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Abstract. This article addresses the problem of recognizing a solid bounded by a smooth surface in a
single image. The proposed approach is based on a new representation for two- and three-dimensional
shapes, called their signature, that exploits the close relationship between the dual of a surface and
the dual of its silhouette in weak-perspective images. Objects are modeled by rotating them in front of
a camera without any knowledge of or constraints on their motion. The signatures of their silhouettes
are concatenated into a single object signature. To recognize an object from novel viewpoint other
than those used during modeling, the signature of the contours extracted from a test photograph is
matched to the signatures of all modeled objects signatures. This approach has been implemented,
and recognition examples are presented.
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1. Introduction

Most approaches to model-based object recognition are based on establishing corre-
spondences between viewpoint-independent image features and geometric features of
object models (Huttenlocher and Ullman, 1987; Lowe, 1987). For objects with smooth
surfaces, few surface markings and little texture, the most reliable image feature is
the object’s silhouette, i.e., the projection into the image of the curve, called the
occluding contour, where the cone formed by the optical rays grazes the surface.
The dependence of the occluding contour on viewpoint makes the construction of
appropriate feature correspondences difficult. Appearance-based methods do not rely
on such correspondences, and they are suitable for recognizing objects bounded by

smooth surfaces, but they generally require a dense sampling of the pose/illumination
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space to be effective (Murase and Nayar, 1995). Methods for relating image features
to 3D geometric models of curved surfaces have been developed for surfaces of revolu-
tion (Kriegman and Ponce, 1990b; Glachet et al., 1991), generalized cylinders (Ponce
and Chelberg, 1987; Richetin et al., 1991; Liu et al., 1993; Zeroug and Medioni, 1995),
algebraic surfaces (Kriegman and Ponce, 1990a; Ponce et al., 1992), and triangular
splines (Sullivan and Ponce, 1998). These approaches require separate processes for
the construction of 3D models either from image data or using CAD tools, and for the
extraction/segmentation of the image contours associated with each object.

An alternative is to replace a parametric description of the object surface by an
empirical representation of contour features constructed from sampled image data.
We proposed in (Joshi et al., 1997; Vijayakumar et al., 1998) two variants of this
approach where contour bitangents and inflections are recorded in an image sequence
and serve as the basis for object recognition: In (Joshi et al., 1997), the trajectory of
the camera is assumed to be known, and it is used to explicitly reconstruct the surface
curves giving rise to bitangents and inflections during modeling. In turn, these curves
are used to predict the appearance of image features observed at recognition time. In
(Vijayakumar et al., 1998) on the other hand, the contour tangents parallel to each
bitangent and inflection serve as image features, and the successive distances between
these parallel lines are used as the basis for classification. The features recorded during
a modeling session trace a curve in the feature space that is independent of the camera
trajectory. At recognition time, the bitangents, inflections, and the corresponding par-
allel tangents present in the test image are matched to the closest model curve in the
feature space. Here we propose to replace the sparse set of silhouette features used in
that method with a much denser set offering greater discriminatory power. Our work
builds on geometric insights about the occluding contour and silhouettes of smooth
surfaces (Koenderink, 1984; Giblin and Weiss, 1995) and their use in determining
geometric structure from sequences of images (Arbogast and Mohr, 1991; Cipolla and
Blake, 1992; Vaillant and Faugeras, 1992; Boyer and Berger, 1997; Cipolla et al., 1995).
See (Cipolla and Giblin, 2000) for an overview of this line of research.

The basic processing steps for each image include detecting the silhouette curve

I, computing its pedal curve (a representation of its dual) I, and constructing its
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signature I, a family of curves embedded in R?, where d > 2 depends on the geometric
complexity of the observed object. The signature only depends on the projection direc-
tion and is unaffected by changes in the other viewing parameters. When a solid with
a smooth surface ¥ is observed by a moving camera, the signatures of the successive
silhouettes sweep a family " of two-dimensional surface patches in R¢, also called
the signature of . This surface is independent of the viewing conditions, and can
thus be constructed without any knowledge of the camera motion; each object in
the database is then represented by a different signature. At recognition time, the
signature of the silhouette found in the test image is matched with the signatures
of all modeled surfaces, and the closest model is recognized. The hierarchy of curve
and surface representations used in this paper is illustrated below. Its components are

introduced in the next sections.

Surface ¥ in E3 —  Pedal Surface ¥/ in E> —  Signature " in R?

| projects onto 1 is a planar section of T lies on

Silhouette I in B2 — Pedal Curve IV in E2  —  Signature I' in R¢

A preliminary version of this paper appeared in (Renaudie et al., 2000).

