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Abstract 

Spectral graph theoretic methods have recently shown 
great promise for  the problem of image segmentation, but 
due to the computational demands, applications of such 
methods to spatiotemporal data have been slow to appear. 
For even a short video sequence, the set of all pairwise 
voxel similarities is a huge quantity of data: one second of 
a 256 x 384 sequence captured a t  3oHz entails on the order 
of 1013 pairwise similarities. The contribution of this paper 
is a method that substantially reduces the computational re- 
quirements of grouping algorithms based on spectral parti- 
tioning, making it feasible to apply them to very large spa- 
tiotemporal grouping problems. Our approach is based on a 
technique for  the numerical solution of eigenfunction prob- 
lems known as the Nystrom method. This method allows 
extrapolation of the complete grouping solution using only 
a small number of "typical '' samples. In doing so, we suc- 
cessfully exploit the fact that there are far  fewer coherent 
groups in an image sequence than pixels. 

1 Introduction 

The Gestalt school introduced several cues that are im- 
portant to visual grouping including proximity, similarity, 
and common fate. Approaching the problem of grouping 
from a computational standpoint requires operationalizing 
such cues and combining them in an integrated framework. 
One method for combining both static image cues and mo- 
tion information is to consider all images in a video se- 
quence as a space-time volume and attempt to partition this 
volume into regions that are coherent with respect to the 
various grouping cues. This perspective is supported by 
evidence from psychophysics [9] that suggests spatial and 
temporal cues are treated jointly in the human visual sys- 
tem. The insight of considering a video signal as three di- 
mensional for purposes of analysis goes back to Adelson 
and Bergen [ I ]  and Baker et al. [4]. Volumetric segmen- 
tation has also been treated extensively in the literature on 

MRI processing [3], however, this domain lacks the causal 
structure (in the linear systems sense) possessed by video 
and doesn't consider cues that are unique to motion such as 
common fate. 

Unified treatment of the spatial and temporal domains 
is also appealing as it could solve some of the well known 
problems in grouping schemes based on motion alone (e.g. 
layered motion models [23, 221). For example, color or 
brightness cues can help to segment untextured regions for 
which the motion cues are ambiguous and contour cues can 
impose sharp boundaries where optical flow algorithms tend 
to drag along bits of background regions. 

One computational framework for grouping within the 
space-time volume is to compute a k-way partitioning of a 
weighted graph where each node represents a volume unit 
(voxel) and the edge weights encode affinity between the 
voxels. Approaches in this framework have been developed 
and applied extensively to spatial segmentation of single 
images [19,. 12, 8, 15, 141. Unfortunately such successes 
have been slow to carry over to the case of spatiotemporal 
data. * Indeed, the conclusions of a recent panel discussion 
on spatiotemporal grouping [ 5 ]  are that approaches in which 
the image sequence is treated as a multidimensional volume 
in 2, y, t hold the greatest promise, but that efforts along 
these lines have been hampered largely by computational 
demands. The contribution of this paper is aimed directly 
at ameliorating this computational burden, thus making it 
feasible to extend the ideas of powerful pairwise grouping 
methods to the domain of video. 

We formulate the grouping problem in the normalized 
cut (NCut) framework [ 191 which requires the solution of an 
n x n eigenproblem, where n is the total number of voxels in 
the space-time volume. (For example, n NN 3 x lo6 for one 
second of a 256x384 image sequence captured at 30Hz.) 
Our approach to taming the computational demands of this 
problem is based on an approximation technique known as 
the Nystrom method, originally developed for the numerical 
solution of eigenfunction problems. In short, this approach 
exploits the fact that the number of coherent groups in an 

'Some preliminary steps in this direction were made by [NI. 
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image sequence is considerably smaller than the number of 
voxels. It does so by extrapolating the complete grouping 
solution using the solution to a much smaller problem based 
on a few random samples drawn from the image sequence. 

The structure of this paper is as follows. In Section 2 we 
discuss grouping cues and review the NCut grouping algo- 
rithm. We highlight our application of the Nystrom method 
to the NCut grouping formulation in Section, 3. Results are 
discussed in Section 4 and we conclude and ponder future 
work in Section 5. 

