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We present two methods using multimodal density models for face detection in
gray-level images. One generative method uses a mixture of factor analyzers to con-
currently perform clustering and, within each cluster, perform local dimensionality
reduction. The parameters of the mixture model are estimated using the EM algo-
rithm. A face is detected if the probability of an input sample is above a predefined
threshold. The other discriminative method uses Kohonen’s self-organizing map for
clustering, Fisher’s linear discriminant to find an optimal projection for pattern clas-
sification, and a Gaussian distribution to model the class-conditional density function
of the projected samples for each class. The parameters of the class-conditional den-
sity functions are maximum likelihood estimates, and the decision rule is also based
on maximum likelihood. A wide range of face images including ones in different
poses, with different expressions and under different lighting conditions, is used as
the training set to capture variations of the human face. Our methods have been tested
on three data sets with a total of 225 images containing 871 faces. Experimental re-
sults on the first two data sets show that our generative and discriminative methods
perform as well as the best methods in the literature, yet have fewer false detections.
Meanwhile, both methods are able to detect faces of nonfrontal views and under
more extreme lighting in the third data set.  © 2001 Elsevier Science (USA)

Key Words: face detection; multimodal density estimation; Fisher’s linear dis-
criminant, self-organizing map; factor analysis; mixture of factor analyzers; EM
algorithm.

1. INTRODUCTION

Images of human faces are central to intelligent human computer interaction. Many cur-
rent research topics involve face images, including face recognition, face tracking, pose
estimation, facial expression recognition, and gesture recognition. However, most exist-
ing solutions assume that human faces in an image or an image sequence have been
identified and localized. To build fully automated systems that extract information from
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images with human faces, it is essential to develop robust and efficient algorithms to detect
faces.

Given a single image or a sequence of images, the goal of face detection is to identify
and locate all of the human faces regardless of their positions, scales, orientations, poses,
expressions, occlusions and lighting conditions. This is a challenging problem because faces
are nonrigid objects with a high degree of variability in size, shape, color, texture, facial hair,
jewelry, makeups, and glasses. Most recent face detection methods can only detect upright,
frontal faces under certain lighting conditions. Since the images of a human face lie in a
complex subset of the image space that is unlikely to be modeled by a single linear subspace
or characterized by a unimodal probability density function, we use multimodal density
models to estimate the distribution of face and nonface patterns. Although some methods [19,
35] have applied mixture models for face detection, these use principal component analysis
(PCA) for projection, which does not find the optimal subspace maximizing class separation.

Statistical pattern recognition approaches for face detection generally fall into two major
categories, generative or discriminative methods, depending on the estimation criteria used
for adjusting the model parameters and/or structure. Generative approaches such as Markov
random field (MRF) [24], naive Bayes classifier [32], hidden Markov Model (HMM) [25],
and higher-order statistics [25] rely on estimating a probability distribution over examples
using maximum likelihood (ML) or maximum a posterior (MAP) methods, whereas dis-
criminative methods such as neural networks [28, 35], support vector machines (SVM)
[21] and SNoW [39] aim to find a decision surface between face and nonface patterns.1
Discriminative methods require both positive (face) and negative (nonface) samples to find
a decision boundary.

Nevertheless, studies in cognitive psychology have suggested that humans learn to rec-
ognize objects (e.g., faces) using positive examples without the need for negative examples
[17]. Furthermore, while it is relatively easy to gather a representative set of face samples,
it is extremely difficult to collect a representative set of nonface samples. The effectiveness
of discriminative methods requires efforts in collecting nonface patterns. On the other hand,
generative mixture methods such as a mixture of Gaussians and a mixture of factor analyz-
ers rely on a joint probability distribution over examples, classification labels, and hidden
variables (i.e., mixture weights). Although the joint distribution in this approach carries a
number of advantages, e.g., in handling incomplete examples, the typical estimation crite-
rion (maximum likelihood or its variants) is nevertheless suboptimal from the classification
viewpoint. Furthermore, generative methods usually require data sets larger than those of
discriminative methods since most of them involve estimating covariance matrices. Dis-
criminative methods that focus directly on the parametric decision boundary, e.g., SVMs
or Fisher’s linear discriminant, typically yield better classification results, when they are
applicable and properly utilized.

