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Subset 1 Subset 2 Subset 3 Subset 4 Subset 5
Fig. 1. The same person seen under varying lighting conditions can appear dramaticallydi�erent. These images are taken from the Harvard database which is described inSection 3.1.light sources. As seen in Fig. 1, the same person, with the same facial expres-sion, seen from the same viewpoint can appear dramatically di�erent when lightsources illuminate the face from di�erent directions.Our approach to face recognition exploits two observations:1. For a Lambertian surface without self-shadowing, all of the images of aparticular face from a �xed viewpoint will lie in a 3-D linear subspace of thehigh-dimensional image space [25].2. Because of expressions, regions of self-shadowing and specularity, the aboveobservation does not exactly apply to faces. In practice, certain regions ofthe face may have a variability from image to image that often deviatesdrastically from the linear subspace and, consequently, are less reliable forrecognition.We make use of these observations by �nding a linear projection of the facesfrom the high-dimensional image space to a signi�cantly lower dimensional fea-ture space which is insensitive both to variation in lighting direction and facialexpression. We choose projection directions that are nearly orthogonal to thewithin-class scatter, projecting away variations in lighting and facial expres-sion while maintaining discriminability. Our method Fisherfaces, a derivative ofFisher's Linear Discriminant (FLD) [9, 10], maximizes the ratio of between-classscatter to that of within-class scatter.



The Eigenface method is also based on linearly projecting the image spaceto a low dimensional feature space [27, 28, 29]. However, the Eigenface method,which uses principal components analysis (PCA) for dimensionality reduction,yields projection directions that maximize the total scatter across all classes,i.e. all images of all faces. In choosing the projection which maximizes totalscatter, PCA retains some of the unwanted variations due to lighting and facialexpression. As illustrated in Fig. 1 and stated by Moses, Adini, and Ullman, \thevariations between the images of the same face due to illumination and viewingdirection are almost always larger than image variations due to change in faceidentity" [21]. Thus, while the PCA projections are optimal for reconstructionfrom a low dimensional basis, they may not be optimal from a discriminationstandpoint.We should point out that Fisher's Linear Discriminant [10] is a \classical"technique in pattern recognition [9] that was developed by Robert Fisher in 1936for taxonomic classi�cation. Depending upon the features being used, it has beenapplied in di�erent ways in computer vision and even in face recognition. Chenget al. presented a method that used Fisher's discriminator for face recognitionwhere features were obtained by a polar quantization of the shape [6]. Contem-poraneous with our work [15], Cui, Swets, and Weng applied Fisher's discrimina-tor (using di�erent terminology, they call it the Most Discriminating Feature {MDF) in a method for recognizing hand gestures [8]. Though no implementationis reported, they also suggest that the method can be applied to face recognitionunder variable illumination.In the sections to follow, we will compare four methods for face recognitionunder variation in lighting and facial expression: correlation, a variant of the lin-ear subspace method suggested by [25], the Eigenface method [27, 28, 29], andthe Fisherface method developed here. The comparisons are done on a databaseof 500 images created externally by Hallinan [13, 14] and a database of 176images created at Yale. The results of the tests on both databases shows thatthe Fisherface method performs signi�cantly better than any of the other threemethods. Yet, no claim is made about the relative performance of these algo-rithms on much larger databases.We should also point out that we have made no attempt to deal with variationin pose. An appearance-based method such as ours can be easily extended tohandle limited pose variation using either a multiple-view representation suchas Pentland, Moghaddam, and Starner's View-based Eigenspace [23] or Muraseand Nayar's Appearance Manifolds [22]. Other approaches to face recognitionthat accommodate pose variation include [2, 11]. Furthermore, we assume thatthe face has been located and aligned within the image, as there are numerousmethods for �nding faces in scenes [5, 7, 17, 18, 19, 20, 28].2 MethodsThe problem can be simply stated: Given a set of face images labeled with theperson's identity (the learning set) and an unlabeled set of face images from thesame group of people (the test set), identify the name of each person in the testimages.In this section, we examine four pattern classi�cation techniques for solvingthe face recognition problem, comparing methods that have become quite pop-ular in the face recognition literature, i.e. correlation [3] and Eigenface methods



[27, 28, 29], with alternative methods developed by the authors. We approachthis problem within the pattern classi�cation paradigm, considering each of thepixel values in a sample image as a coordinate in a high-dimensional space (theimage space).