2. Duals and Pedal Curves and Surfaces

Let us consider a smooth C? closed curve I' in E2. We define the dual D of T" as the
set of its tangent lines. The dual also forms a closed curve in the projective plane
formed by all lines of E2. It will prove convenient to represent the dual by yet another
planar curve, the pedal curve introduced by Maclaurin in 1718 (Bruce and Giblin,
1992; Maclaurin, 1718; Lockwood, 1967). Like the original curve I, the pedal curve I
“lives” in E?, but unlike the dual, its definition depends on the choice of some origin
O in the plane. Figure 1 illustrates its construction: We associate with each point P
on I" the orthogonal projection P’ of O onto the tangent line T in P; the pedal curve
is the curve I traced by P’ as P varies along I'. If N denotes the unit normal to I in

P, the corresponding point P’ on the pedal curve can also be defined by

OP' = (OP - N)N. (1)



Figure 1. Construction of the pedal curve.

The pedal curve can be thought of as the image of the dual in E?, that associates
with each tangent line T to ' the orthogonal projection P’ of O onto this line. The
mapping from the dual curve to pedal curve is not injective in general: Indeed, any
tangent passing through the origin O maps onto this point. Although there is no such
tangent for the curve and origin shown in Figure 1, tangents passing through the
origin are guaranteed to exist when the origin lies outside the curve, and may exist
even when this is not the case (see Figure 6 for an example). To simplify the discussion,
we will assume in most of this paper that the pedal curve does not pass through the
origin, and identify it with the dual. We will come back to the general case during the
presentation of our implementation.

As shown for example in (Bruce and Giblin, 1992)[pp. 166], the pedal curve I

associated with I' has the following properties:
(A) It is smooth at all points whose preimages on I are not inflections.

(B) The inflections of I' (the points B and C in Figure 1) map onto cusps of I (B’

and C’ in this case).

(C) The lines bitangent to I" (like the line L that passes through the points A and D
in Figure 1) map onto double points of I (the point A’ = D’ in this case).

(D) The points of I" whose tangents are parallel to each other map onto the intersec-
tions of the pedal curve with a line through the origin whose direction is orthogonal

to the common tangent direction (consider for example the two points G and H
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and their images G’ and H' in Figure 2). Conversely, the intersection points of

IV with a line passing through the origin are the images of points with parallel

tangents on I'.

Figure 2. The intersections between various lines passing through the origin and the pedal curve are
the images of point sets with parallel tangents. The number of intersections is normally even (e.g.,
two intersections for the line joining G’ and H') but is odd at cusps and double points, corresponding
to inflections and bitangents of the original curve. Lines intersecting I’ in four points are not shown
here to avoid clutter.

Property (D) will in fact be the basis for the approach to object modeling and
recognition presented in this paper. In general, a line passing through the origin will
intersect the pedal curve in an even number of points: For example, the line passing
through G’ and H' in Figure 2 only intersects I at these two points; lines passing
through the counterclockwise angular sector defined by OB and Ojl, on the other
hand, will intersect IV four times. For a rotating line passing through O, the number
of intersection points can only change at cusps and double points,’ where the number
of intersections is (exceptionally) odd: For example the line passing through O and
B’ also intersects I in I’ and F’, and the line passing through O and A’ = D’ also
intersects I in E’ and J'.

As noted earlier, the pedal curve associated with a planar curve depends on the
choice of origin. However, Properties (A) to (D) are independent of this choice, and
they will be used in Section 4.1 to map the pedal curve onto another curve which is
invariant under rigid transformations of the plane.

"1 In principle, it may also change at points where the rotating line is tangent to the pedal curve,

but these points are easily shown to correspond to cusps of the second kind of the curve I', which do
not exist in the case of silhouettes of generic smooth surfaces (Koenderink, 1984).



The definitions of the dual and pedal curves generalize naturally to three dimen-
sions (Bruce and Giblin, 1992): Consider a smooth C? surface ¥ in E?; the dual of ¥ is
defined as the set of its tangent planes, and it forms a two-dimensional surface in the
three-dimensional space of all planes. To represent the dual in a convenient manner,
we choose an origin O in E? and associate with every point P on ¥ the orthogonal
projection P’ of O onto its tangent plane. The surface swept by P’ as P varies over ¥
is the pedal surface ¥’ associated with this surface. As in the two-dimensional case, the
pedal surface is an image of the dual in E3 that depends on the choice of origin. And
like pedal curves, the pedal surface may contain singularities, including swallowtails

and cuspidal edges corresponding to parabolic lines of ¥ (Bruce and Giblin, 1992).

