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Abstract

Image segmentation and object recognition are among
the most fundamental problems in computer vision, and the
potential interaction between these tasks has been discussed
for many years. The usefulness of recognition for segmen-
tation has been demonstrated with various top-down seg-
mentation algorithms, however, the impact of bottom-up im-
age segmentation as pre-processing for object recognition
is not well understood. One factor impeding the utility of
segmentation for recognition is the unsatisfactory quality of
image segmentation algorithms. In this work we take ad-
vantage of a recently proposed method for computing mul-
tiple stable segmentations and illustrate the application of
bottom-up image segmentation as a preprocessing step for
object recognition and categorization. We extend a pop-
ular bag-of-features recognition model to provide multiple
class categorization and localization of objects in images.
We compare our categorization results to that of a conven-
tional bag-of-features recognition model on the Caltech and
PASCAL image databases.

1. Introduction
The interplay between image segmentation and object

recognition has been an active area of research for sev-
eral decades, both in computer vision and cognitive psy-
chology. The benefits of object recognition have been ex-
ploited in top-down image segmentation approaches. Com-
bining object model knowledge and the initial low level seg-
mentation has been shown to improve segmentation accu-
racy [3]. However, the effects of image segmentation as a
pre-processing step for object recognition and categoriza-
tion are still not clear.

Discovering global structure is at the heart of most ap-
proaches to image segmentation. For example, image seg-
mentation methods based on spectral clustering proceed by
computing local measurements around each pixel followed

by a partitioning step that aims to minimize a global cost
function defined over pairwise affinities over these mea-
surements [2, 19, 27]. In this setting, the global structure
is represented concretely by a set of partition vectors indi-
cating group membership. Many leading recognition en-
gines, however, are solely based on local feature descrip-
tors [5, 7]. Yet in contrast, the principle of global prece-
dence suggests that global image structure and configura-
tions dominate local feature processing in human pattern
perception and recognition [8, 18].

Recently, there have been efforts that leverage manu-
ally segmented foreground objects from the cluttered back-
ground to improve categorization. In Nilsback et al. [20],
for example, flowers are segmented from the background
to increase recognition accuracy. By segmenting the ob-
jects of interest, the noise introduced by the background
around the object is minimized. Yet, methods of unsuper-
vised image segmentation have not been popular as pre-
processing for recognition and categorization. One reason
for this is the unsatisfactory quality of image segmentation
algorithms. It is generally hard to find segmentations that
capture all correct object boundaries in images of real world
scenes. If the segments were satisfactory, an ideal segmen-
tation based recognition system would resemble the sketch
in Figure 1. After perfect segmentation, each segment (rep-
resenting an object) is labeled by the recognition engine.
Segment boundaries are used for localization and the scene
category label is inferred from the individual object labels.

Existing recognition algorithms that advocate the use of
segmentation appear to work well if strong initial object hy-
potheses are built into the segmentation engine [11, 30]. For
the task of detecting and recognizing objects in still im-
ages without object knowledge, however, the recognition
capability is still very weak, perhaps due to the segmenta-
tion performance. For example, the approach of Martin et
al. [15] attempts to integrate all necessary visual cues to-
gether to produce one “best” segmentation. The work of
Mori et al. [17] acknowledges that an erroneous segment
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Figure 1. Illustration of a segmentation-based object recognition
system. Top Left: Original image with four objects: soccer ball,
goal, grass and sky. Top Right: Ideal image segments. Bottom
Right: Discriminative object recognition system, e.g. “Bag of
Features”. Bottom Left: Multi-class object recognition with lo-
calization.

boundary will degrade recognition accuracy, and thus pro-
poses to oversegment an image into super-pixels to increase
the potential quality of a single merged segmentation. Al-
ternatively, works such as Viola and Jones [29] suggest that
attempts to calculate a segmentation for an input image are
likely to introduce more harm than good, and that a bound-
ing box, at every possible location and scale in the image,
must be considered as an object outline for satisfactory ob-
ject recognition and categorization performance.

A reason for the inadequate performance of image seg-
mentation is the ambiguity of image representation, model
parameterization, and the task itself. As described in [23],
in general there does not exist a single correct segmentation
of an image, but rather a shortlist of meaningful image par-
titionings. Thus, unlike the above mentioned approaches
of using a single segmentation or all possible bounding
boxes, the idea of using several segmentations has recently
emerged [23, 25, 26]. A handful of segmentations is chosen
in hope that a collection of all segments from these few seg-
mentations will result in adequate object boundaries. Rus-
sel et al. rely on a collection of random segments to per-
form object detection, while we use stability as a predictor
of “goodness” of a particular set of parameters, cue weight-
ings and model order, as done in [9, 23] to perform object
recognition and categorization. Only the most stable seg-
mentations that depict various aspects of the image are cho-
sen to describe object boundaries. In this regard, the seg-
mentations we use go beyond what is available via a simple
oversegmentation or superpixel representation in terms of
capturing salient image structure.