2.1 CorrelationPerhaps, the simplest classi�cation scheme is a nearest neighbor classi�er in theimage space [3]. Under this scheme, an image in the test set is recognized byassigning to it the label of the closest point in the learning set, where distancesare measured in the image space. If all of the images have been normalized to bezero mean and have unit variance, then this procedure is equivalent to choosingthe image in the learning set that best correlates with the test image. Becauseof the normalization process, the result is independent of light source intensityand the e�ects of a video camera's automatic gain control.This procedure, which will subsequently be referred to as correlation, hasseveral well-known disadvantages. First, if the images in the learning set andtest set are gathered under varying lighting conditions, then the correspond-ing points in the image space will not be tightly clustered. So in order for thismethod to work reliably under variations in lighting, we would need a learningset which densely sampled the continuum of possible lighting conditions. Second,correlation is computationally expensive. For recognition, we must correlate theimage of the test face with each image in the learning set; in an e�ort to re-duce the computation time, implementors [12] of the algorithm described in [3]developed special purpose VLSI hardware. Third, it requires large amounts ofstorage { the learning set must contain numerous images of each person.2.2 EigenfacesAs correlation methods are computationally expensive and require great amountsof storage, it is natural to pursue dimensionality reduction schemes. A techniquenow commonly used for dimensionality reduction in computer vision { particu-larly in face recognition { is principal components analysis (PCA) [13, 22, 27, 28,29]. PCA techniques, also known as Karhunen-Loeve methods, choose a dimen-sionality reducing linear projection that maximizes the scatter of all projectedsamples.More formally, let us consider a set of N sample images fx1; x2; : : : ; xNg tak-ing values in an n-dimensional feature space, and assume that each image belongsto one of c classes f�1; �2; : : : ; �cg. Let us also consider a linear transformationmapping the original n-dimensional feature space into an m-dimensional fea-ture space, where m < n. Denoting by W 2 IRn�m a matrix with orthonormalcolumns, the new feature vectors yk 2 IRm are de�ned by the following lineartransformation: yk = WTxk ; k = 1; 2; : : : ; N:Let the total scatter matrix ST be de�ned asST = NXk=1(xk � �)(xk � �)Twhere � 2 IRn is the mean image of all samples.Note that after applying the linear transformation, the scatter of the trans-formed feature vectors fy1; y2; : : : ; yNg is W TSW . In PCA, the optimal projec-tion Wopt is chosen to maximize the determinant of the total scatter matrix ofthe projected samples, i.e.Wopt = argmaxW jWTSTW j = [w1 w2 : : : wm ] (1)



where fwi j i = 1; 2; : : :;mg is the set of n-dimensional eigenvectors of STcorresponding to the set of decreasing eigenvalues. Since these eigenvectors havethe same dimension as the original images, they are referred to as Eigenpicturesin [27] and Eigenfaces in [28, 29].A drawback of this approach is that the scatter being maximized is not onlydue to the between-class scatter that is useful for classi�cation, but also thewithin-class scatter that, for classi�cation purposes, is unwanted information.Recall the comment by Moses, Adini and Ullman [21]: Much of the variation fromone image to the next is due to illumination changes. Thus if PCA is presentedwith images of faces under varying illumination, the projection matrixWopt willcontain principal components (i.e. Eigenfaces) which retain, in the projectedfeature space, the variation due lighting. Consequently, the points in projectedspace will not be well clustered, and worse, the classes may be smeared together.It has been suggested that by throwing out the �rst several principal com-ponents, the variation due to lighting is reduced. The hope is that if the �rstprincipal components capture the variation due to lighting, then better cluster-ing of projected samples is achieved by ignoring them. Yet it is unlikely that the�rst several principal components correspond solely to variation in lighting; asa consequence, information that is useful for discrimination may be lost.2.3 Linear SubspacesBoth correlation and the Eigenface method are expected to su�er under vari-ation in lighting direction. Neither method exploits the observation that for aLambertian surface without self-shadowing, the images of a particular face lie ina 3-D linear