
End-to-End Scene Text Recognition

Kai Wang, Boris Babenko and Serge Belongie
Department of Computer Science and Engineering

University of California, San Diego
{kaw006,bbabenko,sjb}@cs.ucsd.edu

Abstract

This paper focuses on the problem of word detection and
recognition in natural images. The problem is significantly
more challenging than reading text in scanned documents,
and has only recently gained attention from the computer
vision community. Sub-components of the problem, such as
text detection and cropped image word recognition, have
been studied in isolation [7, 4, 20]. However, what is un-
clear is how these recent approaches contribute to solving
the end-to-end problem of word recognition.

We fill this gap by constructing and evaluating two sys-
tems. The first, representing the de facto state-of-the-art,
is a two stage pipeline consisting of text detection followed
by a leading OCR engine. The second is a system rooted
in generic object recognition, an extension of our previous
work in [20]. We show that the latter approach achieves su-
perior performance. While scene text recognition has gen-
erally been treated with highly domain-specific methods,
our results demonstrate the suitability of applying generic
computer vision methods. Adopting this approach opens the
door for real world scene text recognition to benefit from the
rapid advances that have been taking place in object recog-
nition.

1. Introduction
Reading words in unconstrained images is a challenging

problem of considerable practical interest. While text from
scanned documents has served as the principal focus of Op-
tical Character Recognition (OCR) applications in the past,
text acquired in general settings (referred to as scene text)
is becoming more prevalent with the proliferation of mobile
imaging devices. Since text is a pervasive element in many
environments, solving this problem has potential for signif-
icant impact. For example, reading scene text can play an
important role in navigation for automobiles equipped with
street-facing cameras in outdoor environments, and in as-
sisting a blind person to navigate in certain indoor environ-
ments (e.g., a grocery store [15]).

Figure 1. The problem we address in this paper is that of word
detection and recognition. Input consists of an image and a list of
words (e.g., in the above example the list contains around 50 total
words, and include ‘TRIPLE’ and ‘DOOR’). The output is a set
of bounding boxes labeled with words.

Despite its apparent usefulness, the scene text problem
has received only a modest amount of interest from the com-
puter vision community. The ICDAR Robust Reading chal-
lenge [13] was the first public dataset collected to highlight
the problem of detecting and recognizing scene text. In this
benchmark, the organizers identified four subproblems: (1)
cropped character classification, (2) full image text detec-
tion, (3) cropped word recognition, and (4) full image word
recognition. The work of [6] addressed the cropped charac-
ter classification problem (1) and showed the relative effec-
tiveness of using generic object recognition methods versus
off-the-shelf OCR. The works of [4, 7] introduced methods
for text detection (2). The cropped word recognition prob-
lem (3) has also recently received attention by [21] and in
our previous work [20]. While progress has been made on
the isolated components, there has been very little work on
the full image word recognition problem (4); the only other
work we are aware of that addresses the problem is [16].

In this paper, we focus on a special case of the scene text
problem where we are also given a list of words (i.e., a lex-
icon) to be detected and read (see Figure 1). While making

NUFF FFUTS

J

I

STUFFPUFF FUN

Lexicon: PUFF,STUFF,FUN,
MARKET,VILLAS,SMOKE,...

Input Image: Character Detection Word Detection Word Rescoring+NMS

UP STUFFPUFF

Figure 2. An overview of our word detection and recognition pipeline. Starting with an input image and a lexicon, we perform multi-scale
character detection. The words ‘PUFF’ and ‘STUFF’ appear in the image while the other words in the lexicon can be thought of as
“distractors”. Next we perform word detection using a Pictorial Structures framework, treating the characters as “parts” of a word. Finally,
we re-score detected words using features based on their global layout, and perform non-maximal suppression (NMS) over words.

the problem more manageable, this framework leaves ample
room for useful applications. Consider again the example of
assisting a blind person to navigate a grocery store; in this
scenario a grocery list can serve as the lexicon. In many
other applications it is reasonable to assume that one can
use context to limit the search to certain words of interest.