3. Occluding Contours and their Projections

The brightness discontinuities in the image of an untextured solid bounded by a smooth
surface form a curve, called the image contour, silhouette or outline. Under perspective
projection, this curve is the intersection of the image plane with a viewing cone whose
apex coincides with the center of projection and whose generators graze the object
along a second (generically nonplanar) curve, called the occluding contour or rim, and
the tangent plane at an occluding contour point projects onto the tangent line at the
corresponding silhouette point (Figure 3.a).2 Under orthographic projection, the center
of projection is at infinity, the viewing cone becomes a cylinder whose generators are
parallel to the (fixed) viewing direction, and the normal to the image contour is the
same as the surface normal at the corresponding occluding contour point (Figure 3.b).

Under orthographic projection, the imaging process is simply modeled as an or-
thogonal projection onto the image plane. This is a reasonable approximation of
perspective projection for distant objects lying at a roughly constant distance from

the cameras observing them. The weak-perspective (or scaled-orthography) projection

2 In general, the silhouette is a curve whose only singularities are cusps and crossings (T-junctions).
In this paper, we will mostly ignore these singularities so the discussion from Section 2 applies to the
dual and pedal curves of silhouettes. It should be noted that the results obtained in that section can be
extended to cusps and crossings since they have well-defined normal(s). The image of a cusp is simply
an inflection of the pedal curve while a crossing maps to two points on the pedal curve corresponding
to the two normals at the crossing.
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Figure 8. Occluding boundaries under (a) perspective and (b) orthographic projection.

model generalizes the orthographic one to allow for variations in the depth of an
object relative to the camera observing it. The projection geometry is the same as
in the orthographic case, and the silhouette and occluding contour have the same
properties, but the distance between any pair of image points is a constant multiple
(or magnification) of the distance obtained under orthographic projection. We will
assume either orthographic or weak-perspective projection in the rest of this paper.
Most real objects are opaque of course, but we will assume in most of the rest of this
paper that all objects are translucent. This is just to simplify the upcoming discussion,
since in this case a necessary and sufficient condition for a point to project onto the
silhouette is that the viewing direction belongs to its tangent plane. The approach
proposed in this paper is not limited in any sense to transparent objects, and we will

come back to the case of opaque objects when we discuss our implementation.

4. The Signatures of Curves and Surfaces

We begin by clarifying the relation between pedal surfaces and the pedal curves of
image silhouettes. Since these curves and surfaces depend on a choice of origin, we

then introduce a novel representation for these objects, called their signatures, that
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can be used to relate the geometry of a surface and its projections but is independent
of any choice of origin.

Let us consider a regular surface ¥, an origin O, and the corresponding pedal
surface /. Given some viewing direction ¥, we denote by II; the plane perpendicular
to ¥ passing through O and define I" as the silhouette of ¥ formed under orthographic
projection onto some image plane parallel to ITz. Let o denote the image of O, and T
denote the pedal curve of I" defined using o as the origin of the plane II;. We have the

following result.

LEMMA 1. Under orthographic (resp. weak-perspective) projection, the pedal curve
IV can be mapped onto the intersection of the pedal surface X' with the plane Iy via a

translation (resp. a translation followed by a scaling).

Proof. Consider a point @ in ¥ NIz Since @ belongs to ¥/, there exists (at least)
one point P on the surface ¥ such that OQ = [W . NZ(P)]NZ(P) Since () also belongs
to Iz, @ is orthogonal to ¥ and, assuming as usual that the pedal surface does not
pass through the origin, NZ(P) must also be orthogonal to #. In other words, the point
P belongs to the occluding contour associated with the projection direction .

Now, let 0 and p denote respectively the orthographic projections of the points O
and P onto some image plane parallel to IIz. We pick o as the origin for that plane
and denote respectively by I' and I the silhouette of ¥ and the corresponding pedal
curve. The surface X at P and the silhouette I' at p have the same normal, and it

follows that p maps onto the point ¢ of I defined by
5 = [ N(P)|N(P) = [(60 + OP + Pp) - N(P)] = [OP - N(P)] = 0,

since the projection vectors 006 and ]7]; are by definition parallel to ¥. It follows that
@} = @3, and that the two curves ¥’ NIz and I are separated by the translation 0o.
The weak-perspective case is similar but involves the scaling inherent in this projection

model. |

Lemma 1 identifies planar slices of the pedal surface with the pedal curves of the
image contour in a coordinate-free manner. Exploiting this lemma in recognition tasks

