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Abstract

We develop a face recognition algorithm which is insensitive to gross variation in

lighting direction and facial expression. Taking a pattern classi�cation approach,

we consider each pixel in an image as a coordinate in a high-dimensional space. We

take advantage of the observation that the images of a particular face, under varying

illumination but �xed pose, lie in a 3-D linear subspace of the high dimensional

image space { if the face is a Lambertian surface without shadowing. However,

since faces are not truly Lambertian surfaces and do indeed produce self-shadowing,

images will deviate from this linear subspace. Rather than explicitly modeling

this deviation, we linearly project the image into a subspace in a manner which

discounts those regions of the face with large deviation. Our projection method is

based on Fisher's Linear Discriminant and produces well separated classes in a low-

dimensional subspace even under severe variation in lighting and facial expressions.

The Eigenface technique, another method based on linearly projecting the image

space to a low dimensional subspace, has similar computational requirements. Yet,

extensive experimental results demonstrate that the proposed \Fisherface" method

has error rates that are lower than those of the Eigenface technique for tests on the

Harvard and Yale Face Databases.



Index Terms: Appearance-Based Vision, Face Recognition, Illumination Invariance,

Fisher's Linear Discriminant



Figure 1. The same person seen under di�erent lighting conditions can appear dramatically
di�erent: In the left image, the dominant light source is nearly head-on; in the right image, the
dominant light source is from above and to the right.

1 Introduction

Within the last several years, numerous algorithms have been proposed for face recogni-

tion; for detailed surveys see [1, 2]. While much progress has been made toward recogniz-

ing faces under small variations in lighting, facial expression and pose, reliable techniques

for recognition under more extreme variations have proven elusive.

In this paper we outline a new approach for face recognition { one that is insensitive

to large variations in lighting and facial expressions. Note that lighting variability in-

cludes not only intensity, but also direction and number of light sources. As is evident

from Figure 1, the same person, with the same facial expression and seen from the same

viewpoint, can appear dramatically di�erent when light sources illuminate the face from

di�erent directions. See also Figure 4.

Our approach to face recognition exploits two observations:

1. All of the images of a Lambertian surface, taken from a �xed viewpoint but under

varying illumination, lie in a 3-D linear subspace of the high-dimensional image

space [3].



2. Because of regions of shadowing, specularities, and facial expressions, the above

observation does not exactly hold. In practice, certain regions of the face may have

variability from image to image that often deviates signi�cantly from the linear

subspace and, consequently, are less reliable for recognition.

We make use of these observations by �nding a linear projection of the faces from the

high-dimensional image space to a signi�cantly lower dimensional feature space which

is insensitive both to variation in lighting direction and facial expression. We choose

projection directions that are nearly orthogonal to the within-class scatter, projecting

away variations in lighting and facial expression while maintaining discriminability. Our

method Fisherfaces, a derivative of Fisher's Linear Discriminant (FLD) [4, 5], maximizes

the ratio of between-class scatter to that of within-class scatter.

The Eigenface method is also based on linearly projecting the image space to a low

dimensional feature space [6, 7, 8]. However, the Eigenface method, which uses principal

components analysis (PCA) for dimensionality reduction, yields projection directions that

maximize the total scatter across all classes, i.e. across all images of all faces. In choosing

the projection which maximizes total scatter, PCA retains unwanted variations due to

lighting and facial expression. As illustrated in Figures 1 and 4 and stated by Moses, Adini,

and Ullman, \the variations between the images of the same face due to illumination and

viewing direction are almost always larger than image variations due to change in face

identity" [9]. Thus, while the PCA projections are optimal for reconstruction from a low

dimensional basis, they may not be optimal from a discrimination standpoint.

We should point out that Fisher's Linear Discriminant is a \classical" technique in

pattern recognition [4], �rst developed by Robert Fisher in 1936 for taxonomic classi�ca-

tion [5]. Depending upon the features being used, it has been applied in di�erent ways

in computer vision and even in face recognition. Cheng et al. presented a method that



used Fisher's discriminator for face recognition where features were obtained by a polar

quantization of the shape [10]. Baker and Nayar have developed a theory of pattern re-

jection which is based on a two class linear discriminant [11]. Contemporaneous with

our work [12], Cui, Swets, and Weng applied Fisher's discriminator (using di�erent termi-

nology, they call it the Most Discriminating Feature { MDF) in a method for recognizing

hand gestures [13]. Though no implementation is reported, they also suggest that the

method can be applied to face recognition under variable illumination.

