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ABSTRACT
We propose a framework to aid a visually impaired user to
recognize objects in an image by sonifying image edge fea-
tures and distance-to-edge maps. Visually impaired people
usually touch objects to recognize their shape. However, it
is difficult to recognize objects printed on flat surfaces or ob-
jects that can only be viewed from a distance, solely with our
haptic senses. Our ultimate goal is to aid a visually impaired
user to recognize basic object shapes, by transposing them
to aural information. Our proposed method provides two
types of image sonification: (1) local edge gradient sonifica-
tion and (2) sonification of the distance to the closest image
edge. Our method was implemented on a touch-panel mo-
bile device, which allows the user to aurally explore image
context by sliding his finger across the image on the touch
screen. Preliminary experiments show that the combination
of local edge gradient sonification and distance-to-edge soni-
fication are effective for understanding basic line drawings.
Furthermore, our tests show a significant improvement in
image understanding with the introduction of proper user
training.

Categories and Subject Descriptors
H.5.2 [Information interfaces and presentation]: User
Interfaces-Auditory (non-speech) feedback

General Terms
Human Factors, Design, Experimentation
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Figure 1: Mapping from image features to sound

1. INTRODUCTION
The visually impaired leverage auditory and haptic senses

(among other senses) to recognize the world around them.
However, objects displayed on flat surfaces (e.g. posters, dig-
ital displays, labels) and objects at a distance (e.g. buildings,
landscape, billboards) are harder to perceive. How then can
we use technology to translate these types of flat and distant
visual information in such a way to aid the visually impaired
to perceive them?

Devices such as the OptiCon scanner that displays printed
documents on a haptic display, 2D pin arrays and device spe-
cific sonification (e.g. digital temperature reader for ovens)
have been developed for the visually impaired but can be
very costly (e.g. several thousand dollars). Therefore, we
aim to develop a framework that is more accessible and af-
fordable to more people.

With the evolution and wide spread use of mobile de-
vices, it is fair to say that many people now have access to
a lightweight camera, sufficient computing power and audio
playback. In this work, we explore the use of image capture,
basic computer vision algorithms and audio feedback sup-
ported by existing mobile platforms to aid visually impaired
users in accessing visual information.

In our proposed framework we leverage basic image pro-
cessing techniques to extract salient features from an image
and then transpose them into sound. In particular, we ex-
tract image edges (regions of high visual contrast) and map



them to a combination of timed frequency oscillators (Figure
1). Our prototype system allows a users to take a picture of
the visual world and explore the static image aurally via a
mobile touch-screen device. Our preliminary tests show that
with proper training, our system can be used to understand
basic shapes and patterns in under 90 seconds.

2. RELATED WORK
Previous work on image sonification can be roughly di-

vided into two types of sonification. In high-level (sym-
bolic) sonification, visual information is translated into nat-
ural language. In contrast, low-level sonification transposes
visual information into an abstract audio signal. Our pro-
posed approach falls into the latter category of low-level im-
age sonification.

2.1 High-level sonification
The majority of work on sonification for the blind has fo-

cused on high-level (symbolic) sonification. Text-to-speech
(TTS) is the most well known sonification system, where
such software as the VoiceOver function on Apple products
and JAWS (Freedom Scientific, Inc.) can sonify text char-
acters and objects displayed by a computer. The advantage
of such systems is that they map visual information to the
information-rich realm of the natural language. The obvi-
ous limitation of high-level sonification is that it is limited
to objects that have obvious semantic representations. For
example, it is not clear how to sonify complex shapes, color
variations and detailed textures.

LookTel[1] goes beyond TTS and implements computer vi-
sion algorithms to automatically recognize object categories
and aurally returns the name of an object. Although train-
ing the classifiers requires a potentially extensive training
process, virtually no effort is required of the users to utilize
the system.

The VizWiz [3] mobile phone application allows a visually
impaired user to tap into the power of crowdsourcing to
obtain answers to visual queries. The system combines the
power of TTS and a pool of remote sighted guides to aid the
visually impaired user. The main advantage of the system
is that it leverages the brain power of humans and therefore
can deal with a large range of complex queries. The lag time
between queries and answers, the running cost of queries and
the availability of remote sighted users is still an open issue.