requires (1) identifying the projection o of the point O in every image, and (2) handling
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the fact that the corresponding measurements necessarily depend on the choice of a
world coordinate system and appropriate image coordinate frames. The latter problem
is not difficult when the former one is solved: Indeed, it follows immediately from
Lemma 1 that the measured (and therefore coordinate-dependent) descriptions of the
pedal curve and the corresponding planar slice of the pedal surface are related by
a rigid transformation in the orthographic case, and by a similarity transformation
in the weak-perspective one. We concentrate on the orthographic projection setting
here (the weak-perspective case easily follows), assuming that both the camera motion
and the position of o in the image plane are known. In this case, the pedal curve of
the silhouette is easily constructed, and the viewing direction ¢ is used to determine
the sectioning plane Ilz; the position of o is then used to determine the translation
component of the rigid transformation within Ilz, while the camera motion is used to
determine the rotation angle. If the set of viewing directions covers, say, half a great
circle of the unit sphere, every point on the surface will lie on the occluding contour
for some viewing direction (barring self occlusion), and the entire pedal surface will
be revealed. The object may then be recognized from any view, including ones never
seen before, by matching the corresponding pedal curve to a planar section passing
through the origin of the pedal surface. Note that, for some camera motions, parts of
the pedal surface may be missed or in fact be covered multiple times, and the object

may only be recognizable from a subset of all possible views in this case.

4.1. THE SIGNATURES OF CURVES AND SURFACES AND THEIR PROPERTIES

The approach to object recognition sketched in the previous section requires that the
projection of the origin be identified during both modeling and recognition, and that
the viewing direction be known during modeling. We do not know of any geometric
property of arbitrary smooth surfaces that would allow this to be determined from a
silhouette. Instead, we now define a new representation for curves and surfaces that is
independent of the choice of the origin (and in fact of arbitrary rigid transformations)
and whose construction does not require knowing the camera motion during modeling.

We first use the pedal curve I as a device for constructing the partition of the asso-

ciated curve I' (Figure 4): Pick some arbitrary direction in the plane as the horizontal
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direction with orientation 6 = 0, and consider the family of oriented lines Ay with
orientation # passing through the origin O associated with I". As noted earlier, the
number of intersections of Ay and IV only changes at cusps and double points of this
curve. Let 0; (i = 1,...,p) denote the corresponding orientations of Ay. The partition
of I' is defined as the set of triplets (6;,0;+1,n;) (i = 1,...,p), where the number of
intersections of IV and Ay is equal to n; for any 6 € (0;,60;11), and index addition is

performed modulo p so p+ 1= 1.

0 0
4 05 9

Figure 4. The partition of a pedal curve: A rotating line Ay passing through O intersects the pedal
curve I in two points when 0 is in the open range (03,04) or (6s,61), and it intersects I in four points
when 0 is in one of the open intervals (01,02), (02,03), (04,05) and (05, 0s). Hence, the partition for
thiS pedal curve is {(01, 02, 4), (92, 03, 4), (93, 04, 2), (94, 95, 4), (05, 967 4), (96, 01, 2)}

We now define the signature I'" of the curve I'. We consider again an oriented line
Ay passing through the origin with orientation 6 € (6;,6;,1), and denote by AB the
signed distance between two points A and B on Ay. The sign is determined by the
orientation of the line Ay. Let us denote by P (k = 1,...,n;) the intersections of Ay

with T, sorted in increasing O Py order, and define d, = Py Py (k=1,...,n; — 1).

We define I'/ as the curve traced in R"~1 by the points (dy, ..., dy,—1)" as @ varies over
(05,0i+1) and define the signature I' of the curve I' as the unordered set {T'},..., T}
(Figure 5).

Note that the scalars dj, associated with some orientation @ are simply the (signed)
distances between the tangent lines to I' that are parallel to each other and perpen-

dicular to Ay. We then have:
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Figure 5. The scalars di, d2, and ds defining a point on the signature are defined using distances
between (a) parallel tangents on the original closed curve, or equivalently (b) intersections P, ...,
Py of a rotating line Ag passing through the origin (dashed) with the associated pedal curve.

LEMMA 2. The signature I' of a curve I" is independent of the choice of the origin
used to define its pedal curve I, and it is invariant under rigid transformations of the

plane.