In the sections to follow, we compare four methods for face recognition under variation

in lighting and facial expression: correlation, a variant of the linear subspace method

suggested by [3], the Eigenface method [6, 7, 8], and the Fisherface method developed

here. The comparisons are done using both a subset of the Harvard Database (330

images) [14, 15] and a database created at Yale (176 images). In tests on both databases,

the Fisherface method had lower error rates than any of the other three methods. Yet,

no claim is made about the relative performance of these algorithms on much larger

databases.

We should also point out that we have made no attempt to deal with variation in

pose. An appearance-based method such as ours can be extended to handle limited pose

variation using either a multiple-view representation such as Pentland, Moghaddam, and

Starner's View-based Eigenspace [16] or Murase and Nayar's Appearance Manifolds [17].

Other approaches to face recognition that accommodate pose variation include [18, 19, 20].

Furthermore, we assume that the face has been located and aligned within the image, as

there are numerous methods for �nding faces in scenes [21, 22, 20, 23, 24, 25, 7].



2 Methods

The problem can be simply stated: Given a set of face images labeled with the person's

identity (the learning set) and an unlabeled set of face images from the same group of

people (the test set), identify each person in the test images.

In this section, we examine four pattern classi�cation techniques for solving the face

recognition problem, comparing methods that have become quite popular in the face

recognition literature, namely correlation [26] and Eigenface methods [6, 7, 8], with alter-

native methods developed by the authors. We approach this problem within the pattern

classi�cation paradigm, considering each of the pixel values in a sample image as a coor-

dinate in a high-dimensional space (the image space).

2.1 Correlation

Perhaps, the simplest classi�cation scheme is a nearest neighbor classi�er in the image

space [26]. Under this scheme, an image in the test set is recognized (classi�ed) by

assigning to it the label of the closest point in the learning set, where distances are

measured in the image space. If all of the images are normalized to have zero mean and

unit variance, then this procedure is equivalent to choosing the image in the learning set

that best correlates with the test image. Because of the normalization process, the result

is independent of light source intensity and the e�ects of a video camera's automatic gain

control.

This procedure, which subsequently is referred to as correlation, has several well-known

disadvantages. First, if the images in the learning set and test set are gathered under

varying lighting conditions, then the corresponding points in the image space may not

be tightly clustered. So in order for this method to work reliably under variations in

lighting, we would need a learning set which densely sampled the continuum of possible



lighting conditions. Second, correlation is computationally expensive. For recognition,

we must correlate the image of the test face with each image in the learning set; in

an e�ort to reduce the computation time, implementors [27] of the algorithm described

in [26] developed special purpose VLSI hardware. Third, it requires large amounts of

storage { the learning set must contain numerous images of each person.

2.2 Eigenfaces

As correlation methods are computationally expensive and require great amounts of stor-

age, it is natural to pursue dimensionality reduction schemes. A technique now commonly

used for dimensionality reduction in computer vision { particularly in face recognition {

is principal components analysis (PCA) [14, 17, 6, 7, 8]. PCA techniques, also known as

Karhunen-Loeve methods, choose a dimensionality reducing linear projection that maxi-

mizes the scatter of all projected samples.

More formally, let us consider a set of N sample images fx1;x2; : : : ;xNg taking values

in an n-dimensional image space, and assume that each image belongs to one of c classes

fX1; X2; : : : ; Xcg. Let us also consider a linear transformation mapping the original n-

dimensional image space into an m-dimensional feature space, where m < n. The new

feature vectors yk 2 IRm are de�ned by the following linear transformation:

yk = W Txk k = 1; 2; : : : ; N (1)

where W 2 IRn�m is a matrix with orthonormal columns.

If the total scatter matrix ST is de�ned as

ST =

NX

k=1

(xk � �)(xk � �)
T

where c is the number of classes and � 2 IRn is the mean image of all samples, then after

applying the linear transformation W T , the scatter of the transformed feature vectors



fy1;y2; : : : ;yNg is W TSTW . In PCA, the projection Wopt is chosen to maximize the

determinant of the total scatter matrix of the projected samples, i.e.