subspace.Consider a point p in a Lambertian surface and a collimated light sourcecharacterized by a vector s 2 IR3, such that the direction of s gives the directionof the light rays and ksk gives the intensity of the light source. The irradianceat the point p is given by E(p) = a(p) < n(p); s > (2)where n(p) is the unit inward normal vector to the surface at the point p, anda(p) is the albedo of the surface at p [16]. This shows that the irradiance atthe point p, and hence the gray level seen by a camera, is linear on s 2 IR3.Therefore, in the absence of self-shadowing, given three images of a Lambertiansurface from the same viewpoint taken under three known, linearly independentlight source directions, the albedo and surface normal can be recovered; this isthe well known method of photometric stereo [26, 30]. Alternatively, one canreconstruct the image of the surface under an arbitrary lighting direction by alinear combination of the three original images, see [25].For classi�cation, this fact has great importance: It shows that for a �xedviewpoint, all images of a Lambertian surface lie in a 3-D linear subspace em-bedded in the high-dimensional image space. This observation suggests a simpleclassi�cation algorithm to recognize Lambertian surfaces { invariant under light-ing conditions.For each face, use three or more images taken under di�erent lighting direc-tions to construct a 3-D basis for the linear subspace. Note that the three basisvectors have the same dimensionality as the training images and can be thought



of as basis images. To perform recognition, we simply compute the distance ofa new image to each linear subspace and choose the face corresponding to theshortest distance. We call this recognition scheme the Linear Subspace method.We should point out that this method is a variant of the photometric alignmentmethod proposed in [25] and, although it is not yet in press, the Linear Sub-space method can be thought of as special case of the more elaborate recognitionmethod described in [14].If there is no noise or self-shadowing, the Linear Subspace algorithm wouldachieve error free classi�cation under any lighting conditions, provided the sur-faces obey the Lambertian re
ectance model. Nevertheless, there are severalcompelling reasons to look elsewhere. First, due to self-shadowing, specularities,and facial expressions, some regions of the face have variability that does notagree with the linear subspace model. Given enough images of faces, we shouldbe able to learn which regions are good for recognition and which regions arenot. Second, to recognize a test image we must measure the distance to the lin-ear subspace for each person. While this in an improvement over a correlationscheme that needs a large number of images for each class, it is still too com-putationally expensive. Finally, from a storage standpoint, the Linear Subspacealgorithm must keep three images in memory for every person.2.4 FisherfacesThe Linear Subspace algorithm takes advantage of the fact that under ideal con-ditions the classes are linearly separable. Yet, one can perform dimensionalityreduction using linear projection and still preserve linear separability; error freeclassi�cation under any lighting conditions is still possible in the lower dimen-sional feature space using linear decision boundaries. This is a strong argumentin favor of using linear methods for dimensionality reduction in the face recog-nition problem, at least when one seeks insensitivity to lighting conditions.Here we argue that using class speci�c linear methods for dimensionality re-duction and simple classi�ers in the reduced feature space one gets better recog-nition rates in substantially less time than with the Linear Subspace method.Since the learning set is labeled, it makes sense to use this information to builda more reliable method for reducing the dimensionality of the feature space.Fisher's Linear Discriminant (FLD) [10] is an example of a class speci�c method,in the sense that it tries to \shape" the scatter in order to make it more re-liable for classi�cation. This method selects W in such a way that the ratioof the between-class scatter and the within-class scatter is maximized. Let thebetween-class scatter matrix be de�ned asSB = cXi=1 j�ij (�i � �)(�i � �)Tand the within-class scatter matrix be de�ned asSW = cXi=1 Xxk2�i(xk � �i)(xk � �i)Twhere �i is the mean image of class �i, and j�ij is the number of samples in class�i. If SW is nonsingular, the optimal projection Wopt is chosen as that whichmaximizes the ratio of the determinant of the between-class scatter matrix of