In this paper, we aim to investigate the advantages and disadvantages of generative and
discriminative approaches to face detection. In the generative approach, we use only positive
examples (i.e., face samples) and aim to estimate a probability distribution of face patterns.
Furthermore, we use a mixture method to better model the distribution of face patterns. In
the discriminative approach, we use Fisher’s linear discriminant to find a decision boundary
between face and nonface patterns. We then compare the performance of both methods on
several benchmark data sets in order to investigate their pros and cons.

! Note that it is possible to incorporate generative methods in discriminative methods and vice versa.
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The first detection method is an extension of factor analysis. Factor analysis (FA) is a
statistical method for modeling the covariance structure of high-dimensional data using a
small number of latent variables. FA is analogous to PCA in several aspects. However PCA,
unlike FA, does not define a proper density model for the data since the cost of coding a
data point is equal anywhere along the principal component subspace (i.e., the density is
unnormalized along these directions). Further, PCA is not robust to independent noise in
the features of the data since the principal components maximize the variances of the input
data, thereby retaining unwanted variations. Synthetic and real examples in [3, 5, 8, 9] have
shown that the projected samples from different classes in the PCA subspace can often be
smeared. For the cases where the samples have certain structure, PCA is suboptimal from
the classification standpoint. Hinton et al. have applied FA to digit recognition, and they
compare the performance of PCA and FA models [14]. A mixture model of factor analyzers
has recently been extended [11] and applied to face recognition [10]. Both studies show
that FA performs better than PCA in digit and face recognition. Since pose, orientation,
expression, and lighting condition affect the appearance of a human face, the distribution
of faces in the image space can be better represented by a multimodal density model where
each modality captures certain characteristics of certain face appearances. We present a
probabilistic method that uses a mixture of factor analyzers (MFA) to detect faces with wide
variations. The parameters in the mixture model are estimated using the EM algorithm.

The second method that we present uses Fisher’s linear discriminant (FLD) to project
samples from a high-dimensional image space to a lower-dimensional feature space. Re-
cently, the Fisherface method [3] and others [36, 40] based on linear discriminant analysis
have been shown to outperform the widely used Eigenface method [37] in face recognition
on several data sets, including the Yale face database where face images are taken under
varying lighting conditions. One possible explanation is that FLD provides a better projec-
tion than PCA for pattern classification since it aims to find the most discriminant projection
direction. Consequently, the classification results in the projected subspace may be superior
than other methods. (See [18] for a discussion about training set size). In the second proposed
method, we decompose the training face and nonface samples into several subclasses us-
ing Kohonen’s self-organizing map (SOM). From these relabeled samples, the within-class
and between-class scatter matrices are computed, thereby generating the optimal projec-
tion based on FLD. For each subclass, we use a Gaussian to model its class-conditional
density function where the parameters are estimated based on maximum likelihood [8,
9]. To detect faces, each input image is scanned with a rectangular window in which the
class-dependent probability is computed. The maximum likelihood decision rule is used to
determine whether a face is detected.

To capture the variations in face patterns, we use a set of 1681 face images from Olivetti
[31], UMIST [12], Harvard [13], Yale [3], and FERET [23] databases. Our experimental
results on the data sets used in [28, 35] (which consist of 145 images with 619 faces) show
that our methods perform as well as the reported methods in the literature, yet with fewer
false detections. To further test our methods, we collected a set of 80 images containing
252 faces. This data set is rather challenging since it contains profile views of faces, faces
with a wide variety of expressions, and faces with heavy shadows. Our methods are able to
detect most of these faces as well. Furthermore, our methods have fewer false detections
than other methods.

The remainder of this paper is organized as follows. We review previous work on face
detection in Section 2. In Section 3, we describe a mixture of factor analyzers and apply them
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to face detection. We then present the second multimodal density model using Kohonen’s
self-organizing map algorithm for clustering and Fisher’s linear discriminant for projection
in Section 4. Comprehensive experiments on several benchmark data sets are detailed in
Section 5. We also compare the results from our methods with other methods in the literature.
Finally, we conclude this paper with comments and future work in Section 6.

2. PREVIOUS WORK

Numerous intensity-based methods have been proposed recently to detect human faces in
a single image or a sequence of images. We discuss the most relevant works in this section
and will present experiments and comparisons with these methods in Section 5. See [38]
for a comprehensive survey on face detection methods.