Wopt = argmax
W

jW TSTW j (2)

=
�
w1 w2 : : : wm

�

where fwi j i = 1; 2; : : : ; mg is the set of n-dimensional eigenvectors of ST corresponding

to the m largest eigenvalues. Since these eigenvectors have the same dimension as the

original images, they are referred to as Eigenpictures in [6] and Eigenfaces in [7, 8]. If

classi�cation is performed using a nearest neighbor classi�er in the reduced feature space

and m is chosen to be the number of images N in the training set, then the Eigenface

method is equivalent to the correlation method in the previous section.

A drawback of this approach is that the scatter being maximized is due not only to the

between-class scatter that is useful for classi�cation, but also to the within-class scatter

that, for classi�cation purposes, is unwanted information. Recall the comment by Moses,

Adini and Ullman [9]: Much of the variation from one image to the next is due to illumi-

nation changes. Thus if PCA is presented with images of faces under varying illumination,

the projection matrix Wopt will contain principal components (i.e. Eigenfaces) which re-

tain, in the projected feature space, the variation due lighting. Consequently, the points

in the projected space will not be well clustered, and worse, the classes may be smeared

together.

It has been suggested that by discarding the three most signi�cant principal compo-

nents, the variation due to lighting is reduced. The hope is that if the �rst principal

components capture the variation due to lighting, then better clustering of projected

samples is achieved by ignoring them. Yet it is unlikely that the �rst several principal

components correspond solely to variation in lighting; as a consequence, information that

is useful for discrimination may be lost.



2.3 Linear Subspaces

Both correlation and the Eigenface method are expected to su�er under variation in

lighting direction. Neither method exploits the observation that for a Lambertian surface

without shadowing, the images of a particular face lie in a 3-D linear subspace.

Consider a point p on a Lambertian surface illuminated by a point light source at

in�nity. Let s 2 IR3 be a column vector signifying the product of the light source intensity

with the unit vector for the light source direction. When the surface is viewed by a camera,

the resulting image intensity of the point p is given by

E(p) = a(p)n(p)T s (3)

where n(p) is the unit inward normal vector to the surface at the point p, and a(p) is the

albedo of the surface at p [28]. This shows that the image intensity of the point p is linear

on s 2 IR3. Therefore, in the absence of shadowing, given three images of a Lambertian

surface from the same viewpoint taken under three known, linearly independent light

source directions, the albedo and surface normal can be recovered; this is the well known

method of photometric stereo [29, 30]. Alternatively, one can reconstruct the image of the

surface under an arbitrary lighting direction by a linear combination of the three original

images, see [3].

For classi�cation, this fact has great importance: it shows that for a �xed viewpoint,

the images of a Lambertian surface lie in a 3-D linear subspace of the high-dimensional

image space. This observation suggests a simple classi�cation algorithm to recognize

Lambertian surfaces { insensitive to a wide range of lighting conditions.

For each face, use three or more images taken under di�erent lighting directions to con-

struct a 3-D basis for the linear subspace. Note that the three basis vectors have the same

dimensionality as the training images and can be thought of as basis images. To perform

recognition, we simply compute the distance of a new image to each linear subspace and



choose the face corresponding to the shortest distance. We call this recognition scheme

the Linear Subspace method. We should point out that this method is a variant of the

photometric alignment method proposed in [3], and is a special case of the more elaborate

recognition method described in [15]. Subsequently, Nayar and Murase have exploited the

apparent linearity of lighting to augment their appearance manifold [31].

If there is no noise or shadowing, the Linear Subspace algorithmwould achieve error free

classi�cation under any lighting conditions, provided the surfaces obey the Lambertian

re
ectance model. Nevertheless, there are several compelling reasons to look elsewhere.

First, due to self-shadowing, specularities, and facial expressions, some regions in images

of the face have variability that does not agree with the linear subspace model. Given

enough images of faces, we should be able to learn which regions are good for recognition

and which regions are not. Second, to recognize a test image we must measure the distance

to the linear subspace for each person. While this is an improvement over a correlation

scheme that needs a large number of images to represent the variability of each class, it

is computationally expensive. Finally, from a storage standpoint, the Linear Subspace

algorithm must keep three images in memory for every person.