2 Framework for Spatiotemporal Grouping 

2.1 Spatiotemporal Grouping Cues 

We would like to identify prominent groups within a 
space-time volume. In order to do so, it is first necessary 
to compute a measure of affinity between each unit of vol- 
ume (voxel). Taking our cue from the Gestalt school, we 
consider proximity, similarity and common fate. We at- 
tach three features to each voxel in the sequence: location 
(z, y, t), intensity and color ( L ,  a, b), and an optical flow 
vector (U, w) estimated between subsequent pairs of frames. 
We then compute the affinity between point i and j as 

where zi is the feature vector associated with the ith point 
in the image and C is a diagonal matrix whose entries are 
free parameters of the algorithm. The elements of K take 
on values between 0 and 1 which indicate how likely it is 
that two voxels belong to the same group. The diagonal 
entry of C associated with each cue is based on the expected 
variation within a group. 

2.2 Partitioning with Normalized Cuts 

Once the appropriate affinity function has been chosen, 
we would like to find a partitioning of the voxels into groups 
where each group has strong within group affinity and weak 
between group affinity. We employ the multiple eigenvector 
version of NCut [ 101 which embeds the voxels into a low di- 
mensional Euclidean space such that significant differences 
in the normalized affinities are preserved while noise is sup- 
pressed. The k-means algorithm can then be used to dis- 
cover groups of voxels that belong to the same region. 

To find an embedding, we compute the matrix of eigen- 
vectors V and eigenvalues A of the system 

where D is a diagonal matrix with entries Dji = C j  Kij. 
The the ith embedding coordinate of the j th voxel is then 

given by - 7  

where the eigenvectors have been sorted in ascending order 
by eigenvalue. 

Unfortunately, the need to solve this system presents 
a serious computational problem. Since K grows as the 
square of the number of voxels in the sequence, for even 
very short video sequences it quickly becomes infeasible to 
fit K in memory, let alone compute its leading eigenvectors. 
One approach to this problem has been to use a sparse, ap- 
proximate version of K in which each voxel is connected 
only to a few of its nearby neighbors in space and time and 
all other connections are assumed to be zero [18]. While 
this makes it possible to use efficient, sparse eigensolvers 
(i.e. Lanczos) the effects of this process are difficult to rea- 
son about. We propose an alternative approximation based 
on sampling in which we are able to keep all voxel simi- 
larities at the expense of some numerical accuracy in their 
values. Our approach also has the advantage of providing a 
clear quantification of the error introduced. 

3 The Nystrom Approximation 

The Nystrom method is a technique for finding numeri- 
cal approximations to eigenfunction problems of the form: 

I" K ( z ,  ?/)q5(?/)& = W(Z)  

We can approximate this integral equation by evaluating it 
at a set of evenly spaced points 51, 52, . . . En on the interval 
[a, b] and employing a simple quadrature rule, 

." 
j=1 

where $(z) is an approximation to the true c$(z). To solve 
(1) we set z = & yielding the system of equations 

Without loss of generality, we let [a, b] be [0,1] and struc- 
ture the system as the matrix eigenvalue problem: 