Sung and Poggio have developed a clustering and distribution-based system for face
detection [35]. Their system consists of two components, distribution-based models for
face/nonface patterns and a multilayer perceptron classifier. Each face and nonface ex-
ample is first normalized and processed to a 19 x 19 pixel pattern. Next, the training
patterns are classified into six face and six nonface clusters using a modified k-means
algorithm. Each face cluster is represented by a multidimensional Gaussian with a centroid
location and a covariance matrix. Two distance metrics are computed between an input
image pattern and the 12 prototype clusters. The first distance component is a normalized
Mahalanobis distance between the test pattern and the cluster centroid, measured within a
lower-dimensional subspace spanned by the cluster’s 75 largest eigenvectors. The second
distance component is the Euclidean distance between the test pattern and its projection
onto the 75-dimensional subspace. This distance component accounts for pattern differ-
ences not captured by the first distance component. The last step is to use a multilayer
perceptron network to classify face window patterns from nonface patterns using the 12
pairs of distances to each cluster. The classifier is trained using a standard backpropagation
algorithm. Note that it is easy to get a representative sample of images that contain faces,
but much more difficult to get a representative sample of those that do not. This problem
is avoided by a bootstrap method that selectively adds image patterns to the training set as
training progresses. They start with a small set of nonface training examples and train the
classifier with this database. Then the face detector is applied to a set of random images,
and all the nonface patterns that the current system wrongly classifies as faces are collected.
These mislabeled nonface patterns are then added to the training database as new nonface
examples.

Among all the face detection methods that use neural networks, the most significant work
is probably by Rowley et al. [26-28]. There are two major components: multiple neural
networks (to detect face patterns) and a decision-making module (to render the final decision
from multiple detection results). The first component of this method is a neural network
that receives a 20 x 20 pixel region of an image and outputs a score ranging from —1 to
1, indicating the possibility of a nonface or face pattern. To detect faces anywhere in an
image, the neural network is applied at every location in the image. To detect faces larger
than 20 x 20 pixels, the input image is repeatedly reduced in size by subsampling, and the
filter is applied at each size. The second component of this method is to merge overlapping
detection and arbitrate between the outputs of multiple networks. They use simple arbitration
schemes such as logic operators (AND/OR) and voting to improve performance. The system
by Rowley et al. [27] is less computationally expensive than Sung and Poggio’s system,
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and has a higher detection rate based on a test set of 24 images containing 144 faces. One
limitation of both systems is that they can only detect upright, frontal faces. Recently Rowley
et al. [29] have extended this method to detect rotated faces using a router network that
processes each input window to determine the possible face orientation and then rotates the
window to a canonical orientation; the rotated window is presented to the neural networks
as described above. This system has a detection rate on upright faces lower than that of the
upright detector. Nevertheless, the system is able to detect 76.9% of faces over two large
test sets with a small number of false positives.

Kullback relative information is employed by Colmenarez and Huang to maximize the
information-based discrimination between positive and negative examples of faces [6].
Images from the training set of each class (i.e., face and nonface class) are analyzed as
observations of a random process, and are characterized by two probability functions. They
used a family of discrete Markov processes to model the face and background patterns and
to estimate the probability model. The learning process is converted into an optimization
problem to select the Markov process that maximizes the information-based discrimination
between the two classes. The likelihood ratio is computed using the trained probability
model and used to detect the faces.

Schneiderman and Kanade [32] describe a naive Bayes classifier based on local ap-
pearance and position of the face pattern at multiple resolutions. They emphasize local
appearance because some local patterns of an object are more unique than others; the inten-
sity patterns around the eyes of a face are much more unique than the pattern found on the
cheeks. At each scale, each face sample is decomposed into four rectangular subregions.
These subregions are then projected to lower dimensional space using PCA and quantized
into a finite set of patterns. The statistics of local appearance are then estimated indepen-
dently from the samples (i.e., the frequency of each pattern) to encode the uniqueness of
local appearance. The reason they adopt the naive Bayes assumption (i.e., no statistical
dependency between the subregions) are twofold. First, it provides better estimation of
the conditional density functions of these subregions. Second, a naive classifier provides a
functional form of the posterior probability to capture the joint statistics of local appear-
ance and position on the object. Under this formulation, their method decides that a face is
present when the likelihood ratio is larger than the ratio of prior probabilities. The proposed
Bayesian approach shows comparable performance to [28] and their method is able to de-
tect some rotated and profile faces. Recently, Schneiderman and Kanade have extended this
method to detect profile faces and cars [33].