2.2 Low-level sonification
While high-level sonification eases the burden of recog-

nition, it is also limited by the lexicon of the system. In
contrast, a mapping to an abstract audio space (low-level
sonification) has the advantage of dealing with a wider range
of objects without being constrained by a lexicon. Low-level
sonification can still work with hard-to-label (untrained) ob-
jects and can work in realtime without relying on remote
guides.

The vOICe system [4] sonifies the global luminance of an
image and maps luminance values to a mixture of frequency
oscillators. Specifically, the image brightness is mapped
to amplitude and location is mapped to a frequency. The
vOICe system scans the entire field of view of a head mounted
camera with a vertical bar from left to right and transposes
the luminance over the vertical bar to sound. One of the
advantages of the vOICe system is that it sonifies an entire
image to convey the global content of any type of scene and

Figure 2: (a)source image (b)edge image (c)distance
image

the system does not require any type of prior training or
lexicon.

The Timbremap [5] system sonifies local visual informa-
tion base on the location of a users finger on a map. Tim-
bremap helps the user to navigate through a map by soni-
fying distances to lines (streets) on the map. By placing his
finger on a map, the position of the finger with respect to
the nearest line is transposed into an audio signal. The sys-
tem uses stereo panning to convey whether the finger is to
the right or left of the line. Although the Timbremap was
designed for maps, the concept of binaural feedback can be
applied to any type of line drawing.

Ivan and Radek[2] presented a sonification method for
mapping color information to a frequency oscillator, where
color information was mapped to the wave envelope, wave-
form and frequency.

A common attribute of low-level image sonification is that
it requires the user to learn the mapping between visual fea-
tures and audio feedback. While it does place a greater
burden on the user, it also taps into the human potential for
sensory substitution and uses a diverse set of cognitive skills.
We hypothesize that with the proper training, low-level soni-
fication techniques offer users more depth and breadth in
analyzing audio-visual information.

3. OUR APPROACH
The use of our fingers is an intuitive way to explore local

texture and shape. For example, we can feel the grains on
a plank of wood or follow a crease in a piece of paper. For
a visually impaired person trained to read Braille, the fin-
gertips are used as a type of local area sensor to understand
Braille dot patterns or raised figures. In a similar manner,
we aim to extend the analogy of the finger as a local area
sensor to provide an intuitive mode of obtaining local spa-
tial information. When a finger touches an edge, local area
sonification occurs. From initial experiments, we found that
local area sonification was only effective when a finger was
located near an edge in the image. When no edge existed in
the vicinity of the finger, the user would wander the image
and lose his sense of positioning relative to an edge. To aid
the user in areas with no edge features, we incorporated a
secondary sonification mode, distance-to-edge sonification,
that conveys the distance to the nearest edge. We give a
detailed explanation of these two modes of sonification in
the following sections.

3.1 Sonifying the Edge Image
As mentioned above, we begin our exploration of image

sonification with the use of image edge features. In visual
perception, is has been shown that people often use the im-



age edges (object outlines) to recognize the object [6] [7].
Therefore, in this work, we explore the use of image edge
sonification. To extract edge features from the image, we
use the Canny edge detection [8] to obtain contours. The
Canny edge detector is relatively robust to noise and two
thresholding parameters can be adjusted to extract only the
dominant edges in an image (see Figure 2(b)). Although we
have utilized the Canny detector for simplicity, we believe
that more sophisticated contour detectors such as gPb [10]
will improve the quality of the extracted edge map. This
edge image is used to generate the audio feedback for local
area sonification.

When a finger is placed at a pixel location i such that
it is part of an edge i ∈ E, a small vertical bar scans the
image directly under the finger (see Figure 1). Each element
of the vertical bar is associated to a frequency oscillator (a
simple sine wave for our experiments), where each element
is mapped on an exponential scale over a range between
fmax = 2527Hz (top element) and fmin = 440Hz (bottom
element). As the vertical bar scans the local area in the
binary edge image, a certain frequency oscillator is turned on
if the pixel that it scans is an edge, otherwise the oscillator
is turned off. A horizontal line in the edge image yields long
lasting single frequency sine wave. A vertical line yields a
single bleep sound, where all frequency oscillators are turned
on simultaneously for a short duration.