Our contributions are two-fold: (1) We evaluate the word
detection and recognition performance of the two-step ap-
proach consisting of a state-of-the-art text detector and a
leading OCR engine. (2) We construct a system rooted
in modern object recognition techniques by extending our
work from [20]. We show that our object recognition-based
pipelines perform significantly better than one using con-
ventional OCR. We also show that, surprisingly, an ob-
ject recognition-based pipeline achieves competitive perfor-
mance without the need for an explicit text detection step.
This result provides a significant simplification of the end-
to-end pipeline and blurs the line between word recognition
and the more common object recognition problems studied
in computer vision.

2. Overview of Full Image Word Recognition

We discuss each step in detail. Figure 2 shows an
overview of our approach.

2.1. Character detection

The first step in our pipeline is to detect potential loca-
tions of characters in an image. We perform multi-scale
character detection via sliding window classification; this
approach has been extremely successful in face [19] and
pedestrian [5] detection. However, since our problem re-
quires detection of a large number of categories (62 charac-
ters), we must be mindful in our choice of classifier. In this
respect Random Ferns [17, 2, 18] are an appealing choice
as they are naturally multi-class and efficient both to train
and test. In the following sections we will review the basics
of Random Ferns and how we use them for detection, and
discuss the details of our training data.

Character Detection with Random Ferns For each lo-
cation ` in an image we will extract some feature vector x,
and compute a score, u(`, c), that tells us the likelihood of
character c being in this location, as opposed to the back-
ground cbg:

u(`, c) = log

(
p(c|x)

p(cbg|x)

)
(1)

= log
(

p(x|c)
)
− log

(
p(x|cbg)

)
+ log

(
p(c)

p(cbg)

)
.

We will assume a uniform prior over categories which
means the last term in the second line becomes a constant
and can be ignored for our purposes. For the simplicity of
the model we will assume that our feature space consists of
N binary features (i.e., x ∈ {0, 1}N). Notice that storing a
representation of the joint probability p(x|c) would require
a table of size 2N . A common simplification of this model
is to assume that all features are conditionally independent
(i.e., the Naive Bayes model [1]):

p(x|c) =
N∏

i=1

p(x[i]|c).

Random Ferns, introduced in [17], can be interpreted as
a compromise between the above oversimplification and a
fully joint probability table: the features are partitioned into
M groups, x1, . . . , xM , of size S = N/M , and an inde-
pendence assumption is made for these groups rather than
individual features. This results in the following formula
for the conditional probability:

p(x|c) =
M∏
i=1

p(xi|c).

Notice that the conditional probability for each group, or
Fern, xi can be computed using a table of size 2S × M
per category. At run time we must simply compute our bi-
nary features, look up the corresponding fern probabilities

Figure 3. Top: synthetic data generated by placing a small random
character (with 1 of 40 different fonts) in the center of a 48 × 48
pixel patch and two neighboring characters, adding Gaussian noise
and a random affine deformation. Bottom: “real” characters from
the ICDAR dataset. To train our character detector we generated
1000 images for each character.

in stored tables, and multiply the results (or take a log and
add). In our present implementation the features consist of
applying randomly chosen thresholds on randomly chosen
entries in a HOG descriptor [5] computed at the window
location. This framework scales well with the number of
categories, and has been incorporated in real-time systems
for keypoint matching [17] and object recognition [18].

The final step of character detection is to perform non-
maximal suppression (NMS). We do this separately for each
character using a simple greedy heuristic (similar to what is
described in [9]): we iterate over all windows in the image
in descending order of their score, and if the location has
not yet been suppressed, we suppress all of its neighbors
(i.e., windows that have an overlap over some threshold).

The character detection step can be applied directly to
the image or after a generic text detector has identified re-
gions of interest.

Equipped with this simple but robust classification mod-
ule we must now face the task of collecting enough training
data to achieve good detection performance.

Synthetic Training Data Collecting a sufficiently large
dataset is a typical burden of using a supervised learning
method. However, some domains have enjoyed success by
training and/or evaluating on synthetically generated im-
ages: fingerprints [3], fluorescent microscopy images [12],
keypoint deformations [17], and even pedestrians [11, 14].
Beyond the obvious advantage of having limitless amounts
of data, synthesizing training images allows for precise con-
trol over alignment of bounding boxes – an important prop-
erty that is often critical to learning a good classifier.