Support vector machines have been applied to face detection by Osuna et al. [21]. SVMs
can be considered as a new paradigm to train polynomial function, neural networks, or
radial basis function (RBF). While most training techniques for classifiers such as neural
networks and RBF are developed based on the principle of minimizing the training error
(i-e., empirical risk), SVMs operate on another induction principle, called structural risk
minimization, which minimizes an upper bound on the expected generalization error. In
other words, a SVM classifier aims to find an optimal hyperplane such that the classification
error of the unseen test patterns is minimized. Training a SVM is equivalent to solving a
linearly constrained quadratic programming problem. However, the computation involved
is both time and space intensive. In [21] Osuna et al. develop an efficient method for training
a SVM for a large-scale problem and apply it to face detection. Based on two test sets of
10,000,000 test patterns of 19 x 19 pixels (Test sets A and B collected by Sung and Poggio
[35]), their system has slightly lower error rates and runs approximately 30 times faster
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than the system by Sung and Poggio [34]. Poggio et al. also apply SVMs to detect faces
and pedestrians in the wavelet domain [20, 22].

3. MIXTURE OF FACTOR ANALYZERS

In the first method, we fit a mixture model of factor analyzers to the training samples
using the EM algorithm [7] and obtain a distribution of face patterns. To detect faces, each
input image is scanned with a rectangular window in which the probability of the current
input being a face pattern is calculated. A face is detected if the probability is above a
predefined threshold. We describe factor analysis and a mixture of factor analyzers in this
section. More details of these models can be found in [2, 11].

3.1. Factor Analysis

Factor analysis is a statistical model in which the observed vector is partitioned into
an unobserved systematic part and an unobserved error part. The systematic part is taken
as a linear combination of a relatively small number of unobserved factor variables while
the components of the error vector are considered as uncorrelated or independent. From
another point of view, factor analysis gives a description of the interdependence of a set
of variables in terms of the factors without regard to the observed variability. While PCA
aims to extract a subspace in which the variance is maximized (thereby minimizing the
reconstruction cost), some unwanted variations (due to lighting, facial expressions, viewing
points, etc.) may be captured (see [3, 5, 8, 9] for examples). It has been observed that in
face recognition the variations between the images of the same face due to illumination
and viewing direction are almost always larger than image variations due to the chances in
face identity [1]. Therefore, while the PCA projections are optimal in a correlation sense
(or for reconstruction from a low-dimensional subspace), these eigenvectors or bases may
be suboptimal from the classification viewpoint.

FA is a different way of analyzing the covariance matrix of the inputs that starts with a
proper probabilistic model and correctly blends the reconstruction cost. Unlike PCA, the
FA model allows different variances to be used for coding the residual errors on different
dimensions. For face patterns, we expect that different regions of face images to have
different levels of variability that can be modeled as pixel noise. The noise level within a
forehead region, for instance, is likely to be smaller than that of an eye region. Therefore,
FA is able to better model variation in pixel noise across images, and may provide better
probabilistic model for faces. Another difference is that PCA is rotationally symmetric
whereas FA is not. For FA, the particular dimensions used to describe the image are special
in the sense that the noise corrupting them is taken to be mutually independent. See also
[10, 11, 14] for further discussion on the differences between PCA and FA with illustrations
on synthetic examples.