Proof. As noted earlier, the scalars dj, associated with some orientation 6 are the
signed distances between the tangent lines to I' that are parallel to each other with
orientation 0 + 7/2. In particular, they are independent of the choice of the origin
used to define I"". Unlike the partition, the signature does not depend on the choice of
horizontal direction either, since changing this direction amounts to applying a circular

permutation to the partition and the set of curves I/, but does not affect the signature
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as an unordered set of curve segments. Finally, since rigid transformations of the plane
preserve the parallelism of lines and the distance between parallel lines, the signature

is also invariant under rigid transformations. ||

Lemma 2 states the fundamental property of signatures, and it is the key to their
usefulness in recognition tasks: Unlike pedal curves, that completely capture the shape
of the dual of a curve and therefore the shape of the curve itself, but depend on
the choice of the origin, signatures omit some of the shape information (namely the
orientation of the parallel tangents and their position relative to a fixed point), but
gain a complete independence on any choice of origin. In this context, the pedal curve

is simply a convenient bookkeeping device for constructing the signature.

It is also possible to define the signature ¥ of a surface as a set {¥Y,..., X/} of
two-dimensional surface patches E;’ embedded in R%~! for j = 1,...,q, each patch

being swept by the signed distances between parallel tangent planes as their surface
normal varies. Like the signature of a curve, the signature of a surface is independent
of the choice of the origin O and is invariant under rigid transformations. Another

fundamental result follows from Lemmas 1 and 2, namely:

PROPOSITION 1. Under orthographic projection, the curve segments forming the
stgnature of the silhouette of a surface X lie on the surface patches forming the

stgnature of 3.

Proof. Under orthographic projection, two silhouette points with parallel tangent
lines are the projection of surface points with parallel tangent planes defined by the
tangent directions and the projection direction. The distance between these planes is
the same as the distance between the lines, and it follows that the silhouette’s signature
point (di,...,d,—1) associated with some orientation in the image plane belongs to

the signature of the surface. The proposition follows immediately. |

In particular, a subset of the signature of a surface can be constructed from a set of
training images without any knowledge of the corresponding camera configurations. As
shown in the next section, this subset can be thought of as a model of the corresponding
surface, and object recognition can be formulated as the problem of deciding what

surface model contains (in practice, lies close to) the signature of some test silhouette.
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The model of a surface will consist of the whole signature ¥” for sufficiently rich set
of input pictures, e.g., when the viewing directions associated with a moving camera
cover a half great circle of the unit sphere. A better understanding of the situation can
be gained by considering the close relation between the Gaussian image of a surface
and its dual. In particular, for a given viewing direction ¥, the Gaussian image of
the occluding contour of a surface is the great circle formed by the intersection of
the surface’s Gaussian image with the plane orthogonal to ¥ and passing through the
origin. For a moving camera, the great circles associated with the successive viewing
directions cover a subset of the Gauss sphere. If the camera trajectory is sufficiently
rich to guarantee full coverage of the entire Gauss sphere, every point on the surface
will have been observed (up to occlusion) for some viewing direction, and the successive
silhouette signatures will completely sweep out the entire signature of the surface.

It should also be noted that the dimension of the space in which a patch X7 of the
signature is embedded depends on the number of intersections of a line A with the
pedal surface . If the number of intersections is 2, then X! is embedded in R! (i.e.,
it is simply an interval of R) and is unlikely to offer much discriminatory power for
recognition. In practice, we only retain those components of the signature surface for
which A intersects Y at least four times in which case these patches are embedded in
R™ where n > 3. Also note that our discussion has assumed that the silhouette is a
regular curve. In general, the image contour of a smooth surface may in fact be singular
and contain cusps and crossings (Koenderink and Van Doorn, 1976). For a moving
camera, the trajectory of the viewing direction may cross a wvisual event boundary
for which other singularities are observed (i.e., tangent crossings, triple points, cusp
crossings, swallowtails, lips, and beaks) (Kergosien, 1981; Koenderink and Van Doorn,
1976). These have been studied extensively, particularly within the context of aspect
graph construction. Since these singularities are not detected in our implementation,
we leave a more complete characterization of their corresponding pedal curves and
signatures for future research.

Under weak perspective, the image magnification is an unknown additional param-
eter that may vary with each image (i.e., it may change over the camera trajectory

used to model an object when the distance from the camera to the object varies).
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We can eliminate the dependency of the signature on magnification by normalizing

the distances dy by the largest one (which is by construction d,,—1). This yields the

quotient signature T = (I, ..., f‘g), where I is the curve formed in R™~2 by the
. 5 5 dn,— . .
points (dy,...,dp,—2)" = (dndil—l feees dnz—i )7, as the point (dy,...,d,,—1)T varies over

the corresponding component I"/ of the signature I as described in Section 4.1. The
quotient signature is easily shown to be invariant under affine transformations of the
curve I'. Over a sequence of images, the quotient signatures of successive silhouettes

sweeps out the quotient signature of the corresponding surface 3.

