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Abstract. This paper presents a new geometric relation between a solid
bounded by a smooth surface and its silhouette in images formed under
weak perspective projection. The relation has the potential to be used for
recognizing complex 3-D objects from a single image. Objects are mod-
eled by showing them to a camera without any knowledge of their motion.
The main idea is to consider the dual of the 3-D surface and the family
of dual curves of the silhouettes over all viewing directions. Occluding
contours correspond to planar slices of the dual surface. We introduce
an affine-invariant representation of this surface that can constructed
from a sequence of images and allows an object to be recognized from
arbitrary viewing directions. We illustrate the proposed object represen-
tation scheme through synthetic examples and image contours detected
in real images.

1 Introduction

Most approaches to model-based object recognition are based on establishing
correspondences between viewpoint-independent image features and geometric
features of object models [9, 15]. For objects with smooth surfaces, few sur-
face markings and little texture, the most reliable image feature is the object’s
silhouette, i.e., the projection into the image of the curve, called the occlud-
ing contour, where the cone formed by the optical rays grazes the surface [11].
The dependence of the occluding contour on viewpoint makes the construction
of appropriate feature correspondences difficult. Appearance-based methods do
not rely on such correspondences, and they are suitable for recognizing objects
bounded by smooth surfaces, but they generally require a dense sampling of the
pose/illumination space to be effective [17]. Methods for relating image features



to the 3-D geometric models of curved surfaces have been developed for surfaces
of revolution [8, 13], classes of generalized cylinders [14, 19, 21, 25], and algebraic
surfaces [12, 18, 20, 22]. Two limitations of these approaches are that there must
be some means to obtain the 3-D model, and more critically, that only a limited
number of objects are well approximated by a single primitive.

An alternative is to replace the explicit description of the entire surface of
the object of interest by the representation of some relatively sparse set of fea-
tures directly useful for recognition. It is possible to represent either the 3-D
geometry of these features [10] or to derive invariants from the image coordi-
nates of detected features [24]. In these two methods, objects are modeled from
a sequence of images obtained as a camera moves over a trajectory, yet they
can be recognized from novel viewpoints; in [10] the camera motion must be
known whereas the motion is not needed in [24]. The setting considered in this
paper generalizes [24] which only considered a sparse set of features of the sil-
houette (inflections, bitangents, parallel tangents), and therefore offered limited
discriminatory power. In contrast, the proposed approach uses nearly the en-
tire silhouette for recognition. This study builds on geometric insights about the
occluding contour and silhouettes of smooth surfaces [7, 11], and their use in
determining structure from sequences of images [1, 2, 4, 5, 23].

The basic processing steps for each image include detecting the silhouette
curve, computing its dual, and then computing an HD-curve (high-dimensional
curve) which is invariant to rigid transformations. When modeling an object
from a camera moving over a trajectory of viewpoints, these HD-curves sweep
out a surface (an HD-surface) which could have been computed directly from
the object’s 3-D geometry if that geometry were available. Each object is then
represented by an HD-surface. During recognition in a single image from a novel
viewpoint, an HD-curve can be computed, and this HD-curve should lie on the
HD-surface of the corresponding object. The relation of these geometric enti-
ties are shown in Figure 1, and we now define these entities and discuss their
properties in the subsequent sections.

S : 2D Surface −→
P−surface

S′ : 2D Surface −→
HD−surface

Quotient HD-surface

↓ v viewing direction l planar intersection ↑∈
C : 1D curve −→

P−curve
PC : 1D curve −→

HD−curve
Quotient HD-curve

Fig. 1. This diagram summarizes the relation of the original curves, surfaces, pedal
curves, pedal surfaces, HD curves and the HD surfaces.

2 Duals of curves and surfaces

We start the development by defining some standard geometric concepts about
curves, surfaces and duals, which can be found in [3, 6].
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Fig. 2. Pedal curve and δ(s) construction.

Consider a planar curve α : I ⊂ R2 → R
2 parameterized by its arc length s.

At each point of the curve, T (s) = α′(s) and N(s) will denote the (unit) tangent
and normal vectors of the curve.

2.1 Dual and Pedal Curves

The dual of a point on a curve is the tangent line to the curve at that point, and
over the entire curve α, the dual is also a curve.