Formally, an observable data vector x € R4 is modeled using a vector of factors z € R?,
where p is generally much smaller than d. The generative model is given by

X =Az+u, (D

where A € RY*P is known as the factor loading matrix and u variables account for
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independent noise in each dimension of x. The factors z model correlations between the
elements of x and are assumed to be random with zero mean, i.e., E[z] = 0. Let the co-
variance matrix of z be ® (i.e., E[zz"] = ®) and we further assume factors are orthogonal,
then E[zz"] = & = I (where I is an identity matrix). If ® is not diagonal, the factors are
said to be oblique. In this paper, we assume the factors are orthogonal, and thus z is as-
sumed to be N(0, I) distributed (zero-mean independent normals with unit variance). The
d-dimensional random variable u is distributed A'(0, ¥) where W is a diagonal matrix, due
to the assumption that the observed variables x are independent given the factors z. In other
words,

p(x|z) = N(Az, V). @)

One crucial assumption is that the components of u are uncorrelated. In other words, the
errors of observation u and the specific factors z are by definition uncorrelated. Another
viewpoint of this assumption is that the factors are supposed to explain or account for as
much of the variance of the observed data as possible. According to this model, x is therefore
distributed with zero mean and covariance AAT 4+ ¥, since

Sy = E[(Az+uw)(Az+w)'] = AIAT + U + AAT + 0. (3)

The goal of factor analysis is to find the A and ¥ that best model the covariance struc-
ture of x. The factor variables z model correlations between the elements of x, while the u
variables account for independent noise in each element x. The p factors play the same role
as the principal components in PCA; i.e., they are informative projections of the data. In
other words, the columns of A can be considered as vectors that span a p-dimensional sub-
space (p < d). These p vectors can be considered as coordinate axes in the p-dimensional
subspace, and z can be considered as coordinates of a point in this subspace, often called
the factor space. Multiplying A on the right by a matrix corresponds to taking a projection
in the factor space.

Note that x, z, and u are normally distributed random variables, and x is a linear combi-
nation of z and u, so the conditional expectation can be computed easily. Given A and ¥,
the joint distribution of x and z is

P =~([o] [*3 )

Note that the covariance matrix has been partitioned into matrices according to x and z, and
so these matrices do not have the same size.
Therefore, the expected value of the factors can be computed through the linear combi-
nations
Elz|x] = px &)
Var[z | x] = I — BA, (6)

where g = AT hom ' = AT(AAT 4+ ¥)~!. The second moment of factors can be computed
as

Elzz" | x] = Var(z | x)+ E[z | x]E[z | x]T = I — BA + Bxx"BT. (7)
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Rubin and Thayer presented an EM-based algorithm for maximum likelihood estimation
of factor analysis [30]. The idea is to treat the unobservable z as missing data. Since x and
z have a joint normal distribution, the sufficient statistics are the means and covariances.
The E-step of the algorithm is to obtain the expectation of the covariances on the basis
of trial values of the parameters. The M-step is to maximize the likelihood function on
the basis of these covariances, which in turn provides updated values of the parameters.
The steps alternate, and the procedure converges to the (local) maximum likelihood es-
timate [7].2 Specifically, the expected values of factors in (5) and second moment in (7)
form the basis of the EM algorithm. We summarize Rubin and Thayer’s EM algorithm as
follows:

o E-step: Given A and ¥, compute E[z | x;] and E[zz" | x;] for each data point x;
using (5) and (7).
e M-step: Update A and ¥

AI’IEw

n n -1

(Z X Elz | x,-]T> (Z Elz" | x,-]> ®)
i=1 i=1

prew — %diag {;x,xlT — AN"“YE[z | x,-]x,-T} , 9

where diag{ A} means that only the diagonal elements are nonzero, and all the off-diagonal
elements of a matrix are set to 0.

3.2. Mixture of Factor Analyzers

In this section, we consider modeling the distribution of face patterns by a mixture of
m factor analyzers (indexed by f;, j = 1, ..., m) where each factor analyzer has the same
number of p factors, and each factor analyzer has a different mean ;. The generative
model obeys the mixture distribution [11]

P(x) = Z/P(x |z, [P fP(fj)dz, (10)
j=1
where
P(z| fj) = P(@2)=N(QO,I) (11)
P(x |z, f;)) =N(u; + Ajz, ). (12)

The parameters of this mixture model are {(uj, A j);f’zl, 7, W} where 7 is the vector of
adaptable mixing proportions, 7w; = P(f;). The latent variables in this model are the factors

2 Dempster et al. [7] proved that each iteration of EM increases the likelihood even if starting from a point where
the likelihood is not convex. Also, if an instance of the algorithm converges, it converges to a (local) maximum of
the likelihood.
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z and the mixture indicator variable f;, where f; = 1 when the data point is generated by
the jth factor analyzer.