5. Object Modeling and Recognition: Implementation and Results

As suggested in the previous section, the signatures of surfaces and their silhouettes can
be used as the basis for object modeling from image sequences and object recognition
in a single image. We discuss below an implemented approach to these two problems.
It is very important to note that the experimental results presented in this section
are not intended as a definitive characterization of the capabilities and limitations of
signatures as a representation for recognition: They merely demonstrate that signa-
tures are indeed easy to compute from real images and can support the recognition
of objects with complex shapes. Our results also demonstrate that curved 3D objects
can be modeled from 2D images with unknown camera motions and recognized from

novel viewpoints.

5.1. OBJECT MODELING

The Canny edge detector is used to obtain object boundaries as linked, closed curves.
To prevent the program from getting confused by the internal edges while extracting
the silhouette, some of the internal edges are removed by hand. The normal vector at
each point of I" is then computed using linear least squares, and the pedal curve I
is finally computed in a straightforward manner (Figure 6.a,b). The origin O in the
pedal curve computation is (arbitrarily) taken to be the center of mass of the edge

points.
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Figure 6. Pedal curve construction: (a) the raw silhouette of a telephone handset and (b) its pedal
curve; (c¢) smoothed silhouette and (d) the corresponding pedal curve and the directions giving the
partition.

As shown in Figure 6.b, the pedal curve construction process amplifies the noise
in the detected edge point position. Consequently, we smooth the silhouette I' using
active contours before constructing I'V. The active contour is initialized with the points
obtained from the Canny edge detector, and the results are shown in Figure 6.c,d.

The signature I associated with the curve I' is also computed in a straightforward
manner: The range of orientations between 0 and 7 is sampled uniformly to give a
set of oriented lines {A;} passing through the origin. Every line A; is intersected with
the pedal curve, at points Pj. The intersections P, (k = 1,...,n;) are now sorted
based on their signed distance zj from the origin (where the sign is given by the
orientation of A;). The smallest distance z; is subtracted from all the signed distances
of the intersections of a line from the origin to give a point (di,...,dn,_1)" = (22 —
T1,...,2n, —x1)", which forms one point of the signature I'”. The quotient signature

is computed by dividing all coordinates of each point on the signature by the last one,
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: ) 7 T _(_4d dn;—2\T q; T
ie., (di,...,dp,—2)" = (dnil_1 ey m) . Since the components of (z1,...,x,,)" are
sorted in increasing order, the components of (di, ..., dn,—1)", and (d1, ..., dn,_2)" are

also sorted. Figure 7 shows an example signature projected to R? for the silhouette in

Figure 6, and the corresponding quotient signature.

Figure 7. a. The signature curve projected to R® computed from the smoothed silhouette of the
telephone handset shown in Figure 6; b. The corresponding quotient signature curve.

Figure 8. Images of a telephone handset used to construct the signature surface. The images were
acquired by rotating the phone by 180 degrees about the vertical axis.

Note that the orientation of the sample lines in the [0, 7] interval intersecting the
pedal curve and defining the signature was chosen arbitrarily. Reversing this orienta-
tion gives a second valid point on the signature for each line. As shown in the next
section, rather than explicitly storing these extra points, we take them into account

in the matching phase of our approach.
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Signature and quotient surfaces can be constructed by concatenating together the
signature and quotient curves found in successive images. Since the silhouettes of a
solid observed from opposite directions are the same under orthographic projection, we
only sample an 180° interval of viewing directions. Figure 8 shows ten images of a 40-
image sequence (4.5° sampling) taken as a telephone handset (from here on, phone)
rotates about a fixed axis. Obviously, the algorithm for constructing the signature

knows nothing about the trajectory. Figure 9 shows the signature X" of its surface.

250
200 ~
150 —

100

Figure 9. a. A single patch of the surface signature projected to R® associated with the phone shown
in Figure 6; one of the curve components shown in Figure 7 was used to construct this patch; b. The
full surface signature of the phone projected to R3.

5.2. OBJECT RECOGNITION

We have constructed a simple recognition system. Figure 10 shows images of six
objects, modeled using the technique proposed in the previous section: a camel, a
dolphin, a duck, the phone, a pig, a stuffed toy (from here on, toy). Recall that objects
are modeled by rotating them about a fixed axis over 180°. Ten test images of each
object were also acquired from novel viewing directions, and Figure 11 shows some
examples.