2.4 Fisherfaces

The previous algorithm takes advantage of the fact that under admittedly idealized con-

ditions, the variation within class lies in a linear subspace of the image space. Hence,

the classes are convex and therefore linearly separable. One can perform dimensionality

reduction using linear projection and still preserve linear separability. This is a strong

argument in favor of using linear methods for dimensionality reduction in the face recog-

nition problem, at least when one seeks insensitivity to lighting conditions.

Since the learning set is labeled, it makes sense to use this information to build a more

reliable method for reducing the dimensionality of the feature space. Here we argue that
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Figure 2. A comparison of principal component analysis (PCA) and Fisher's linear discriminant
(FLD) for a two class problem where data for each class lies near a linear subspace.

using class speci�c linear methods for dimensionality reduction and simple classi�ers in

the reduced feature space, one gets better recognition rates than with either the Linear

Subspace method or the Eigenface method. Fisher's Linear Discriminant (FLD) [5] is an

example of a class speci�c method, in the sense that it tries to \shape" the scatter in order

to make it more reliable for classi�cation. This method selects W in (1) in such a way

that the ratio of the between-class scatter and the within-class scatter is maximized.

Let the between-class scatter matrix be de�ned as

SB =

cX

i=1

Ni (�i � �)(�i � �)
T

and the within-class scatter matrix be de�ned as

SW =

cX

i=1

X

xk2Xi

(xk � �i)(xk � �i)
T

where �i is the mean image of class Xi, and Ni is the number of samples in class Xi. If

SW is nonsingular, the optimal projection Wopt is chosen as the matrix with orthonormal

columns which maximizes the ratio of the determinant of the between-class scatter matrix



of the projected samples to the determinant of the within-class scatter matrix of the

projected samples, i.e.

Wopt = argmax
W

jW TSBW j

jW TSWW j
(4)

=
�
w1 w2 : : : wm

�

where fwi j i = 1; 2; : : : ; mg is the set of generalized eigenvectors of SB and SW corre-

sponding to the m largest generalized eigenvalues f�i j i = 1; 2; : : : ; mg, i.e.

SBwi = �iSWwi ; i = 1; 2; : : : ; m:

Note that there are at most c�1 nonzero generalized eigenvalues, and so an upper bound

on m is c� 1 where c is the number of classes. See [4].

To illustrate the bene�ts of class speci�c linear projection, we constructed a low dimen-

sional analogue to the classi�cation problem in which the samples from each class lie near

a linear subspace. Figure 2 is a comparison of PCA and FLD for a two-class problem in

which the samples from each class are randomly perturbed in a direction perpendicular to

a linear subspace. For this example N = 20, n = 2, and m = 1. So the samples from each

class lie near a line passing through the origin in the 2-D feature space. Both PCA and

FLD have been used to project the points from 2-D down to 1-D. Comparing the two pro-

jections in the �gure, PCA actually smears the classes together so that they are no longer

linearly separable in the projected space. It is clear that although PCA achieves larger

total scatter, FLD achieves greater between-class scatter, and consequently classi�cation

becomes easier.

In the face recognition problem one is confronted with the di�culty that the within-

class scatter matrix SW 2 IRn�n is always singular. This stems from the fact that the

rank of SW is at most N � c, and in general, the number of images in the learning set N

is much smaller than the number of pixels in each image n. This means that it is possible



to choose the matrix W such that the within-class scatter of the projected samples can

be made exactly zero.

In order to overcome the complication of a singular SW , we propose an alternative

to the criterion in (4). This method, which we call Fisherfaces, avoids this problem by

projecting the image set to a lower dimensional space so that the resulting within-class

scatter matrix SW is nonsingular. This is achieved by using PCA to reduce the dimension

of the feature space to N � c and then, applying the standard FLD de�ned by (4) to

reduce the dimension to c� 1. More formally, Wopt is given by

W T
opt =W T

fldW
T
pca (5)

where

Wpca = argmax
W

jW TSTW j

Wfld = argmax
W

jW TW T
pcaSBWpcaW j

jW TW T
pcaSWWpcaW j

:

Note that the optimization forWpca is performed over n�(N�c) matrices with orthonor-

mal columns, while the optimization forWfld is performed over (N�c)�m matrices with

orthonormal columns. In computing Wpca we have thrown away only the smallest c prin-

cipal components.