Given a set of training images, the EM algorithm [11] is used to estimate the parameters,
{(j, Aj)j_y, m, ¥} For the E-step of the EM algorithm, we need to compute expectations
of all the interactions of the hidden variables that appear in the log likelihood,

Elfjz | x;]1 = ELf; | xi]1E[z | f},x] (13)
E[fjzz" | x;] = ELf; | x;]E[22" | f}.x;]. (14)

Defining
hij = E[fj | X,‘] (08 P(X,‘, f/) = W‘jN(Xl‘ — [,LJ,AJA;F + \I/) (15)

and using (5) and (12), we obtain
E[fjz | xi] = hi;B;j(xi — p;), (16)
where
B =AT(AAT+ )" (17)
Similarly, using (7) and (14), we obtain
Efiza" | %1 = hij (I = B;A; + Bi(xi — p)xi — p)' B}). (18)

The EM algorithm for mixture of factor analyzers can be stated as

o E-step: Compute E[f; | x;], E[z | f},x;], and E[zz" | fj»x;] for all data points i
and mixture components j.
e M-step: Solve a set of linear equations for 7, A;, p;, and W.

The mixture of factor analyzers is essentially a reduced dimensionality mixture of Gaus-
sians. Each factor analyzer fits a Gaussian to a portion of the data, weighted by the
posterior probabilities, ;;. Since the covariance matrix for each Gaussian is specified
through the lower-dimensional factor-loading matrices, the model has mpd + d, rather
than md(d + 1)/2 parameters dedicated to modeling the covariance structure in high di-
mensions.

Note that since the EM algorithm involves matrix inversion in computing § and the
condition number (the ratio of the largest singular value of x to the smallest) of input vector
x is usually large (i.e., nearly singular), it is necessary to project input vectors X to a lower-
dimensional space using PCA. Let X' = Wl-,x, we model the distribution of X’ using the
above equations, and we call the factors in the projected factor-loading matrix Wy, A the
Factorfaces. These Factorfaces give a description or explanation of the interdependence
of faces in the training set without regard to the observed variability. Figure 1 shows 20
Factorfaces in one factor analyzer determined when estimating the mixture model on the
training set. Note that each factor loosely resembles a face. In other words, each input face
is modeled by a linear combination of the mixture of Factorfaces and noise. Figure 2 shows
20 Factorfaces in another factor analyzer. Note that these Factorfaces capture variations
of faces in a 45° pose. This is the direct result of the mixture of factor analyzers since
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FIG. 1. Factorfaces: The Factorfaces (i.e., factors) in a factor analyzer explain observable face images based
on the generative model. Each face is represented by a linear combination of a mixture of Factorfaces and noise.
These Factorfaces capture variations in faces in frontal views. Note that the blurry results are due to the size of a
face image being 20 x 20 pixels.

it concurrently performs clustering and, with each cluster, performs local dimensionality
reduction.

3.3. Detecting Face Patterns

To detect faces, each input image is scanned with a rectangular window with d pixels,
and the probability of the window’s contents being a face pattern is estimated using (10). A
face is detected if this probability is above a predefined threshold. In order to detect faces
of different scales, each input image is repeatedly subsampled by a factor of 1.2, and the
above mentioned detection process is applied. If the size of the face image in the training
set is v x v pixels and the above iterative process is applied, we can detect faces up to
6.2v x 6.2v pixels.

FIG. 2. Factorfaces: The Factorfaces in a factor analyzer explain observable face images based on the gen-
erative model. Each face is represented by a linear combination of a mixture of Factorfaces and noise. Note that
these Factorfaces capture facial features of faces in 45° pose. Note that the blurry results are due to the size of a
face image being 20 x 20 pixels.
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4. MIXTURE OF LINEAR SPACES USING FISHER’S LINEAR DISCRIMINANT