The principle of the recognition method is straightforward. Each modeled object
is represented by its signature. The signature of the silhouette extracted from a test
image is computed and matched to the stored surface signatures. In practice, some

care must be given to the construction of indexing schemes adapted to the signature
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Figure 10. Six objects used in the recognition experiments. The objects are resting on a platform and
were rotated about an axis which was approximately parallel to the vertical axis of the image plane.

Figure 11. Sample test images for each of the objects. Note that the viewing direction is different
than any of those used during modeling.

representation: Recall that a silhouette signature I'” is actually a collection of curves I'/

embedded in R™~! (i =,1,...,p), while a surface signature is a collection of patches
E;’ embedded in R%~! (j = 1,...,q). If there were no occlusion due to opacity or

other objects, we would only need to compare each point p in I'/ to the components
of E;»’ for which n; = n;. But because of occlusion and clutter during modeling and

recognition, only a subset of the features (coordinates) on I'}' will match those on ¥7.
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The above reasons have prompted us to implement the following modeling and
matching strategy: All images—whether acquired for modeling or as a test image—
undergo the same feature extraction process. The silhouette from the image is detected,
and its pedal curve is computed. The 180° range of orientations of the lines passing
through the pedal curve’s origin is sampled at 3° intervals, and a direction is chosen
arbitrarily for each line. The signed distances of the intersections of each line with the
pedal are sorted, offset and normalized as described in Section 5.1 to yield a point
of the quotient signature. Thus, we obtain 60 sample points of the quotient signature
curve from an image. In the experiments, an object is modeled from 40 images taken by
rotating the object in 4.5° increments about a fixed axis. Thus, the signature surface
of an object given by a collection of 40 x 60 sample points. Similarly, the test image
is represented by 60 sample points of the quotient signature curve extracted from a
silhouette. For each sample point on a detected quotient signature curve in a test image,
the sample point on the closest quotient signature surface is determined according to
the distance criterion described below, and a vote is cast for the corresponding model.

To determine the distance between two signature points X = (21,...,2;,...,2,)"
andY = (y1,...,Yj,---, ym)? where m may not equal n, we follow the robust matching
techniques presented in (Torr and Zisserman, 2000; Forsyth and Ponce, 2002) for
example. We assume that the distance between two correctly matching coordinates x;
and z; is normally distributed with variance o, and that the distribution of distances
for all other (incorrect) matches is uniform. The maximum-likelihood match between
X and Y is determined by taking the log likelihood and assuming independence. In
turn, the distance between z; and y; is computed as the Lorentzian of their differences

dij = T; — yj, or
2 2

lo(dij) =1— = . 2
o(dij) A+ 02 dZ+o? )

Note that a perfect match gives a Lorentzian of 1, whereas a large mismatch gives a
Lorentzian approaching 0. For all ¢, j, we can define an m by n matrix whose entries
are d; j, and the best match between X and Y is taken as the path (non-decreasing
function j(i)) that maximizes the sum of the Lorentzians. This optimal path can be
found efficiently using dynamic programming. For voting, the sum of the Lorentzians

is normalized by dividing by max(m,n).
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DOLPHIN DUCK

Figure 12. Sample recognition results.

Note that this simple scheme allows for the occlusion of some of the internal parallel
tangents but requires that both extremal tangents be visible. This has proven sufficient
in the experiments presented in the next section, where few of the extremal tangents
are ever occluded.

When defining the signature, the orientation of the line intersecting the pedal curve
was chosen arbitrarily. As noted earlier, for each sample point X = (x1,...,2,)7 on
the signature or quotient signature, a second valid point X' = (1 — zy,,...,1 — z1)T
can be associated with the same line with opposite direction. Thus, the match score
is taken as the greater of the scores of matching X with Y and X’ with Y.

Hence, for each sample point on the quotient signature curve computed in a test
image, a vote is cast for the model having the greatest match score. The votes are
tallied over all sample points, and the model with the highest number of votes is
declared to be the recognized object.

We have tested the method using 60 test images: ten images of six objects each.
As in the modeling case, these images have high contrast and no clutter or partial
occlusion, and Canny edge detection can be used to find the silhouette of the observed
object. The test images are taken from viewing directions not used for modeling. One

test image is taken from nearly overhead, with a viewing direction nearly orthogonal
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to the great circle of directions used during modeling. Objects were correctly identified
in 56 images, or an overall recognition rate of above 93%. It was also observed that
in all the cases where the object was misclassified, it received the second highest
number of votes. Table I presents a confusion matrix that tabulates the correct and
incorrect matches (e.g., the toy was recognized correctly in eight of its ten images, but

misidentified as the pig in two images).