There are certainly other ways of reducing the within-class scatter while preserving

between-class scatter. For example, a second method which we are currently investigating

chooses W to maximize the between-class scatter of the projected samples after having

�rst reduced the within-class scatter. Taken to an extreme, we can maximize the between-

class scatter of the projected samples subject to the constraint that the within-class scatter

is zero, i.e.

Wopt = arg max
W2W

jW TSBW j (6)



where W is the set of n�m matrices with orthonormal columns contained in the kernel

of SW .

3 Experimental Results

In this section we present and discuss each of the aforementioned face recognition tech-

niques using two di�erent databases. Because of the speci�c hypotheses that we wanted

to test about the relative performance of the considered algorithms, many of the standard

databases were inappropriate. So we have used a database from the Harvard Robotics

Laboratory in which lighting has been systematically varied. Secondly, we have con-

structed a database at Yale that includes variation in both facial expression and lighting.1

3.1 Variation in Lighting

The �rst experiment was designed to test the hypothesis that under variable illumination,

face recognition algorithms will perform better if they exploit the fact that images of a

Lambertian surface lie in a linear subspace. More speci�cally, the recognition error rates

for all four algorithms described in Section 2 are compared using an image database

constructed by Hallinan at the Harvard Robotics Laboratory [14, 15]. In each image in

this database, a subject held his/her head steady while being illuminated by a dominant

light source. The space of light source directions, which can be parameterized by spherical

angles, was then sampled in 15� increments. See Figure 3. From this database, we used

330 images of �ve people (66 of each). We extracted �ve subsets to quantify the e�ects

of varying lighting. Sample images from each subset are shown in Fig. 4.

Subset 1 contains 30 images for which both of the longitudinal and latitudinal angles

of light source direction are within 15� of the camera axis, including the lighting

1The Yale database is available for download from http://cvc.yale.edu.



Subset 1
    
Subset 2
       
Subset 3
           
Subset 4
   
Subset 5

Figure 3. The highlighted lines of longitude and latitude indicate the light source directions
for Subsets 1 through 5. Each intersection of a longitudinal and latitudinal line on the right side
of the illustration has a corresponding image in the database.

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5

Figure 4. Example images from each subset of the Harvard Database used to test the four
algorithms.



direction coincident with the camera's optical axis.

Subset 2 contains 45 images for which the greater of the longitudinal and latitudinal

angles of light source direction are 30� from the camera axis.

Subset 3 contains 65 images for which the greater of the longitudinal and latitudinal

angles of light source direction are 45� from the camera axis.

Subset 4 contains 85 images for which the greater of the longitudinal and latitudinal

angles of light source direction are 60� from the camera axis.

Subset 5 contains 105 images for which the greater of the longitudinal and latitudinal

angles of light source direction are 75� from the camera axis.

For all experiments, classi�cation was performed using a nearest neighbor classi�er. All

training images of an individual were projected into the feature space. The images were

cropped within the face so that the contour of the head was excluded.2 For the Eigenface

and correlation tests, the images were normalized to have zero mean and unit variance, as

this improved the performance of these methods. For the Eigenface method, results are

shown when ten principal components were used. Since it has been suggested that the �rst

three principal components are primarily due to lighting variation and that recognition

rates can be improved by eliminating them, error rates are also presented using principal

components four through thirteen.

We performed two experiments on the Harvard Database: extrapolation and interpola-

tion. In the extrapolation experiment, each method was trained on samples from Subset

1 and then tested using samples from Subsets 1, 2 and 3.3 Since there are 30 images

2We have observed that the error rates are reduced for all methods when the contour is included

and the subject is in front of a uniform background. However, all methods performed worse when the

background varies.
3To test the methods with an image from Subset 1, that image was removed from the training set, i.e.

we employed the \leaving-one-out" strategy [4].
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w/o 1st 3 10 0.0 4.4 27.7

Correlation 29 0.0 0.0 33.9

Linear Subspace 15 0.0 4.4 9.2

Fisherface 4 0.0 0.0 4.6

Figure 5. Extrapolation: When each of the methods is trained on images with near frontal
illumination (Subset 1), the graph and corresponding table show the relative performance under
extreme light source conditions.

in the training set, correlation is equivalent to the Eigenface method using 29 principal

components. Figure 5 shows the result from this experiment.

In the interpolation experiment, each method was trained on Subsets 1 and 5 and then

tested the methods on Subsets 2, 3 and 4. Figure 6 shows the result from this experiment.