We synthesized about 1000 images per character using
40 fonts. For each image we add some amount of Gaussian
noise, and apply a random affine deformation. Examples of

our synthesized examples are shown in Figure 3, along with
examples of “real” characters from the ICDAR dataset.

2.2. Pictorial Structures

To detect words in the image, we use the Pictorial Struc-
tures (PS) [10] formulation that takes the locations and
scores of detected characters as input and finds an opti-
mal configuration of a particular word. More formally, let
w = (c1, c2, ..., cn) be some word with n characters from
our lexicon, Li be the set of detected locations for the ith

character in w, and u(`i, ci) be the score of a particular de-
tection at `i ∈ Li, computed with Eqn. (1). We seek to
find a configuration L∗ = (`∗1, . . . , `

∗
n) by optimizing the

following objective function:

L∗ = argmin
∀i,`i∈Li

(
n∑

i=1

−u(`i, ci) +
n−1∑
i=1

d(`i, `i+1)

)
, (2)

where d(li, lj) is a pairwise cost that incorporates spatial
layout and scale similarity between two neighboring char-
acters1. In practice, a tradeoff parameter is used to balance
the contributions of the two terms.

The above objective can be optimized efficiently using
dynamic programming as follows. Let D(li) be the cost
of the optimal placement of characters i + 1 to n with the
location of the ith character fixed at `i:

D(li) = −u(li, ci)+ min
li+1∈Li+1

d(li, li+1)+D (li+1) . (3)

Notice that total cost of the optimal configuration L∗ is
min`1∈L1 D(`1). Due to the recursive nature of D(·) we
can find the optimal configuration by first pre-computing
D(`n) = −u(`n, cn) for each `n ∈ Ln and then working
backwards toward the first letter of the word. For improved
efficiency we also include a pruning rule when performing
the minimization in Eqn. (3) by only considering locations
of `i+1 that are sufficiently spatially close to `i.

Pictorial Structures with a Lexicon. The dynamic pro-
gramming procedure for configuring a single word can be
extended to finding configurations of multiple words. Con-
sider for example the scenario where the lexicon contains
the two words {‘ICCV’,‘ECCV’}. The value of D(`2)
is the same for both words because they share the suffix
‘CCV’, and can therefore be computed once and used for
configuring both words. We leverage this by building a trie
structure out of the lexicon, with all the words reversed.
Figure 4 shows an example of a trie for five words, with the
shaded nodes marking the beginning of words from the lex-
icon (the rest of string is formed by tracing back to the root

1The deformation cost measures the deviation of a child character to the
expected location relative to its parent, which is specified as one character-
width away, as in [20].

N

I

A

P

S

RI E

C

C

V

Figure 4. An example of a trie data structure built for
a lexicon containing the words {‘ICCV’,‘ECCV’,
‘SPAIN’,‘PAIN’,‘RAIN’}. Every node in the trie that
is the beginning of a word is shaded in gray. To efficiently
perform Pictorial Structures for all words in the lexicon, we
traverse the trie, storing intermediate configuration solutions at
every node. When a shaded node is reached, we return the optimal
configurations for the corresponding word.

of the tree). To find configurations of the lexicon words in
the image, we traverse the trie and store intermediate solu-
tions at every node. When we reach nodes labeled as words
(the grayed out nodes), we return the optimal configurations
as word candidates. In practice, since an image may con-
tain more than one instance of each word, we return a few
of the top configurations for each word. In the worst case,
when no two words in the lexicon share a common suffix,
this method is equivalent to performing the optimization for
each word separately. In practice, however, performing the
optimization jointly is typically more efficient. In the re-
mainder of the paper we will refer to the above procedure
as “PLEX”.