In the second mixture model, we use Kohonen’s self-organizing map [16] to first divide
the face samples into c¢; face classes and then to divide the nonface samples into ¢, non-
face classes. Next, Fisher projection is computed based on all ¢ (¢ = ¢; + ¢;) classes to
maximize the ratio of the between-class scatter (variance) and the within-class scatter (vari-
ance). The now-labeled training set is projected from a high-dimensional image space to
a lower-dimensional (i.e., ¢ — 1 dimensional) feature space, and a Gaussian distribution is
used to model the class-conditional density function for each class where the parameters
are estimated using maximum likelihood. For detection, the conditional probability of each
sample given each class is computed, and the maximum likelihood principle is used to
decide in which class the sample belongs. In our experiments, we choose 25 face and 25
nonface classes because of the size of training set. In making this decision, we face the
typical “curse of dimensionality” problem [4], which states that the amount of data required
to construct a reliable estimate of the true solution increases exponentially with dimension.
If the number of classes is too small, the clustering results may be poor. On the other hand,
we may not have enough samples to estimate the class-conditional density function well if
we choose a large number of classes.

4.1. Labeling Samples Using SOM

While Fisher’s linear discriminant provides effective projections when two classes are
unimodal or linearly separable, it may not be effective when classes can be characterized by a
multimodal density function. Hence we decompose the training set (using Kohonen’s SOM
algorithm) into subclasses that can be characterized by a well-behaved density function,
and then apply multidiscriminant analysis to the subclasses. In our experiments, we divide
the face sample images into 25 classes. After training, the final weight vector for each node
is the centroid of the class, i.e., the prototype vector, which corresponds to the prototype of
each class. The same procedure is applied to nonface samples. Figure 3 shows the proto-
typical face of each class. It is clear that the sample face images with different poses
and under different lighting conditions (intensity increases from the lower right corner
to the upper left corner) have been classified into different classes. Note that the SOM
algorithm also places the prototypes in the two-dimensional feature map, shown in Fig. 3,
in accordance to their adjacency relationships in the image space. In other words, prototype
vectors corresponding to nearby points on the feature map grid have nearby locations in
the high-dimensional image space (e.g., nearby prototypes have similar intensity and pose).
As mentioned at the beginning of this section, the number of classes has a direct relation
with the number of samples. We partitioned the face (and nonface) samples with several
configurations, e.g.,4 x 4,5 x 6, and 7 x 7, and found that the SOM map with 5 x 5 grids
performs best in our experiments.

Figure 4 shows the the resulting SOM map of nonface subclasses. The prototype vectors
appear to be random dots that can be explained by the fact that the nonface training set
consists of a wide variety of samples that do not seem to have common structural information.

4.2. Fisher’s Linear Discriminant

While PCA is commonly used to project face patterns from a high-dimensional image
space to a lower-dimensional feature space, a drawback is that it defines a subspace such
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FIG. 3. Prototype of each face class: Each prototype vector corresponds to a centroid of a face subclass. The
SOM algorithm also places the prototype vectors according to their adjacency relationships. In other words, the
prototypes that are similar to each other are placed next to each other in the two-dimensional map.

that it has the greatest variance of the projected sample vectors among all the subspaces.
However, such projection may not be effective for classification since large and unwanted
variations may be retained. Consequently, the projected samples for each class may not be
well clustered, and instead the samples may be smeared together [3, 10, 14]. Fisher’s linear

FIG.4. Prototype of each nonface class: Each prototype vector corresponds to a centroid of a nonface subclass.
These prototypes appear to be similar to random dots that do not contain any structural information. The results
can be explained by the wide variety of nonface images.
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discriminant is an example of a class-specific method that finds the optimal projection for
classification. Rather than finding a projection that maximizes the projected variance, FLD
determines a projection, z = W, x, that maximizes the ratio between the between-class
scatter (variance) and the within-class scatter (variance). Consequently, classification is
simplified in the projected space.

Consider a c-class problem with N samples; let the between-class scatter matrix be
defined as

Sp =Y Ni(p; — )i — )" (19)
i=1

and the within-class scatter matrix be defined as

c

Sw — Z Z (xe — p)(xe — )" = Z Swi, (20)
=1

i=1 XkEX,’

where p is the mean of all samples, p; is the mean of class X;, Sw; is the covariance of
class X;, and N; is the number of samples in class X;.