These two experiments reveal a number of interesting points:

1. All of the algorithms perform perfectly when lighting is nearly frontal. However as
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Figure 6. Interpolation: When each of the methods is trained on images from both near
frontal and extreme lighting (Subsets 1 and 5), the graph and corresponding table show the
relative performance under intermediate lighting conditions.



lighting is moved o� axis, there is a signi�cant performance di�erence between the

two class-speci�c methods and the Eigenface method.

2. It has also been noted that the Eigenface method is equivalent to correlation when

the number of Eigenfaces equals the size of the training set [17], and since perfor-

mance increases with the dimension of the Eigenspace, the Eigenface method should

do no better than correlation [26]. This is empirically demonstrated as well.

3. In the Eigenface method, removing the �rst three principal components results in

better performance under variable lighting conditions.

4. While the Linear Subspace method has error rates that are competitive with the

Fisherface method, it requires storing more than three times as much information

and takes three times as long.

5. The Fisherface method had error rates lower than the Eigenface method and re-

quired less computation time.

3.2 Variation in Facial Expression, Eye Wear, and Lighting

Figure 7. The Yale database contains 160 frontal face images covering sixteen individuals
taken under ten di�erent conditions: A normal image under ambient lighting, one with or
without glasses, three images taken with di�erent point light sources, and �ve di�erent facial
expressions.

Using a second database constructed at the Yale Center for Computational Vision and

Control, we designed tests to determine how the methods compared under a di�erent range

of conditions. For sixteen subjects, ten images were acquired during one session in front

of a simple background. Subjects included females and males (some with facial hair), and

some wore glasses. Figure 7 shows ten images of one subject. The �rst image was taken
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Figure 8. As demonstrated on the Yale Database, the variation in performance of the Eigenface
method depends on the number of principal components retained. Dropping the �rst three
appears to improve performance.

under ambient lighting in a neutral facial expression and the person wore glasses. In the

second image, the glasses were removed. If the person normally wore glasses, those were

used; if not, a random pair was borrowed. Images 3-5 were acquired by illuminating the

face in a neutral expression with a Luxolamp in three position. The last �ve images were

acquired under ambient lighting with di�erent expressions (happy, sad, winking, sleepy,

and surprised). For the Eigenface and correlation tests, the images were normalized to

have zero mean and unit variance, as this improved the performance of these methods.

The images were manually centered and cropped to two di�erent scales: The larger images

included the full face and part of the background while the closely cropped ones included

internal structures such as the brow, eyes, nose, mouth and chin but did not extend to

the occluding contour.

In this test, error rates were determined by the \leaving-one-out" strategy [4]: To

classify an image of a person, that image was removed from the data set and the dimen-

sionality reduction matrix W was computed. All images in the database, excluding the



test image, were then projected down into the reduced space to be used for classi�cation.

Recognition was performed using a nearest neighbor classi�er. Note that for this test,

each person in the learning set is represented by the projection of ten images, except for

the test person who is represented by only nine.

In general, the performance of the Eigenface method varies with the number of principal

components. Thus, before comparing the Linear Subspace and Fisherface methods with

the Eigenface method, we �rst performed an experiment to determine the number of

principal components yielding the lowest error rate. Figure 8 shows a plot of error rate

vs. the number of principal components, for the closely cropped set, when the initial three

principal components were retained and when they were dropped.

The relative performance of the algorithms is self evident in Fig. 9. The Fisherface

method had error rates that were better than half that of any other method. It seems

that the Fisherface method chooses the set of projections which performs well over a range

of lighting variation, facial expression variation, and presence of glasses.

Note that the Linear Subspace method faired comparatively worse in this experiment

than in the lighting experiments in the previous section. Because of variation in facial

expression, the images no longer lie in a linear subspace. Since the Fisherface method

tends to discount those portions of the image that are not signi�cant for recognizing an

individual, the resulting projections W tend to mask the regions of the face that are

highly variable. For example, the area around the mouth is discounted since it varies

quite a bit for di�erent facial expressions. On the other hand, the nose, cheeks and brow

are stable over the within-class variation and are more signi�cant for recognition. Thus,

we conjecture that Fisherface methods, which tend to reduce within-class scatter for all

classes, should produce projection directions that are also good for recognizing other faces

besides the training set.
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Figure 9. The graph and corresponding table show the relative performance of the algorithms
when applied to the Yale Database which contains variation in facial expression and lighting.