Partitioning images into segments has been proposed for
learning the joint distribution of image regions and words
for image region annotation [1]. Recently, a work by Roth

and Ommer [25] suggested using multiple segmentations
for object recognition. They build a segmentation based
recognition system and report competitive results. How-
ever, they do not show the performance of their system with-
out segmentation. Thus the effects of segmentation on ob-
ject categorization remain unclear. Also they do not lever-
age segmentation for object localization and multi-class ob-
ject recognition.

In this work we show that preprocessing test images by
representing them as a shortlist of segmentations increases
the accuracy of object categorization. Having classified
each of the segments we infer the following from the short-
list of segmentations: (a) a label for the entire image, (b)
object localization via the segment boundary, and (c) multi-
class object localization and categorization. We evaluate the
benefits of image segmentation, as pre-processing, for ob-
ject categorization on the Caltech and PASCAL databases.

Finally, we investigate the importance of image segmen-
tation for object categorization, and answer the following
questions:
I Can segmenting an image improve object recognition?

I How does the number of segments affect recognition ac-
curacy?

I Does the quality of segmentation affect recognition ac-
curacy?

I Is it beneficial to perform localization and multi-class
recognition using segmentation?

The organization of this paper is as follows. In Section 2
we review the proposed image segmentation algorithm and
how it is used with the bag-of-features (BoF) recognition
model. We also address object localization and multi-class
object recognition using image segmentation. In Section
3 we describe the experiments and present results of ob-
ject recognition on the Caltech and PASCAL databases. We
conclude with the discussion and future work in Section 4.

2. Segmentation for Recognition
To understand the effects of image segmentation on ob-

ject recognition and categorization, we consider the stabil-
ity based image segmentation framework and the BoF ob-
ject recognition model. Although our results are influenced
by these choices, we believe that the conclusions will carry
over to other object based recognition models.

2.1. Shortlist of Stable Segmentations

The goal of an unsupervised clustering algorithm is to
partition the data based on some criterion that, by definition,
does not use labeled examples. Open problems in this area
include choosing the appropriate grouping criterion (cue se-
lection and combination) and the number of clusters (model



order). Recent advances in stability based clustering algo-
rithms have shown promising results for choosing these pa-
rameters. In this work we adopt the framework of [23] to
generate a shortlist of stable segmentations.

Next we review the basics of stability based image seg-
mentation. Cues are combined into one similarity measure
using a convex combination:

Wij =
F∑

f=1

(pf · Cf
ij), subject to

F∑
f=1

pf = 1,

where Wij is the overall similarity between pixels i and j,
Cf

ij is the similarity between the i-th and j-th pixels accord-
ing to some cue f , and F is the number of cues. Since the
“correct” cue combination ~p and the number of segments k
yielding “optimal” segmentations are unknown a priori, we
would like to explore all possible parameter settings. How-
ever, this is not computationally viable and we adopt an ef-
ficient sampling scheme. Nonetheless, we are still left with
defining the optimal segmentations, which we do next.

Stability Based Clustering. For each choice of cue com-
bination ~p and number of segments k one obtains different
segmentations of the image. Of all possible segmentations
arising in this way, one or more can be considered “mean-
ingful.” Here we use stability as a heuristic to define and
compute the meaningful segmentations.

For a choice of the parameters ~p and k, the image is
segmented using Normalized Cuts [14, 27] using the im-
plementation of [4]. The segmentation is considered stable
if small perturbations of the image do not yield substantial
changes in the segmentation. This condition is evaluated
as follows [23]. The image is perturbed and segmented T
times and the following score is evaluated:

Φ(k, ~p) =
1

n− n
k

 n∑
i=1

T∑
j=1

δij −
n

k

 .

Here n is the number of pixels and δij is equal to 1 if the
i-th pixel is mapped to a different segment in the j-th per-
turbed segmentation and zero otherwise. Thus Φ is a prop-
erly normalized1 measure of the probability of a pixel to
change label due to a perturbation of the image. Segmen-
tations with high stability score are considered meaningful
and are retained. Thus, in general, there may exist several
stable segmentations.