K &  = n&h 

where Kij = K(yi,yj)  is the Gram matrix and 3 = 
[&42 . . . &] are n approximate eigenvectors with corre- 
sponding eigenvalues AI, A2, . . . A,. Substituting back into 
equation (1) yields the Nysrrlirn extension for each q5i 
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3.1 Approximating the Eigenvectors of Affinity 
Matrices 

~~~ ~ ~ ~~ ~ ~ ~~ ~~ 

dl = sum([A;B'],l); 
d2 = sum(B, 1) + sum(B' ,1) *inv(A) *B; 
dhat = sqrt(l./[dl d21)'; 
A = A. * ( dhat ( 1 : n) *&at ( 1 : n) ' ) ; 
B = B.*(dhat(l:n)*dhat(n+(l:m))'); 
Asi=sqrtm [ inv (A) ) ; 
Q=A+Asi*B*B'*Asi; 
[U,L,Tl=svd(Q); 
V= [A;B' 1 *Asi*U*inv(sqrt (L) ) ; 
for i = Z:nvec+l 

E(:,i-l) = V(:,i)./V(:,l); 
1 E[ :, i-1) = E( : , i-1) /sqrt [l-L(i, i)) ; 
I end 

The preceding analysis suggests that it should be possi- 
ble to find approximate eigenvectors of a large Gram matrix 
by solving a much smaller eigenproblem using only a sub- 
set of the entries and employing the Nystrom extension to 
fill in the rest. This is indeed the case.' In this section we 
show an alternate analysis which relies purely on matrices 
and provides additional insight about the nature of the ap- 
proximation. 

Consider a Gram matrix K E RpxP partitioned as fol- 
lows 

with A E IRnXn, B E IRnx", and C E RmX" where we 
will take n to be much smaller than m. Since K is positive 
definite, we can write it as the inner product of a matrix 2 
with itself: K = ZTZ. If K is of rank n and the rows of 
the submatrix [ A  B] are linearly independent, 2 can be 
written using only A and B as follows. Let 2 be partitioned 
2 = [X Y] with X E R p X n  and Y E R P X m .  Rewriting 
K we have: 

Putting this in correspondence with (3) gives A = X T X  
and B = X T Y .  Using the diagonalization A = UAUT, 
where UTU = I we obtain 

X = A1/2UT 
y = ( x T ) - ~ B  = A - ~ / ~ U T B  

Combining the two into 2 = [X P] E R P X P  gives us 

If the rank of K is greater than n or we fail to choose in- 
dependent rows, then K is an approximation to K whose 
quality can be quantified as the norm of the Schur comple- 
ment [IC - BTA-lBII. The size of this norm is governed 
by the extent to which C is spanned by the rows of B.  

Given this expression for K, the approximate eigenvec- 
tors of K can be written in matrix form. Using again the 
diagonalization A = U N T ,  we have 

U K = UAUT,  with U = [ BTUA-l  ] 

Figure 1. Example MATLAB code for finding the first 
nvec embedding vectors of the normalized affinity matrix 
given unnormalized submatrices A of size nxn and B of 
size nxm. 

The lower block of 0 is clearly just matrix notation for the 
repeated application of the Nystrom extension as given in 
equation (2). The only remaining detail is that the columns 
of U are not necessarily orthogonal. This is addressed as 
follows. Let All2 denote the symmetric positive definite 
square root of A, define Q = A + A-lI2BBTA-lf2 and 
diagonalize it as Q = RART. Now define the matrix 3 as 

1: $a_" then be-shqwn that and ff diagonalize K, i.e. K = 
VAVT and VTV = I. Due to lack of space we omit the 
proof. 

3.2 Approximate Normalized Cuts 

To apply the matrix form of the Nystrom extension ,to 
NCuts, it is necessary to compute the row sums of K. 
This is possible without explicitly evaluating the BTA-l B 
block since 

= [ b, + BTA-' b, I 
where a,, b, E IR" denote the row sums of A and B,  re- 
spectively2 and b, E IR" denotes the, column sum of B.  

With d in hand, the blocks of D-'/2KD-1/2 that are 
needed to approximate the leading eigenvectors are given 
as 

Aij , i , j  = 1 ,  ..., m Aij t - 
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Approximation Error on 100 Natural Images 
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Figure 2. The behavior of the approximation error for nat- 
ural images with increasing numbers of samples. The cues 
used here are color, intensity and proximity. The error bars 
indicate one standard deviation taken over a set of 100 nat- 
ural images chosen from the Corel database. Recall that the 
entries of .K range from 0 to 1 so error values shown here 
are on the order of a few percent. 

and 

Bij + 4% , i = 1 ).“, m, j  = 1, ..., n 

All that remains is to apply equation (4) as before. The 
entire procedure for computing the normalized embedding 
coordinates given A and B is outlined in Figure 1 in the 
form of some simple MATLAB code. 

3.3 Computational Demands 

Once the affinities [A B] have been computed, the 
most expensive operation is the diagonalization of A and 
Q. These operations scale as O(n3) where n is the number 
of samples employed in the approximation. 

How many samples are required to achieve a good parti- 
tioning? The answer in practice seems to be very few. We 
studied the approximation quality of an affinity matrix con- 
sisting of color and proximity cues for a set of one hundred 
480 x 320 natural images chosen from the Corel database 
of stock photos. We chose proximity and color parameters 
uppoz = 400 and ucolor = 0.01 and the sample coordinates 
were chosen uniformly at random. Since it’s not feasible to 
hold C in memory, the error was estimated by considering 