We implemented our image sonification system on a mo-
bile touch-screen display device, the Apple iPhone 3G. The
size of the square area scanned by the local area sonification
mode is 30 × 30 pixels, roughly the size of the finger tip.
Since edges are usually very thin and very hard to localize
with the fingertip, the edge image was dilated and smoothed
to increase the width of the edges.

3.2 Sonifying the Distance-to-Edge Map
In addition to the edge image, we calculated the shortest

distance to the nearest edge for use with distance-to-edge
sonification. Each element j in the distance-to-edge map
contains the Euclidean distance to the nearest edge (some
pixel location in the image). The resulting distance-to-edge
map generated using the Felzenszwalb algorithm [9] is shown
in Figure 2(c). The distance map is used to generate a pulse
train to convey to the user the distance d(j) to the nearest
edge, where the mapping from distance to frequency is given
as below.

f(j) = (fH − fL)

(
255− d(j)

255

)2

+ fL (1)

where fH is the highest frequency of the pulse train and fL is
the lowest output frequency of the pulse train. We normalize
by 255 because the maximum value of the distance image has
been scaled to 255.

As the user slides his finger closer to an edge, the fre-
quency of the pulse train increases and reaches a maximum
when the position is 10 pixels away from an edge. The pulse
train ceases to play once the user’s finger is within 10 pixels
of an edge.

4. LOCAL AREA SONIFICATION
To understand the effect of local area sonification on image

understanding, we performed an experiment where a user is
asked to reproduce three line drawings shown in Figure 3. In
the first part of the experiment, the local area sonification

(a) straight line (b) saw wave shape (c) sine wave shape

Figure 3: Ground truth for localized patterns

Local Sonification OFF Local Sonification ON
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Figure 4: User results: Local area sonification OFF
(left) and Local area sonification ON(right)

is turned off and the user relies solely on the distance-to-
edge sonification to reproduce the line drawing. Then in the
second part of the experiment, the user reproduces the line
drawings using both the local area sonification and distance-
to-edge sonification. The users where only given a simple
verbal explanation of the sonification and no training was
administered to the participants. Each participant was given
60 seconds to reproduce the line drawing.

In Figure 4 we observe that four out of the six participants
were able to identify the locally periodic patterns generated
by the sine wave. Notice that the gradients of line drawings
of all participants changed after including local area sonifi-
cation.
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Figure 5: User results: Before training (left), After
training (right)

5. USER TRAINING
In this second experiment, we tested the effect of train-

ing. The line drawing produced by the participants before
and after training are given in Figure 5. Participants were
only given 90 seconds to reproduce the line drawings for
both tests. Before training, none of the participants were
able to reproduce any of the line drawing. For the training
stage, each user was given roughly 20 minutes to explore
various basic shapes (with prior knowledge of the line draw-
ing). The moderator also quizzed participants to localize
slopes, corners and t-junctions. After training, we observe
a significant increase in performance. Two of the four par-
ticipants were able to correctly reproduce all line drawings.
All participants were able to reproduce the triangle. We
also note that the degree to which the reproductions differ
from the ground truth line drawings was also significantly
reduced after training. Although some of the reproductions
are incomplete, none of the participants generated lines with
gradients that contradicted the ground truth line drawings.

6. DISCUSSION AND CONCLUSION
Even with the use of distance-to-edge sonification, many

participants commented that it was difficult to track ab-
solute position in the current framework. We would expect
that a hybrid sonification scheme using both local and global
sonification may help to alleviate this problem.

Although all user tests were performed with blindfolded

Figure 6: Test participant using the EdgeSonic sys-
tem

sighted participants, we are planning to evaluate our system
with people with congenital blindness and those who have
lost their sight later in life. We noticed during our experi-
ments that participants were highly influenced by their prior
knowledge of the visual world and rudimentary shapes (e.g.
perceiving a triangle as a circle). It will be interesting to ob-
serve how this phenomenon comes into play for the visually
impaired.

In this paper, we presented a sonification methodology
based on edge gradients and distance-to-edge maps. Prelim-
inary experiments with blindfolded sighted persons showed
that local area sonification enabled participants to be more
sensitive to changes in the local gradients in images. In
addition, experiments showed significant improvements in
the participant’s ability to reproduce the line gradients in
line drawings after a period of training. Future work will
focus on better training techniques and hybrid sonification
schemes to increase recognition speed.
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