Definition 1 (Dual curve).

DCurve(α) = {
(
N(s),−N(s) · α(s)

)
, s ∈ I} (1)

Since N(s) is a unit vector, a point on a dual curve lies on a cylinder. Be-
cause visualizing dual curves (and later dual surfaces) is sometimes difficult, we
consider the pedal curve which is embedded in R2 (respectively R3) rather than
on a cylinder.

Definition 2 (Pedal curve – P-Curve).

PedalCurve(α) = {δ(s), s ∈ I} (2)

where δ : I → R
2 is defined by

δ(s) =
(
N(s) · α(s)

)
N(s). (3)

In other words, the pedal curve is the set of points swept by the tip of the
unit normal scaled by the (signed) distance between the origin and a curve point
as this point varies across the curve. Figure 2 shows how δ(s) is defined, and
Figure 3 shows an example of a closed planar curve and its pedal curve. A
disadvantage of considering pedal curves over the duals themselves is that pedal



Fig. 3. Initial curve and its corresponding Pedal curve.

curves are “ramified at the origin”, that is a circle of tangent lines to α(s) passing
through the origin map to the origin of the pedal curve [3].

The following useful properties of pedal curves are readily derived from the
definitions.

Property 1. There is a one-to-one mapping between the dual and the pedal curve.

Property 2. An inflection of the initial curve α maps onto a cusp of the pedal
curve.

Property 3. A set of p points of the initial curve α with a common tangent line
maps onto a point of multiplicity p of the pedal curve.

For example, bitangent lines on a curve map onto crossings of the pedal
curve.

Property 4. A set of p points of the initial curve with the same tangent direction
maps onto collinear points of the pedal curve, and these points are collinear with
the origin. Reciprocally, the intersection points between a line passing through
the origin and the pedal curve correspond to parallel tangent lines of the initial
curve.

Consider for example the curve and its pedal in Figure 3; the cusps in the
pedal correspond to the two inflections while the crossing corresponds to the
common horizontal tangent line at the top of the heart.

It is important to note that the pedal curve depends on the choice of the
coordinate system in which the initial curve α is described. This is significant
because the curves we will consider are image contours, and a rigid image-plane
transformation of the object will lead to a geometric change to the pedal curve.
Nonetheless, Properties 1 to 4 are independent of rigid transformations, and we
will subsequently define a mapping from the pedal curve to another curve which
is invariant to rigid transformations of the original curve α.



2.2 The Pedal Surface

The dual of a point on a surface is a representation of the tangent plane, and
the concept of pedal curve can be extended to non-singular surfaces in R3. Let
σ : U ⊂ R2 → R

3 be a parameterization of a surface S defined by σ(s, t). We
define the 3D P-surface of S as follows.

Definition 3 (Pedal Surface – P-Surface). The pedal surface associated with
the parameterized surface σ : U → R

3 is the parameterized surface δ : U → R
3

defined by δ(s, t) =
(
N(s, t) · σ(s, t)

)
N(s, t).

3 Occluding Contours and Silhouettes

We consider an object bounded by a non-singular surface S with parameteriza-
tion σ, and assume that images are formed under scaled orthographic projection
(weak perspective).

Given a point P ∈ R3 and a camera whose origin is in O and whose image
plane is spanned by the orthogonal vectors i and j, the coordinates (X,Y ) of
the projected point are given by:{

X = χ
−−→
OP · i

Y = χ
−−→
OP · j

(4)

where (O, i, j) is the camera’s coordinate frame, and χ is the inverse of the depth
of some reference point. The vector v = i× j is the viewing direction. For pure
orthographic projection, χ is taken to be constant and without loss of generality
we shall choose χ = 1.

Let v be a viewing direction in R3, the occluding contour is the set of points
in R3 that lie on the surface S and whose normal vectors are orthogonal to the
viewing direction. The occluding contour is generally a nonplanar curve on S,
and obviously depends upon the viewpoint [11]. The silhouette is the projection
of the occluding contour into the image. Note that this definition treats the
objects as being translucent and does not account for self-occlusion of sections
of the occluding contour by other portions of the object.

4 Links Between P-curves and P-surfaces

We now consider the relation between pedal curves of the silhouettes for some
viewing direction and the pedal surface. We denote by v the viewing direction,
and by OccCont the corresponding occluding contour.