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this problem by projecting the image set to a lower dimensional space so thatthe resulting within-class scatter matrix SW is nonsingular. This is achieved byusing PCA to reduce the dimension of the feature space to N � c and then,applying the standard FLD de�ned by Eq. 3 to reduce the dimension to c � 1.More formally,Wopt is given byWopt = Wfld Wpca (4)where Wpca = argmaxW jWTSTW jWfld = argmaxW jWTWTpcaSBWpcaW jjWTWTpcaSWWpcaW j :Note that in computingWpca we have thrown away only the smallest c principalcomponents.There are certainly other ways of reducing the within-class scatter whilepreserving between-class scatter. For example, a second method which we arecurrently investigating chooses W to maximize the between-class scatter of theprojected samples after having �rst reduced the within-class scatter. Taken toan extreme, we can maximize the between-class scatter of the projected samplessubject to the constraint that the within-class scatter is zero, i.e.Wopt = arg maxW2W jWTSBW j (5)where W is the set of n�m matrices contained in the kernel of SW .3 Experimental ResultsIn this section we will present and discuss each of the aforementioned face recog-nition techniques using two di�erent databases. Because of the speci�c hypothe-ses that we wanted to test about the relative performance of the consideredalgorithms, many of the standard databases were inappropriate. So we haveused a database from the Harvard Robotics Laboratory in which lighting hasbeen systematically varied. Secondly, we have constructed a database at Yalethat includes variation in both facial expression and lighting.43.1 Variation in LightingThe �rst experiment was designed to test the hypothesis that under variableillumination, face recognition algorithms will perform better if they exploit thefact that images of a Lambertian surface lie in a linear subspace. More specif-ically, the recognition error rates for all four algorithms described in Section 2will be compared using an image database constructed by Hallinan at the Har-vard Robotics Laboratory [13, 14]. In each image in this database, a subjectheld his/her head steady while being illuminated by a dominant light source.The space of light source directions, which can be parameterized by sphericalangles, was then sampled in 15� increments. From a subset of 225 images of�ve people in this database, we extracted �ve subsets to quantify the e�ects ofvarying lighting. Sample images from each subset are shown in Fig. 1.4 The Yale database is available by anonymous ftp from daneel.eng.yale.edu.



Subset 1 contains 30 images for which both of the longitudinal and latitudinalangles of light source direction are within 15� of the camera axis.Subset 2 contains 45 images for which the greater of the longitudinal and lat-itudinal angles of light source direction are 30� from the camera axis.Subset 3 contains 65 images for which the greater of the longitudinal and lat-itudinal angles of light source direction are 45� from the camera axis.Subset 4 contains 85 images for which the greater of the longitudinal and lat-itudinal angles of light source direction are 60� from the camera axis.Subset 5 contains 105 images for which the greater of the longitudinal andlatitudinal angles of light source direction are 75� from the camera axis.For all experiments, classi�cation was performed using a nearest neighborclassi�er. All training images of an individual were projected into the featurespace. The images were cropped within the face so that the contour of the headwas excluded.5 For the Eigenface and correlation tests, the images were normal-ized to have zero mean and unit variance, as this improved the performance ofthese methods. For the Eigenface method, results are shown when ten principalcomponents are used. Since it has been suggested that the �rst three principalcomponents are primarily due to lighting variation and that recognition rates canbe improved by eliminating them, error rates are also presented using principalcomponents four through thirteen. Since there are 30 images in the training set,correlation is equivalent to the Eigenface method using 29 principal components.We performed two experiments on the Harvard Database: extrapolation andinterpolation. In the extrapolation experiment, each method was trained on sam-ples from Subset 1 and then tested using samples from Subsets 1, 2 and 3.6 Figure3 shows the result from this experiment.In the interpolation experiment, each method was trained on Subsets 1 and5 and then tested the methods on Subsets 2, 3 and 4. Figure 4 shows the resultfrom this experiment.These two experiments