l,lHn,n—l _ AB
1= =
" ||Hn71,1Hn,n71H HAB”

and the covariance of H,, ; is approximately JaZaJZ + JbeJE.

As the homographies between successive frames H, ,—; are accumulated, so
are their uncertainties. It is expected that the uncertainty of H,, ; will increase
with n, i.e., looped back frames will not align with previous frames containing
images of the same region of the scene and this misalignment will increase as
the time between these frames increase. Figure 3 illustrates the results of this
approach.

6 Conclusions

In this paper we have presented an analytical method based on covariance
propagation for determining the search region in guided matching. Our primary
contribution is a general approach and accompanying analytical expression for
the Jacobian matrix used in this approach. Not only does this obviate the need
for specialized expressions, it can also be applied to other projective mappings,
such as composition of homographies. We have shown that the uncertainty of
homogeneous 2D points and lines are bounded by a conic and generalized this to
homogeneous points and hyperplanes in n dimensions. Finally, we have applied
this general approach to point-to-point mapping under a planar homography,
point-to-line mapping under a fundamental matrix, and mosaic construction from
video in the case of the video looping back on itself. This general approach can
be used in other practical applications such as camera pose estimation over time
and scene reconstruction from video.
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Fig. 3. Mosaic construction from video. (a) A planar mosaic sequentially constructed
from a video containing 706 frames acquired from a camera undergoing pure rotation
about its center. The video begins at the upper left corner of the face of the building and
moves clockwise around the border of the face returning to the upper left corner. Note
that the last frame is not aligned with the first frame due to uncertainty accumulation.
(b) (c¢) The last and first frames (images) of the video. Three points (in red, yellow,
and green) have been selected in the last image and mapped to the first image. The
uncertainty ellipses associated with the mapped points are contained in the first image
(also in red, yellow, and green). The ellipses correspond to probabilities of 50% and
99% for each mapped point. In this case, the corresponding points in the first image
are contained in the ellipses corresponding to a probability of 50%.
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Appendix

Assume A € R™*P B € RP*™ and C € R™*". For the equation

AB M
C = —
[[AB[| - {J]]
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where [-|| denotes the Frobenius norm, we seek the partial derivatives of the
entries of C with respect to the entries of both A and B [17]. For clarity, the matrix
product AB is denoted by M, which allows for vec((AB)T) to be represented by m.
The partial derivative of ¢ with respect to a is computed as

dc
da

FD

m| ag_ d)|m|
nm||2 M oa

or equivalently

- Oa Oa

Jc 1 {am C8||m|}
da  |lml|

Similarly,

Oc 1 8m C6'||m|\
ob [lm]| ob

The partial derivative of m with respect to both a and b is given by

om o oBTand PP —ae1
a = lmxm an b = nxn

where ® denotes the Kronecker product. The partial derivative of [|M|| with
respect to both A and B is

oMl Ty 8||MH T
“on B amd g =AC

It follows that

Al 0 ama 20 Ty

Substituting into (9) and (10) yields

dc
da  |aB|
dc
ob  [|aB[|

[(Tnxm ® BT) - cvec(BCT)T]

[(A ® Inxn) — cvec(CTA)T]