2.3. Word Re-scoring and NMS

The final step in our pipeline is to perform non-maximal
suppression over all detected words. Unfortunately, there
are a couple problems with the scores returned by PLEX.
First, these scores are not comparable for words of different
lengths. The more important issue, however, is that the Pic-
torial Structures objective function captures only pairwise
relationships and ignores global features of the configura-
tion. While this allows for an efficient dynamic program-
ming solution to finding good configurations, we would like
to capture some global information in our final step. We
therefore re-score each word returned by PLEX in the fol-
lowing manner. We compute a number of features given a
word and its configuration:

• The configuration score from PLEX (i.e., cost of L∗)
• Mean, median, minimum and standard deviation of

character scores (i.e., u(`i))
• Standard deviation of horizontal and vertical gaps be-

tween consecutive characters
• Number of characters in a word.

These features are fed into an SVM classifier, the output of
which becomes the new score for the word. To train the

classifier we simply run our system on the entire training
dataset, label each returned word positive if it matches the
ground truth and negative otherwise, and feed these labels
and computed features into a standard SVM package2. Pa-
rameters of the SVM are set using cross validation on the
training data. Once the words receive their new scores, we
perform non-maximal suppression in the same manner as
we described for character detection in Section 2.1.

The full system, implemented in Matlab, takes roughly
15 seconds on average to run on a 800 × 1200 resolution
image with lexicon size of around 50 words. We expect the
runtime to be much lower with more careful engineering
(e.g., [18] showed real-time performance for Ferns).

3. Experiments

In this section we present a detailed evaluation of our
PLEX pipeline, as well as a two-step pipeline consisting of
Stroke Width Transform [7] (a state-of-the-art text detector)
and ABBYY FineReader3 (a leading commercial OCR en-
gine). We used data from the Chars74K4 dataset, introduced
in [6] for cropped character classification; the ICDAR Ro-
bust Reading Competition dataset [13], discussed in Section
1; and Street View Text (SVT), a full image lexicon-driven
scene text dataset introduced in [20]5.

3.1. Character Classification and Detection

We begin with an evaluation of character classification
on the Chars74K-15 (where there are 15 training examples
per character class) and the ICDAR-CH (character classifi-
cation sub-benchmark). We measure performance of Ferns
trained on synthetic data and Ferns trained on the real im-
ages from the respective datasets (labeled ‘NATIVE’). We
also compare to previously published results of HOG+NN
and ABBYY [20], as well as MKL [6].

Table 1 lists the character classification results on the
two datasets. We see that NATIVE+FERNS outperforms
other methods on the ICDAR-CH dataset. However, its
performance on the Chars74K-15 benchmark is below that
of previous results using HOG+NN. Upon further inspec-
tion, we noticed significant similarity between the images in
the training and testing sets from Chars74K (in some cases
near duplicates) which work to the advantage of a Near-
est Neighbor classifier. In contrast, the training and testing
split in ICDAR-CH was done on a per image basis, making
it highly unlikely to have near duplicates across the split –
this helps account for the drop in performance of HOG+NN
on ICDAR-CH. Finally, we see that training on purely syn-

2http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
3http://finereader.abbyy.com
4http://www.ee.surrey.ac.uk/CVSSP/demos/

chars74k/
5The dataset has undergone revision since originally introduced.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://finereader.abbyy.com
http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/
http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/

Method Chars74K-15 ICDAR-CH
SYNTH+FERNS .47 .52
NATIVE+FERNS .54 .64

HOG+NN [20] .58 .52
MKL [6] .55 -

ABBYY [20] .19 .21

Table 1. Character classification accuracy of Ferns versus previ-
ously published results on the Chars74K and ICDAR benchmarks.
The SYNTH+FERNS method was trained on synthetic data while
the NATIVE+FERNS was trained on data from their respective
datasets.

0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
h
a
ra

c
te

r
F

−
s
c
o
re

SYNTH

ICDAR

Figure 5. Character detection performance (F-score) comparing
Fern classifiers trained on synthetic data versus data from ICDAR.

thetic data shows competitive performance to training on
the native data.

While the character classification accuracy of
SYNTH+FERNS appears lower than NATIVE+FERNS,
our end goal is to use this classifier in a sliding window
fashion for character detection. We therefore evaluated the
character detection performance of SYNTH+FERNS and
ICDAR+FERNS (trained using real characters from the IC-
DAR data) on the full images from ICDAR. Figure 5 shows
the F-score, defined as (1

0.5×precision + 1
0.5×recall)

−1,
for each character. From this plot we see that although
ICDAR+FERNS performed better on cropped character
classification, SYNTH+FERNS is more effective when
used for sliding window character detection. A possible
explanation for this is that training on synthetic data
benefits both from a larger volume of training examples,
and from more consistent alignment of the data.