Property 5. The occluding contour maps onto a curve given by the intersection of
the pedal surface with the plane v⊥ passing through the origin and perpendicular
to the viewing direction v.



This property leads us to consider the links between the P-curve of a silhou-
ette and some planar slice of the P-surface. Let us consider our surface S and
its corresponding P-surface S′. Now choose some viewing direction v; it defines
an occluding contour OccCont and a silhouette Sil under pure orthographic
projection. Let A′ denote the projection of the origin of the object’s coordinate
system used to define S′. We have the following theorem:

Theorem 1. The P-curve of the silhouette Sil with respect to the point A′ has
the same shape as the intersection (planar slice) of the P-surface S′ with the
plane v⊥.

Proof. Property 5 says that the P-surface of the occluding contour is a plane
curve, entirely embedded in the affine plane v⊥. Since the silhouette is obtained
by pure orthographic projection of the occluding contour onto the image plane,
the tangent planes to S at the points of the contour are projected into the
tangent lines of the silhouette. Thus computing the P-curve of the silhouette
with respect to A′ is exactly equivalent to taking the planar intersection of the
P-surface with the plane v⊥. ut

This property leads to the following critical insight. Consider a camera mov-
ing over a trajectory during modeling such that the viewing direction v(t) is
known. Then from the previous property, one could reconstruct a subset of the
object’s P-surface from the P-curves if A′(t) can be determined. If for exam-
ple, v(t) covers a great circle, then the entire P-surface would be reconstructed.
Furthermore, for some other viewing direction ṽ not in v(t), the corresponding
P-curve would simply be a planar slice of the reconstructed P-surface.

4.1 A Representation of the Pedal Curve and the Pedal Surface

The previous properties could form the basis for a recognition system in which
smooth surfaces are modeled from a sequence of images with known camera mo-
tion, and then objects could be recognized from an arbitrary viewing directions
ṽ. However, this requires establishing correspondence of A′(t) during modeling
and detecting the projection of the 3-D origin Ã during recognition; we know
of no properties for doing this. Instead, we now define a representation (HD-
curves and HD-surfaces) that is invariant to the choice of the origin (and in
fact affine image transformations) and furthermore eliminates the necessity for
knowing the camera motion v(t) during modeling. In particular, we take advan-
tage of the previously mentioned invariance of properties 1 to 4 to rigid plane
transformations.

Definition 4 (Signature). Given a planar curve PC parameterized by δ : I →
R

2 and a point C (called the scanning center), we call the signature of the curve
PC with respect to a point C the couple

(
(θ1, · · · , θp), (d1, · · · , dp)

)
such that:

(1)
∑p−1
k=1(θk+1 − θk) = 2π

(2) ∀k ∈ 1 · · · p− 1 ∀θ ∈ [θk, θk+1] #
(
D(C, θ) ∩ PC

)
= dk + 1



where D(C, θ) denotes the straight line passing through C with orientation θ,
and #E denotes the number of elements of the set E.

The signature partitions the plane into angular sectors centered at C and
bounded by θk, θk+1 such that the number of intersections between any line
passing through C and the curve PC is constant within each sector. The critical
points where the number of intersections changes is given by the singular points
of the pedal curve (See Properties 2 and 3) and points where the tangent to
pedal curve pass through the C.

We now define the HD-curve of a planar curve PC with regards to a point C
as the multi-dimensional set of curves (HDComp1, · · · ,HDCompp) given by:

Definition 5. ∀k ∈ 1 · · · p, HDCompk is a curve embedded in Rdk with coor-
dinates (y1 = x2 − x1, · · · , ydk = xdk+1 − x1) with (x1, · · · , xdk+1) being the
abscissas of the intersection points between the oriented line D(C, θ) and PC.

In other words, in each angular sector k defined previously, we take the dk+1
intersection points between PC and lines passing by C, order these intersection
points by relative abscissas on the line, and compute the dk differences by the
first (thus the smallest) abscissa.

We now consider an important property of the HD-curve that makes them
useful for modeling and recognition. Consider an initial silhouette curve C, pa-
rameterized by α : I → R

2. Now compute its corresponding P-curve PC, param-
eterized by δ : I → R

2, constructed relative to the origin of the image plane.