2.2. Bag of Features

In this work we utilize the BoF object recognition frame-
work [7, 22] due to its popularity and simplicity. This

1In particular, Φ ∈ [0, 1] and it is not biased towards a particular value
of k.

method consists of four steps: (i) images are decomposed
into a collection of “features” (image patches); (ii) features
are mapped to a finite vocabulary of “visual words” based
on their appearance; (iii) a statistic, or signature, of such
visual words is computed; (iv) the signatures are fed into a
classifier for labeling. All four steps can be implemented in
a variety of ways. Here we adopt the implementation and
default parameter settings provided by [28].

2.3. Integrating Bag of Features and Segmentation

We integrate segmentation with BoF as follows. Each
segment is regarded as a stand-alone image by masking and
zero padding the original image. Then the signature of the
segment is computed as in regular BoF, but any features that
fall entirely outside its boundary are discarded. Eventually,
the image is represented by the ensemble of the signatures
of its segments.

This simple idea has a number of effects: (i) by clus-
tering features into segments we incorporate coarse spa-
tial information; (ii) masking often enhances the contrast of
segment boundaries, making features along the boundaries
more shape-informative; (iii) computing signatures on ho-
mogeneous segments improves their signal-to-noise ratio.

Next we discuss how segments and their signatures are
used to classify segments and whole images and to localize
objects in them.

Labeling Segments. Let I be a test image and Sq its q-th
segment, with i being the image index and c the category
index, such that Iic is the i-th training image of the c-th
category. Let φ(I) (or φ(S)) be the signature of image I
(or segment S) and Ω(I) (or Ω(S)) the number of features
extracted in image I (or segment S).

Segments are classified based on a simple nearest neigh-
bor rule. Define the un-normalized distance of the test seg-
ment Sq to class c as:

d(Sq, c) = min
i

d(Sq, Iic) = min
i
‖φ(Sq)− φ(Iic)‖1

So d(Sq, c) is the minimum l1 distance of the test segment
Sq to all the training images Iic of category c. We assign
the segment Sq to its closest category c1(Sq):

c1(Sq) = argmin
c

d(Sq, c).

In order to combine segment labels into a unique image
label it is useful to rank segments by classification relia-
bility. To this end we introduce the following confidence
measure.

Labeling Confidence. Define the second best labeling of
segment Sq as the quantity:

c2(Sq) = argmin
c6=c1(Sq)

d(Sq, c).



In order to characterize the ambiguity of the labeling c1(Sq)
we compare the distance of Sq to c1(Sq) and c2(Sq), defin-
ing:

p(c1(Sq)|Sq) = (1−γ)+γ/C, where γ =
d (Sq, c1(Sq))
d (Sq, c2(Sq))

and C is the number of categories. This is the belief that Sq

has class c1(Sq); for other labels, c 6= c1(Sq):

p(c|Sq) =
1− p (c1(Sq)|Sq)

C − 1
.

So p(c|Sq) is a probability distribution over labels and it is
uniform when d (Sq, c1(Sq)) ≈ d (Sq, c2(Sq)) and peaked
at c1(Sq) when d (Sq, c1(Sq)) � d (Sq, c2(Sq)).

Labeling Whole Images. Let {S1, ..., SK} be all the seg-
ments of a test image I . We let the segments vote for the
image label as follows. Each segment Sq votes for class c
proportionally to its confidence p(c|Sq) and has an amount
of votes w(Sq) to use. The label of the image I is then given
by:

c(I) = argmax
c

K∑
q=1

p(c|Sq)w(Sq).

The weights w(Sq) encode both the importance and the
reliability of the segment Sq, irrespective of the class la-
bel. As both of these factors are roughly proportional to
the number of features of the segment, we define w(Sq) =
Ω(Sq)/Ω(Smax) where Smax is the largest segment (in
terms of number of features).

Localization. In many approaches to object localization,
the bounding box that yields highest recognition accuracy
is used to describe objects’ location [16, 29]. Here we use
the segment boundaries instead.

Given the labels of each segment, c1(Sq), and the over-
all image label, c(I), we look for segments whose labels
match the image label, i.e., c(I) = c1(Sq). Among these,
we check for overlapping segments and we return the first
k unique segment boundaries. Note that this method is not
limited to BoF and could be used to add localization capa-
bilities to other recognition methods.

To recognize and localize objects of classes other than
the image class, all segments Sq are ranked with respect to
their label confidence p(c1(Sq)|Sq) and the first k segment
boundaries are returned irrespective of the whole image la-
bel.