3.2. Cropped Word Recognition

Next, we evaluate cropped word recognition on the
ICDAR-WD and SVT-WD (the cropped word benchmarks
of the respective datasets). This is akin to measuring re-
call of a system that has a “perfect” text detector. In the
SVT-WD case, a lexicon of about 50 words is provided
with each image as part of the dataset. For the ICDAR
dataset, we measure performance using a lexicon created
from all the words that appear in the test set (we call this
ICDAR-WD(FULL)), and with lexicons consisting of the
ground truth words for that image plus 50 random “distrac-

Method ICDAR(FULL) ICDAR(50) SVT
SYNTH+PLEX .62 .76 .57
ICDAR+PLEX .57 .72 .56

ABBYY .55 .56 .35

Table 2. Accuracy of cropped word recognition comparing Picto-
rial Structures-based methods (trained on synthetic data and data
from ICDAR) to ABBYY FineReader.

tor” words added from the test set (we call this ICDAR-
WD(50)). The latter benchmark allows for direct compar-
ison to SVT-WD. For simplification, we ignore all words
that contain non-alphanumeric characters, as well as words
with 2 or fewer characters.

Table 2 shows our results for word recognition on
cropped images for three methods: 1) PLEX with Ferns
trained on ICDAR-CH data, 2) PLEX with Ferns trained
on synthetic data, and 3) ABBYY. The latter is a generic
OCR system and does not take a lexicon as input. To simu-
late lexicon driven OCR, we return the word in the lexicon
that has the smallest edit distance to the raw output of AB-
BYY (i.e., a type of spell checking). It is important to note
that evaluating the raw output from ABBYY results in poor
performance and some form of post-processing is essential
– without spell checking, the accuracy of ABBYY is .21 on
the ICDAR-WD(FULL).

Comparing the results in Table 2 to our previous results
from [20], we notice that ABBYY performs considerably
better on ICDAR-WD(FULL) than before. This difference
was observed after expanding word boxes by 25% in both
dimensions.

These results show that training our system with syn-
thetic data indeed leads to better performance. They also
suggest that the SVT dataset is significantly more challeng-
ing than ICDAR.

3.3. Word Detection and Recognition

Our main experiment consists of evaluating end-to-end
word detection and recognition on the ICDAR and SVT
datasets. We follow the evaluation guidelines outlined in
[13], which are essentially the same as the evaluation guide-
lines of other object recognition competitions, like PAS-
CAL VOC [8]. A bounding box is counted as a match if
it overlaps a ground truth bounding box by more than 50%
and the words match (ignoring case).

ICDAR Evaluation We compare performance of sev-
eral end-to-end pipelines on the ICDAR dataset. Our first
pipeline is a combination of a Stroke Width Transform
(SWT) and ABBYY (naming this pipeline SWT+ABBYY).
We acquired a set of bounding boxes returned by SWT from
the authors of [7]; these regions are then fed into ABBYY.
As we did before, we correct results from ABBYY by con-
verting its output to the word in the lexicon with the smallest

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.5

0.6

0.7

0.8

0.9

1

K = 5

Recall

P
re

c
is

io
n

SWT+ABBYY [0.62]

SWT+PLEX [0.71]

SWT+PLEX+R [0.71]

PLEX [0.69]

PLEX+R [0.72]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.5

0.6

0.7

0.8

0.9

1

K = 20

Recall

P
re

c
is

io
n

SWT+ABBYY [0.61]

SWT+PLEX [0.69]

SWT+PLEX+R [0.70]

PLEX [0.62]

PLEX+R [0.69]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.5

0.6

0.7

0.8

0.9

1

K = 50

Recall

P
re

c
is

io
n

SWT+ABBYY [0.60]

SWT+PLEX [0.67]

SWT+PLEX+R [0.68]

PLEX [0.56]

PLEX+R [0.65]

Figure 6. Precision and recall of end-to-end word detection and recognition methods on the ICDAR dataset. Results are shown with
lexicons created with 5, 20, and 50 distractor words. F-scores are shown in brackets next to pipeline name.

edit distance. In this case, we throw out all bounding boxes
for which ABBYY returns an empty string, or for which
the smallest edit distance to a lexicon word is above some
threshold – this helps reduce the number of false positives
for this system.