Property 6. The HD-curve of PC of C is invariant with respect to the choice of
the origin of C and any rigid transformation of C.

The important thing here is the fact that the P-curve gathers all parallel tan-
gency and inflection information under an easily exploitable form but its shape
depends upon the choice of the origin. By choosing the HD-curve scanning cen-
ter as being the same point as the P-curve origin, this dependence on the choice
of the origin is suppressed. Here is another perspective: consider the silhouette
curve C; its tangency features (inflection points, parallel tangents...) are intrinsic
properties of the curve. For example, consider a set of four points on a curve
with parallel tangents; they will be mapped to four collinear points of the P-
curve. Now, consider the relative distances between these four aligned points.
They correspond to the relative distances between tangent lines to the initial
curve, thus it is not surprising that we succeed in eliminating the dependency
with respect to the P-curve center.

In a similar manner, one can define an HD-surface derived from the P-surface.
Unlike the P-surface whose shape depends upon the choice of the origin, the
HD-surface is invariant to rigid transformations of the original surface. Based
on Property 1 and its implications as well as the invariance property of HD-
curves to rigid transformation, the entire HD-surface can be determined from
the sequence of silhouettes formed when the viewing direction covers a great
circle. Hence, the HD-surface can serve as a representation for recognition, and
it can be constructed without knowledge of the camera motion.



Fig. 4. Contour detected by tresholding and the computed pedal curve.

Finally, under weak perspective, the scale χ(t) is a function of time. In con-
structing the HD-curve components, we can treat the dk coordinates as homo-
geneous coordinates or normalize the coordinates as (z1 = y1/ydk , · · · , zdk−1 =
ydk−1/ydk) with (y1, · · · , ydk) being the coordinates of points on HDCompk of
the HD-curve. This creates a curve embedded in Rdk−1 rather than in Rdk , and
we call this the Quotient HD-curve. The Quotient HD-curve of PC is invariant
with respect to any homothetic transformation of the initial silhouette curve C
in the image plane. Over a sequence of images, the family of Quotient HD-curves
sweeps out a Quotient HD-surface.

5 Implementation

Here, we present some details of our Matlab implementation for computing the
geometric entities described previously.

5.1 Image Processing

For each image of the sequence, we detect the silhouette of the object using
thresholding to obtain a connected curve, i.e. a discrete list of all successive
points on the contour.

Fig. 5. A contour after recursively applying the Gaussian filter with σ = 2.0 five times
and the computed pedal curve.



The discrete contour extracted by thresholding introduces artifacts due to
aliasing, leading to poor results when used in the subsequent steps of the algo-
rithm. Consequently, we recursively smooth the contour using Gaussian filters
parameterized by arc length [16]. First, the arc length to each point on the con-
tour is computed. For each point α(t0) on the original contour, we obtain new
x and y coordinates according to:

∀t0 ∈ 0 . . . tmax Smoothed α(t0) =

∫ t0+4σ

t0−4σ
G(t0 − t)α(t)dt∫ t0+4σ

t0−4σ
G(t0 − t)dt

(5)

where

G(t) =
1√
2πσ

exp (− t2

2σ2
) (6)

Since the curve is discrete α(t)t∈0...tmax , we approximate the above integral
using a trapezoid method with irregularly spaced interpolation points.

Example 1. Figure 4 shows the initial contour and its corresponding P-curve,
and Fig. 5 shows the results after five consecutive smoothings.

5.2 Pedal Curve Computation

Given the discrete form of the possibly smoothed curve, we compute the normal
vector for each point on the contour. For this, we use linear least squares to esti-
mate of the direction of the tangent. Then Equation 3 can be directly applied to
compute the pedal curve; this phase is very quick once the normals are available.
The only difference with Eq. 3 is that the contour is parameterized by a discrete
parameter instead of a continuous one.

5.3 HD-Curve Computation

The method for computing the HD-Curve follows:

1. An oriented line constitutes the reference line of the angles. For reasons
described in Section 4.1, we choose for scanning center the same point that
was used for computing the P-Curve, and in practice, the origin of the angles
is the horizontal, right-oriented-line passing through the scanning center.
Changing the origin of the angles only cycles the storage of the points of the
HD-Curve, but it does not affect it otherwise.