3. Experimental Results
For our experiments we use images from the standard

datasets Caltech-101 and PASCAL. For the Caltech-101
database we picked the twenty most difficult categories,

as reported by [31]. For both databases, we used 30 im-
ages per category for training. The implementation details
of [28] for the BoF model are the following. 5000 random
patches at multiple scales (from 12 pixels to the image size)
are extracted from each image such that larger patches are
sampled less frequently (as these would be redundant). The
feature appearance is represented by SIFT descriptors [13]
and the visual words are obtaining by quantizing the feature
space using hierarchical K-means with K = 10 at three
levels [21]. The image signature is an histogram of such
hierarchical visual words, L1 normalized and TFXIDF re-
weighed [21]. In an unoptimized MATLAB/C implementa-
tion, the computation of SIFT and the relevant signatures,
takes on average 1 second for each segment in the image
on on a Pentium 3.2 GHz. Finally, the signatures are fed to
a k-nearest-neighbor classification algorithm. Implemented
in MATLAB, training the classifier and constructing the vo-
cabulary takes under 1 hour for 20 categories with 30 train-
ing images in each category. Classification of test images,
however, is done in just a few seconds.

To understand the importance of image segmentation
quality for object categorization accuracy we consider the
following two segmentation methods. The first is the stabil-
ity based image segmentation using normalized cuts [27].
Images are segmented using brightness and texture cues.
We consider a varying number of segments per segmenta-
tion, k = 2, . . . , 10, which together results in 54 segments
(2 + 3 + 4 + · · · + 10). Implemented in MATLAB, each
segmentation takes between 10-20 seconds per image with
T = 100 restarts, on a Pentium 3.2 GHz , depending on
the image size. Typical images in the Caltech database
are at least 600 × 400 pixels. We’ll refer to this method
as “Stable Segmentations” (Sseg). The second segmenta-
tion method is a simple grid-like image partitioning method,
similar to that of [10]. In real time, an image is broken into
k = 4, 9, 16, 25 equal sub-images, which together results in
54 segments (4 + 9 + 16 + 25). We refer to this method as
“Block Segmentations” (Bseg).

3.1. Average Recognition Accuracy

We compare the categorization results of the BoF with
and without segmentation pre-processing to quantify the ef-
fects of image segmentation on the accuracy of object cat-
egorization. Figure 2 shows the confusion matrices of 20
most difficult categories from the Caltech-101 and PASCAL
databases simply using the BoF model. Confusion ma-
trices of average recognition with no pre-processing, with
“Block Segmentations”, and with “Stable Segmentations”
are shown in columns (a), (b), and (c) respectively. The
results of average recognition accuracy are summarized in
Table 1. The reported results are based on 54 segments per
image. In the case of “Stable Segmentations” segments are
taken from 9 segmentations, and for “Block Segmentations”
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Figure 2. Confusion matrices of object categorization accuracy using the BoF model. Top row: 20 hardest categories of Caltech101. Bot-
tom row: PASCAL dataset. (a) BoF model with no preprocessing. (b) BoF model with test images represented by “Block Segmentations”.
(c) BoF recognition model with test images represented by “Stable Segmentations”.

from 4.

No Seg. Bseg Sseg
Caltech 44.9% 50.6% 75.5%

PASCAL 38.5% 43.5% 61.8%

Table 1. Average categorization accuracy for both the Caltech and
PASCAL datasets.

Caltech Bseg Sseg

ant 0.24 0.47
BG Google 0.25 0.84

Beaver 0.23 0.65
Cougar body 0.27 0.69

Crab 0.27 0.51
Crayfish 0.24 0.53

Crocodile Head 0.37 0.72
Cup 0.31 0.77

Dolphin 0.31 0.78
Emu 0.19 0.64

Flamingo Head 0.17 0.62
Ibis 0.27 0.58

Llama 0.28 0.73
Lotus 0.40 0.65

Octopus 0.11 0.66
Pigeon 0.13 0.78

Platypus 0.19 0.71
Schooner 0.34 0.72
Scorpion 0.12 0.56
Sea Horse 0.16 0.62

Pascal Bseg Sseg

Bicycle 0.24 0.51
Bus 0.34 0.70
Car 0.34 0.66
Cat 0.26 0.62
Cow 0.30 0.64
Dog 0.23 0.60

Horse 0.26 0.52
Motorbike 0.14 0.43

Person 0.22 0.59
Sheep 0.19 0.67

Table 2. Average object local-
ization accuracy for Caltech and
PASCAL datasets.

3.2. Localization and Multiclass Categorization

The quality of object localization, whether for single or
multi-class recognition, can be evaluated in a number of
ways. Some compare object centroid location, while others
attempt to maximize the overlap between predicted bound-
ing box around the object and the ground truth one [16].
However, objects are generally not rectangular and should
be localized by their boundary contour, which we do here.