Next, we apply PLEX to full images without a text de-
tection step (named PLEX). Finally, we combine SWT with
PLEX as the reading engine (named SWT+PLEX). This hy-
brid pipeline serves as a sanity check to see if text detec-
tion improves results of PLEX. To show the effect of the
re-scoring technique presented in Section 2.3, we evaluate
the latter two pipelines with and without this step (adding
‘+R’ to the name when re-scoring is used). Motivated by
our earlier experiments, we all PLEX-based systems were
trained on synthetic data.

We construct a lexicon for each image by taking the
ground truth words that appear in that image and adding K
extra distractor words chosen at random from the test set, as
well as filtering short words, as in the previous experiment.

Figure 8 shows select examples of output; Figure 6
shows precision and recall plots for different values of K as
we sweep over a threshold on scores (or maximum edit dis-
tance for ABBYY, as described above). From these results,
we make the following observations. (1) Re-scoring signifi-
cantly improves performance of PLEX, especially for larger
lexicons. (2) The performance of PLEX-based pipelines is
significantly better than SWT+ABBYY. While the gap in
F-scores of these methods shrinks as the lexicon increases,
the PLEX based systems obtain a considerably higher recall
at high precision points in all cases. (3) PLEX+R, a system
that does not rely on explicit text detection, is not only com-
parable to SWT+PLEX+R, but actually outperforms it for
smaller length lexicons.

While an explicit text detection step could in principle
improve the precision of a system, the recall is also lim-
ited by that of the text detector. Improving the recall of
such a two stage pipeline would therefore necessitate im-
proving the recall of text detection. Upon further examina-
tion of our results, we found a strong positive correlation
between the words that ABBYY was able to read and the
words that were detected by the SWT detector. Recall that
in the cropped word experiment, ABBYY achieved .56 ac-

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

Recall
P

re
c
is

io
n

PLEX [0.27]

PLEX+R [0.38]

Figure 7. Precision and recall of end-to-end word detection and
recognition methods on the Street View Text dataset. F-scores are
shown in brackets next to pipeline name.

curacy on the ICDAR-WD(50) benchmark (correctly read-
ing 482 words). In the end-to-end benchmark of ICDAR
with K = 50, SWT+ABBYY correctly read 438 words
(very close to its performance on cropped words, which
simulates a “perfect” text detector). This shows that im-
proving the recall of SWT would not have a big impact on
the performance of SWT+ABBYY, unless ABBYY was im-
proved as well.

While ABBYY is a black box, the PLEX pipeline is con-
structed using computer vision techniques that are well un-
derstood and constantly improved by the community. We
believe this paves a clearer path towards improving reading
accuracy.

The work of [16] reported word recognition results on
the ICDAR dataset of 0.42/0.39/0.40, for precision, recall
and F-score. In our experiments, we created word lists for
every image, however word lists were not provided in the
experiments in [16], making the results not directly compa-
rable. The closest comparison in our framework is to pro-
vide the entire ground truth set (> 500) as a word list to each
test image. In that case, our PLEX+R pipeline achieves
0.45/0.54/0.51.

SVT Evaluation For the SVT dataset, we evaluated only
PLEX and PLEX+R because we were unable to obtain
SWT output for this data (and the original implementation
is not publicly available). Recall that this dataset comes
with a lexicon for each image (generated from local busi-

Figure 8. Selected results of end-to-end methods on the ICDAR dataset (for a lexicon with K = 20 distractors). Results from PLEX+R
are shown in green and results from SWT+ABBYY are shown in blue. In the first two images ABBYY has trouble reading text with noisy
image conditions and unusual fonts; the last image is more well suited for ABBYY as it is more similar to a scanned document.

ness searches in Google Maps). Figure 9 shows examples
of output and Figure 7 shows precision and recall plots for
this experiment. Again we see that re-scoring makes a dra-
matic improvement in the results. As with the cropped word
recognition results, comparing the performance on the IC-
DAR(50) to the performance on SVT exposes the relative
difficulty of SVT. One difference between ICDAR and SVT
that may contribute to this difficulty is that for each ICDAR
image all of the words in that image are contained in the
lexicon. On the other hand, in SVT, many of the images
contain irrelevant text that leads to a higher number of false
positives for our system. Notice, however, that this problem
would not be alleviated by the use of a text detector – the
burden still lies with the reading module.