reveal a number of interesting points:1. All of the algorithms perform perfectly when lighting is nearly frontal. How-ever as lighting is moved o� axis, there is a signi�cant performance di�erencebetween the two class-speci�c methods and the Eigenface method.2. It has also been noted that the Eigenface method is equivalent to correla-tion when the number of Eigenfaces equals the size of the training set [22],and since performance increases with the dimension of the Eigenspace, theEigenface method should do no better than correlation [3]. This is empiri-cally demonstrated as well.3. In the Eigenface method, removing the �rst three principal components re-sults in better performance under variable lighting conditions.4. While the Linear Subspace method has error rates that are competitive withthe Fisherface method, it requires storing more than three times as muchinformation and takes three times as long.5 We have observed that the error rates are reduced for all methods when the contouris included and the subject is in front of a uniform background. However, all methodsperformed worse when the background varies.6 To test the methods with an image from Subset 1, that image was removed from thetraining set, i.e. we employed the \leaving-one-out" strategy [9].
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Fig. 5. The Yale database contains 160 frontal face images covering sixteenindividuals taken under ten di�erent conditions: A normal image under ambientlighting, one with or without glasses, three images taken with di�erent pointlight sources, and �ve di�erent facial expressions.
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4 ConclusionThe experiments suggest a number of conclusions:1. All methods perform well if presented with an image in the test set which issimilar to an image in the training set.2. The Fisherface method appears to be the best at extrapolating and interpo-lating over variation in lighting, although the Linear Subspace method is aclose second.3. Removing the initial three principal components does improve the perfor-mance of the Eigenface method in the presence of lighting variation, butdoes not alleviate the problem.4. In the limit as more principal components are used in the Eigenface method,performance approaches that of correlation. Similarly, when the �rst threeprincipal components have been removed, performance improves as the di-mensionality of the feature space is increased. Note however, that perfor-mance seems to level o� at about 45 principal components. Sirovitch andKirby found a similar point of diminishing returns when using Eigenfaces torepresent face images [27].5. The Fisherface method appears to be the best at simultaneously handlingvariation in lighting and expression. As expected, the Linear Subspace methodsu�ers when confronted with variation in facial expression.Even with this extensive experimentation, interesting questions remain: Howwell does the Fisherface method extend to large databases. Can variation inlighting conditions be accommodated if some of the individuals are only observedunder one lighting condition? i.e., how can information about the class of facesbe exploited?Additionally, current face detection methods are likely to break down underextreme lighting conditions such as Subsets 4 and 5 in Fig. 1, and so new detec-tion methods will be needed to support this algorithm. Finally, when shadowingdominates, performance degrades for all of the presented recognition methods,and techniques that either model or mask the shadowed regions may be needed.We are currently investigating models for representing the set of images of anobject under all possible illumination conditions; details will appear in [1].Acknowledgements We would like to thank Peter Hallinan for providing theHarvard Database, and Alan Yuille and David Mumford for many useful discus-sions.References1. P. Belhumeur and D. Kriegman. What is the set of images of an object under allpossible lighting conditions? In IEEE Proc. Conf. Computer Vision and PatternRecognition, 1996.2. D. Beymer. Face recognition under varying pose. In Proc. Conf. Computer Visionand Pattern Recognition, pages 756{761, 1994.3. R. Brunelli and T. Poggio. Face recognition: Features vs templates. IEEE Trans.Pattern Anal. Mach. Intelligence, 15(10):1042{1053, 1993.4. R. Chellappa, C. Wilson, and S. Sirohey. Human and machine recognition of faces:A survey. Proceedings of the IEEE, 83(5):705{740, 1995.5. Q. Chen, H. Wu, and M. Yachida. Face detection by fuzzy pattern matching. InInt. Conf. on Computer Vision, pages 591{596, 1995.
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