All of the algorithms performed better on the images of the full face. Note that there is

a dramatic improvement in the Fisherface method where the error rate was reduced from

7.3% to 0.6%. When the method is trained on the entire face, the pixels corresponding to

the occluding contour of the face are chosen as good features for discriminating between

individuals. i.e., the overall shape of the face is a powerful feature in face identi�cation.

As a practical note however, it is expected that recognition rates would have been much

lower for the full face images if the background or hair styles had varied and may even

have been worse than the closely cropped images.

3.3 Glasses Recognition

Figure 10. The left image is an image from the Yale Database of a person wearing glasses.
The right image is the Fisherface used for determining if a person is wearing glasses.

Glasses Recognition

Method Reduced Error
Space Rate (%)

Eigenface 10 52.6

Fisherface 1 5.3

Table 1. Comparative recognition error rates for glasses/no glasses recognition using the Yale
Database.

When using class speci�c projection methods, the learning set can be divided into classes

in di�erent manners. For example, rather than selecting the classes to be individual



people, the set of images can be divided into two classes: \wearing glasses" and \not

wearing glasses." With only two classes, the images can be projected to a line using the

Fisherface methods. Using PCA, the choice of the Eigenfaces is independent of the class

de�nition.

In this experiment, the data set contained 36 images from a superset of the Yale

Database, half with glasses. The recognition rates were obtained by cross validation,

i.e. to classify the images of each person, all images of that person were removed from

the database before the projection matrix W was computed. Table 1 presents the error

rates for three di�erent methods.

PCA had recognition rates near chance since in most cases it classi�ed both images

with and without glasses to the same class. On the other hand, the Fisherface methods

can be viewed as deriving a template which is suited for �nding glasses and ignoring other

characteristics of the face. This conjecture is supported by observing the Fisherface in

Fig. 10 corresponding to the projection matrixW . Naturally, it is expected that the same

techniques could be applied to identifying facial expressions where the set of training

images is divided into classes based on the facial expression.

4 Conclusion

The experiments suggest a number of conclusions:

1. All methods perform well if presented with an image in the test set which is similar

to an image in the training set.

2. The Fisherface method appears to be the best at extrapolating and interpolating

over variation in lighting, although the Linear Subspace method is a close second.

3. Removing the largest three principal components does improve the performance of



the Eigenface method in the presence of lighting variation, but does not achieve

error rates as low as some of the other methods described here.

4. In the limit as more principal components are used in the Eigenface method, per-

formance approaches that of correlation. Similarly, when the �rst three principal

components have been removed, performance improves as the dimensionality of the

feature space is increased. Note however, that performance seems to level o� at

about 45 principal components. Sirovitch and Kirby found a similar point of dimin-

ishing returns when using Eigenfaces to represent face images [6].

5. The Fisherface method appears to be the best at simultaneously handling variation

in lighting and expression. As expected, the Linear Subspace method su�ers when

confronted with variation in facial expression.

Even with this extensive experimentation, interesting questions remain: How well does

the Fisherface method extend to large databases. Can variation in lighting conditions be

accommodated if some of the individuals are only observed under one lighting condition?

Additionally, current face detection methods are likely to break down under extreme

lighting conditions such as Subsets 4 and 5 in Fig. 4, and so new detection methods are

needed to support the algorithms presented in this paper. Finally, when shadowing domi-

nates, performance degrades for all of the presented recognition methods, and techniques

that either model or mask the shadowed regions may be needed. We are currently investi-

gating models for representing the set of images of an object under all possible illumination

conditions, and have shown that the set of n-pixel images of an object of any shape and

with an arbitrary re
ectance function, seen under all possible illumination conditions,

forms a convex cone in IRn [32]. Furthermore, and most relevant to this paper, it appears

that this convex illumination cone lies close to a low-dimensional linear subspace [14].
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Footnotes

1. The Yale database is available for download from http://cvc.yale.edu.

2. We have observed that the error rates are reduced for all methods when the contour

is included and the subject is in front of a uniform background. However, all methods

performed worse when the background varies.

3. To test the methods with an image from Subset 1, that image was removed from

the training set, i.e. we employed the \leaving-one-out" strategy [4].
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