4. Conclusion
These results establish a baseline for using generic com-

puter vision methods on end-to-end word recognition in the
wild. We show that we can outperform conventional OCR
engines and do so without the explicit use of a text detec-
tor. The latter is a promising new direction, significantly
simplifying the recognition pipeline.

5. Acknowledgements
We thank Piotr Dollár for helpful conversations and for

making his toolbox available. We thank Boris Epshtein for
generously sharing output from previous work [7]. This ma-
terial is based upon work supported by an NSF Graduate
Research Fellowship, Google Fellowship, and the Amazon
AWS in Education Program.

References
[1] C. Bishop. Pattern recognition and machine learning.

Springer, 2006. 2
[2] A. Bosch, A. Zisserman, and X. Munoz. Image classification

using random forests and ferns. In ICCV, 2007. 2
[3] R. Cappelli, D. Maio, D. Maltoni, and A. Erol. Synthetic

fingerprint-image generation. In ICPR, 2000. 3
[4] X. Chen and A. L. Yuille. Detecting and reading text in nat-

ural scenes. In CVPR, 2004. 1
[5] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, 2005. 2, 3
[6] T. de Campos, B. Babu, and M. Varma. Character recogni-

tion in natural images. In VISAPP, Feb. 2009. 1, 4, 5
[7] B. Epshtein, E. Ofek, and Y. Wexler. Detecting text in natural

scenes with stroke width transform. In CVPR, 2010. 1, 4, 5,
7

[8] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The pascal visual object classes (voc)
challenge. IJCV, 88(2):303–338, 2010. 5

[9] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part
based models. IEEE TPAMI, 2009. 3

[10] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial struc-
tures for object recognition. IJCV, 61:55–79, 2005. 3

[11] K. Grauman, G. Shakhnarovich, and T. Darrell. Inferring
3d structure with a statistical image-based shape model. In
CVPR, 2008. 3

[12] A. Lehmussola, P. Ruusuvuori, J. Selinummi, H. Huttunen,
and O. Yli-Harja. Computational framework for simulating
fluorescence microscope images with cell populations. IEEE
Trans. Med. Imaging, 26(7):1010–1016, 2007. 3

Figure 9. Selected results on the Street View Text dataset. PLEX+R results are shown in green and words from the corresponding lexicons
are shown in dashed pink (recall that these images can contain other irrelevant text).

[13] S. M. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong, and
R. Young. ICDAR 2003 robust reading competitions. IC-
DAR, 2003. 1, 4, 5

[14] J. Marin, D. Vazquez, D. Geronimo, and A. Lopez. Learning
appearance in virtual scenarios for ped. detection. In CVPR,
2010. 3

[15] M. Merler, C. Galleguillos, and S. Belongie. Recognizing
groceries in situ using in vitro training data. In SLAM, 2007.
1

[16] L. Neumann and J. Matas. A method for text localization and
recognition in real-world images. In ACCV, pages 770–783,
2010. 1, 6

[17] M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint recognition
in ten lines of code. In CVPR, 2007. 2, 3

[18] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton
forests for image categorization and segmentation. In CVPR,
2008. 2, 3, 4

[19] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In CVPR, 2001. 2

[20] K. Wang and S. Belongie. Word spotting in the wild. In
ECCV, 2010. 1, 2, 3, 4, 5

[21] J. J. Weinman, E. Learned-Miller, and A. R. Hanson. Scene
text recognition using similarity and a lexicon with sparse
belief propagation. IEEE TPAMI, 31:1733–1746, 2009. 1