2. We regularly sample [0, 2π] and obtain the angles {θi}i∈1...N

3. For each of the sampled angles θi:
– Consider the line passing through the scanning center and having an

angle θi with the reference line, counted anti-clockwise.
– Calculate the signed abscissas (regarding this line) of the intersection

points of this line and the P-Curve, and sort them.
– Calculate the distances between these intersection points, i.e. the differ-

ences between the previously calculated abscissas and the first abscissa
(the smallest).

– Store these distances.



Fig. 6. A heart, a squash and a banana.

Fig. 7. A single image of the squash and its corresponding HD-Curve and Quotient
HD-Curve.

6 Results

We demonstrate these algorithms with three series of images: a heart, a butternut
squash and a banana (Fig. 6), rotating about a vertical axis. While the heart
images are synthetic, please note that the squash and banana images have been
gathered with a camera and real fruits and vegetables.

6.1 An Example of HD-Curve and Quotient HD-Curve

We consider a single image of the squash, and the HD-Curve and Quotient HD-
Curve that have been extracted from this image. More precisely, Fig. 7 shows
only the 3D part of the HD-Curve and the 2D part of the Quotient HD-Curve,



Fig. 8. Images of the heart.

since they are more easily representable than higher dimensional curves. Note
that in this particular case, the HD-Curve had only a 1D and a 3D components,
but the banana, which is a more “complex” object, has a 5D component that
we cannot readily draw.

Note that for any translation and/or rotation of the initial image, the HD-
Curve (thus also the Quotient HD-Curve) remain unchanged, and any zoom or
definition change leaves the Quotient HD-Curve unchanged.

6.2 HD-Surfaces

Below we show the result of computing the HD-surfaces for the heart, squash
and banana. Please note that we have drawn sample points on the HD-surfaces
rather than a rendering of an interpolated surface.

The Heart Sequence Figure 8 shows a series of five artificially generated
images (115x115) of the heart, rotating along a vertical axis, and Figure 9 shows
the corresponding computed HD-Surface (3D part only) and the Quotient HD-
Surface (2D part only).

The Squash Sequence. Figure 10 shows a series of five real images (300x300)
of a real squash, and Figure 11 shows the corresponding HD-surfaces.

The Banana Sequence Finally, Figure 12 shows a series of four images of a
banana, and Figure 13 shows the corresponding HD-surfaces. Please note that
the angle of rotation over the four images is significant (over 120 degrees), and
so four images yields a very sparse sampling of the HD-surfaces.

7 Conclusion

In this paper, we have introduced a new relation between the dual of a smooth
surface and the dual of the silhouettes formed under orthographic projection.
While the dual (or pedal) curve/surface depends upon the choice of the origin,
the HD-curves (HD-surfaces) are invariant to rigid transformations. We have
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Fig. 9. Sample points on HD-Surface and Quotient HD-surface computed from five
images of the heart.

illustrated how these geometric entities can be computed from synthetic and real
images, and have discussed how they could be used for object recognition. Unlike
nearly all methods for recognizing smooth curved 3-D objects, this technique
does not assume that objects come from a limited class such as surfaces of
revolution, generalized cylinders or algebraic surfaces.

Note that we have not yet incorporated this representation within an object
recognition system. An important issue to be addressed will be the combinatorics
of determining whether a measured HD-curve lies on a model HD-surface when
there is occlusion during either the modeling or recognition phase.

The basis for this method is that the set of points on an object’s surface
with parallel tangent planes project under orthographic projection to image
curve points with parallel tangent lines. Between a test image and each model
image, the HD-curves and HD-surfaces are essentially being used to identify
candidate stereo frontier points [7]. This paper generalizes our earlier results [24]
which defined invariants from silhouette tangent lines that were parallel to the
tangent lines at inflections or bitangents. It turns out that these features are the



Fig. 10. Five images of the squash.

Fig. 11. Squash’s HD-Surface (3D part) and Quotient HD-Surface (2D part).

singularities (cusps and crossings) of the dual of the silhouette. In [24], this lead
to representing an object by a set of “invariant curves” while in this paper, an
object is represented by a set of “invariant surfaces,” namely the HD-surfaces.
Consequently, the presented representation retains much more information about
the object’s shape and should provide greater discriminatory power than the
curves used in [24].
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