submatrices of C. Figure 2 demonstrates the fall-off in error 
as the number of samples are increased. The error bars indi- 
cate one standard deviation over the set of images. Without 

providing a perturbation-theoretic argument, we note that 
the subjective quality of the eigenvectors follows a similar 
pattern as one might expect. 

A simple analysis of this rapid decay goes as follows. 
In the limiting case that the affinity function is a perfect 
indicator of whether two points lie in the same segment, 
then a single sample from each segment would be sufficient 
to span the rows of K. This clearly provides leverage to the 
intuition that segmentation should scale with the number of 
segments rather than the number of pixels in the image. 

3.4 Related Work on Approximation 

E. J. Nystrom published his method in the late 1920’s 
[ 1 I]. Its use in approximating solutions to integral equa- 
tions is well known for its simplicity and accuracy [2 ,6 ,  131. 
The Nystrom method has also been recently applied in the 
kernel learning community 1243 for fast approximate Gaus- 
sian process classification and regression. As noted in [24], 
this approximation method directly corresponds to the ker- 
nel PCA feature space projection technique of [ 171. The au- 
thors of [20] present a greedy method for selecting the best 
rowskolumns to use for the approximation. A related work 
in the area of document analysis is that of [7], wherein only 
the off-diagonal blocks of the affinity matrix are known, 
i.e. only bipartite weights are available. The author then ap- 
plies the Normalized Cut method, which reduces to a simple 
SVD on the non-zero blocks, in order to accomplish “co- 
clustering” of documents and keywords. 

4 Results 

We provide several examples of video segmentation us- 
ing our algorithm. Each of the results shown make use of 
100 samples drawn at random from the first, middle and 
last frame in the sequence. Figure 3 shows the perfor- 
mance of our algorithm on the flower garden sequence. A 
proper treatment would require dealing with the texture in 
the flowerbed and the illusory contours that define the tree 
trunk. However, the discontinuities in local color and mo- 
tion alone are enough to yield a fairly satisfying segmenta- 
tion. 

Figure 4 demonstrates segmentation of a relatively un- 
clutered scene. Processing the entire sequence as a volume 
automatically provides correspondences between segments 
in each frame. We note that using motion alone would 
tend to track the shadows and specularities present on the 
background and fail to find the sharp boundaries around the 
body. Figure 5 shows performance in a more complicated 
sequence involving multiple moving objects in addition to 
camera translation. On a 800MHz Pentium 111 processor, 
segmenting a 120 x 120 x 5 voxel sequence (i.e. Figure 5 )  
takes less than 1 minute in MATLAB. 
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5 Conclusion 

We have introduced an approximate version of NCut 
based on the Nystrom method which makes it possible to 
solve very large grouping problems efficiently. We have 
demonstrated the application of this technique to spatiotem- 
poral data with encouraging results. By simultaneously 
making use of both static cues (color, intensity, location in 
the image) and dynamic cues (optical flow, location in time) 
we are able to find coherent groups within a variety of video 
sequences. 

More work is clearly needed in order to achieve high 
quality segmentation on general video. Of key importance 
is the incorporation of more sophisticated grouping cues 
and gating mechanisms. For example, there are many static 
image cues that can be extended to the domain of video. If 
the boundary of a region is indicated by a strong contour, 
it will sweep out a surface in the space-time volume. Vox- 
els that are on opposite sides of such an intervening sur- 
face shouldn’t be as likely to belong to the same group. 
Likewise, texture has a space-time equivalent in the form 
of dynamic textures (e.g. tree leaves blowing in the wind) 
[21, 161. 
Our hope is that the approximation method we have pre- 

sented will facilitate the further development of segmenta- 
tion methods which work directly on the spatio-temporal 
volume. 
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Figure 3. The Flower Garden Sequence: Each column represents our segmentation of a frame from the sequence of four 
images shown in the top row. Each row shows slices through a space-time segment. It’s important to note that the algorithm 
provides segment correspondence between frames automatically, The image dimensions are 120 x 80 pixels. 
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Figure 4. The Leap: The original frames (120 x 80 pixels) are shown in the left column. Each column shows slices through 
a space-time segment. 
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Figure 5. The Firetruck The original 120 x 120 pixel sequence is shown across the top row. The remaining rows indicate 
individual segments. 
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