To quantify the accuracy of object localization, we adopt a
method from the PASCAL Challenge [6] and consider the
overlap, ρ, between ground truth localization, GT , and the
retrieved localization, R, is ρ = GT∩R

GT∪R . Note that ρ is mis-
leading in cases where the objects’ contour area is smaller
than that of its bounding box (Fig. 5). In Table 2 we re-
port the average localization accuracy for each category in
both the Caltech and PASCAL datasets. For each image,
the segment R which is more likely to have a given label is
compared to the ground truth bounding box GT . We have
also explored the relationship between number of segmen-
tations per image and object localization accuracy, but we
cannot report the results due to space constraints. Generally,
categories of objects with complex boundaries are localized
more accurately as the number of segments increase, while
blob-like objects do not benefit as much from an increase
in the number of segments. Fig. 4 and 5 show example of
objects localized by our method.

3.3. Quality of Image Segmentation

Due to the principle of global precedence and the impor-
tance of the shape cue, it is expected that the object catego-
rization accuracy based on “Stable Segmentation” should
outperform that of the trivial “Block Segmentations”. In-
deed, the results in Table 1 indicate that the improvement
with “Stable Segmentations” is significant.

The localization based on “Stable Segmentations” is also
superior to that of “Block Segmentations”. The “Stable
Segmentations”, shown in Fig. 4 and 5, are capable of
identifying objects’ boundaries relatively accurately. Us-
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Figure 4. Object localization using “Stable Segmentations” as pre processing for the BoF categorization model. Examples from the
Caltech101 dataset. Please view in color.

ing “Block Segmentations”, however, localization results
are poor: the centroids of segments often do not match the
objects’ center and segments’ boundaries truncate the ob-
jects. Average per category localization results are reported
in Table 2.

Regardless of the particular segmentation algorithm, the
size of the shortlist or the number of segments used to repre-
sent a test image can play an important role in determining
object recognition accuracy. On one hand, as the number
of possible segmentations increases, the chance of having a
segment perfectly represent the object increases as well. On
the other hand, an increase in the number of segments also
increases the noise, namely, segments with incorrect cate-
gory assignment. Figure 3 illustrates the effect of increas-

ing the number of segments to represent the test images.
The recognition accuracy of all categories significantly in-
creases with the number of segments. However, around the
35 segment mark, the effect of the more accurate segment
boundaries is cancelled out by the noise from meaningless
segments. Thus, for most categories, the recognition ac-
curacy saturates past 35 segments per image (note that 35
segments are distributed among 7 different segmentations).

4. Discussion

Although a link between image segmentation and object
recognition has been discussed for many years, the effects
of low-level global image segmentation on recognition and
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Figure 5. Object localization using “Stable Segmentations” as pre processing for the BoF categorization model. Examples from the
PASCAL dataset. Please view in color.

categorization have not been convincingly shown. In this
work we demonstrated that image segmentation can in fact
improve object recognition and categorization and it also
adds object localization and multi-class categorization ca-
pabilities to an off-the-shelf categorization system.

Often segmentation has not been used in recognition be-
cause of the difficulty of obtaining segments corresponding

to the objects of interest. In this work we solve this prob-
lem by relying on a shortlist of potentially meaningful seg-
mentations (identified by a stability criterion) which signif-
icantly increase the chance of extracting suitable segments.
Incorporating this segmentation method with a simple BoF
model was shown to bring the recognition accuracy to a
level comparable with the state-of-the-art (Table 1, [31]).



Figure 3. Object recognition vs. length of segmentation shortlist.
Only Stable Segmentations results are shown. Note the general
trend of accuracy improvement as the number of segments in-
creases. The accuracy improvement saturates at around 35 seg-
ments.

To summarize, the effects of image segmentation on ob-
ject categorization are the following:

I Segmenting an image does improve object categorization
accuracy.

I Increasing the number of segments increases categoriza-
tion accuracy.

I Increasing the quality of the segmentation improves ob-
ject categorization accuracy.

I It is possible to achieve good localization and multi-class
recognition performance using image segmentation.

We found that the quality of image segmentation does af-
fect the average categorization accuracy for the BoF model.
However, even the most trivial spatial grouping of interest
points (i.e., Bseg) in the BoF model increases the catego-
rization accuracy (but not as much as for Sseg). Localiza-
tion is greatly affected by the segmentation quality as well.
The number of segmentations/segments and their quality
also critically impacts the categorization accuracy.

In ongoing work we are considering databases with
many more categories. We are also exploring alternative
recognition models that may take advantage of multiple-
segment representations more explicitly, e.g. [12]. Finally,
the proposed approach of segmenting test images and rec-
ognizing individual segments, provides an intuitive frame-
work for semantic context based object categorization, as
explored in [24].
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