Table I. The confusion matrix for our recognition experiments.

Test Number of RECOGNIZED MODEL

Object Test Images || Camel | Dolphin | Duck | Phone | Pig | Toy
Camel 10 10 0 0 0 0 0
Dolphin 10 0 10 0 0 0 0
Duck 10 0 0 9 0 0 1
Phone 10 0 0 0 10 0 0
Pig 10 0 0 0 0 9 1
Toy 10 0 0 0 0 2 8

Since our approach is based on local (or rather semi-local) image features, it is
expected to exhibit some robustness to background clutter and partial occlusion.
Occlusion and clutter have the same effect of introducing additional, unmodeled par-
allel tangents while obscuring relevant parallel tangents that could have been used
for recognition. In this case, the proposed matching scheme will have to consider
many more possible groupings of parallel tangent lines. We have conducted prelimi-
nary experiments with clutter (Figure 13). In this case, we always picked the longest
contour segment returned by the Canny edge detector as the input to our algorithm.
In our experiments, this segment encompasses both the object of interest and some
of the background objects, yet our recognition scheme was able to classify a sufficient
fraction of the image contour as coming from the correct object model. Similar results
with occlusion are shown in Figure 14. It is clear, however, that truly accounting for
occlusion and clutter in a systematic manner will require handling the combinatorics

of matching in a more satisfactory manner.



22

DOLPHIN

-
L

Figure 13. Three examples each of the camel and the dolphin being successfully recognized with a
cluttered background. Note that the input to our matching algorithm in this case is a single closed
contour encompassing the camel or the dolphin and background objects.

Figure 14. One example each of the camel, the dolphin, and the duck being successfully recognized
with partial occlusion. Note that the input to our matching algorithm in this case is a single closed
contour encompassing the object to be recognized and the occluding object.

6. Discussion and Conclusions

We have introduced in this paper a new representation for two- and three-dimensional
shapes, called their signature, that exploits the close relationship between the dual of
a surface and the dual of its silhouette in orthographic and weak-perspective images.
Unlike pedal curves and surfaces, the signatures of curves and surfaces do not depend
upon the choice of an origin, and they are invariant under rigid transformations. They
have been used as the basis for a simple approach to object recognition from a single

image. Unlike most methods for recognizing smooth curved 3D objects, this technique
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does not assume that objects come from a limited class such as surfaces of revolution,
generalized cylinders or algebraic surfaces, and it does not require the construction of
an explicit 3D model.

We believe that our preliminary recognition experiments demonstrate the promise
of the proposed approach. We would like to stress, however, that our somewhat modest
set of test images is not intended to provide reliable statistics for the performance of a
full-blown, operational recognition system. It is also clear that our approach is limited
to shapes complex enough to have signature surfaces embedded in three- (or higher-
) dimensional spaces. The aim of our experiments is not so much to characterize
the recognition performance of the proposed approach as to demonstrate that (1)
signature curves and surfaces can readily be extracted from image data, and (2) they
form a representation powerful enough to recognize an object from viewing directions
differing from those used during modeling. Ultimately, recognition accuracy will be a
function of the geometric complexity of the objects, the similarity of different objects’
shape, how frequently distinct objects will appear to be similar and over what range of
viewpoints, and the accuracy of extracted silhouetes and tangent lines. Constructing
and evaluating a true recognition system capable of recognizing complex shapes in
cluttered scenes is obviously a next step in our research.

The basis for the presented recognition method is that the set of points on an
object’s surface with parallel tangent planes project under orthographic projection
to image curve points with parallel tangent lines. The signature curves and surfaces
are essentially used to identify candidate stereo frontier points (Giblin and Weiss,
1995) between a test image and each model image. This correspondence also provides
a constraint on the relative camera pose between each pair of images in an image
sequence. Hence, we expect that it can be used in a process to recover both the
camera motion and the 3-D structure from the silhouettes detected in a sequence of
images.

The choice of the viewpoints, and consequently the order of the sample points of the
signature surface is immaterial to the modeling scheme. Indeed, although the input
pictures used in our modeling experiments were always part of a continuous image

sequence, we have not exploited this information in recognition tasks. However, it is
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worth mentioning that we expect neighboring sample points from a signature curve
obtained from a test image to match with neighboring points on the signature surface of
the correct model. Therefore, the ordering of the sample points of the signature curves
and surfaces could be used to add greater discriminatory power to the recognition
system when input pictures are part of an image sequence. We plan to experiment

with this idea in the future.
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