The optimal projection Wgrp is chosen as the matrix with orthonormal columns that
maximizes the ratio of the determinant of the between-class scatter matrix of the projected
samples to the determinant of the within-class scatter matrix of the projected sampled, i.e.,

W W SsWl _ | | Q1)
=argmax ——— =[w; Wy - Wyl

FLD g W WTSw W] 1 2

where {w;|i = 1,2, ..., m}isthesetof generalized eigenvectors of Sg and Sy, correspond-

ing to the m largest generalized eigenvalues {X; | i = 1, 2, ..., m}. However, the rank of

Sp is ¢ — 1 or less because it is the sum of ¢ matrices of rank one or less. Thus, the upper
bound on m is ¢ — 1 [8, 9]. Similarly, the rank of Sy is at most N — c. For a set of N sample
images of n pixels where N is usually smaller than n, the within-scatter matrix Sw € R"*"
is always singular. This means that the projected within-scatter matrix can be zero if the
projection matrix is not chosen properly. It is suggested in [3, 36, 40] that we can avoid this
problem by first projecting the image set to a lower-dimensional space using PCA so that
the resulting within-class scatter matrix Sw is nonsingular before computing the optimal
projection Wy p. In other words, we first project the image set from N-dimensional space
to (N — c)-dimensional space and then compute the optimal projection matrix using (21).
Letx = WEC AX Where Wpcy is n x (N — C) matrix computed from

Wpca = arg max (WIS Wi, (22)

where St = Sw + Sg is the total scatter matrix. Next, we compute W p using x'. Conse-
quently, Wgrp is an (N — ¢) x m matrix computed by
|WIWEcASEWecaAW |
|WIWEcASwWpcaW |

WeLp = arg max (23)

Using Wgp, we cam project X from a n-dimensional space to x” in a (¢ — 1)-dimensional
space spanned by nonzero eigenvectors.
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4.3. Class-Conditional Density Function

Once Wy p is computed, the now-labeled training set is projected to the ¢ — 1 dimensional
feature space, i.e., X" = W, , X, and a Gaussian distribution is used to model each class-
conditional density (CCD) function, i.e., P(x" | X;) = N(py,, Xx,), where i = 1,...,c.
The parameters, {py,, Xx,} of each CCD are the maximum likelihood estimates, i.e.,

fry, = Wi 24)
and
, 1 T
EX,- = mWFLDSWi WFLDa (25)

where |X;| is the number of samples in class X;.

4.4. Detecting Face Patterns

Each input image is scanned with a rectangular window to determine whether a face
exists in the window. The decision rule for deciding whether an input window contains a
face is based on maximum likelihood,

X* =arg max PX" | X)). (26)
tel,...,c

Given x”, a face pattern is detected if X* is a class label belonging to a face subclass.

Otherwise, a nonface pattern is detected. To detect faces at different scales, each input

image is repeatedly subsampled by a factor of 1.2 and scanned through for 10 iterations.

5. EXPERIMENTS

For training, we use a set of 1681 face images (collected from Olivetti [31], UMIST [12],
Harvard [13], Yale [3], and FERET [23] databases) that has wide variations in pose, facial
expression, and lighting conditions. In the first method, we collected nonface samples from
4000 images containing landscapes, trees, buildings, etc. We conducted experiments to find
Weca, the appropriate number of factor analyzers, the appropriate number of factors in each
factor analyzer, and a probability threshold. The Wpca matrix projects face patterns from
a 400-dimensional input image space to a 80-dimensional subspace before estimating the
mixture of factor analyzers. We experimented and tuned the parameters (number of factor
analyzers, number of factors, thresholds) during the training process. The best detection
rate resulted from from a mixture of 36 factor analyzers in which each factor analyzer
has 20 factors. In the second method, we start with 8422 nonface examples Although it is
extremely difficult to collect a representative set of nonface examples, the bootstrap method
similar to [35] is used to include more nonface examples during training. Each face sample
is manually cropped and normalized such that it is aligned vertically and its size is 20 x 20
pixels. To make the detection method less sensitive to scale and rotation variation, 10 face
examples are generated from each original sample. The images are produced by randomly
rotating the images by up to 15° and randomly scaling them between 80 and 120%. Figure 5
shows some of the 16810 images generated by the this procedure.
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FIG. 5. Example face images that are generated by randomly rotating the original images by a small degree
and scaling.

5.1. Empirical Results

We test both methods on the three sets of images collected by Rowley et al. [28], Sung and
Poggio [35], and ourselves. Since faces are usually detected at multiple scales and positions,
we use heuristics similar to [28] to merge all the overlapping windows so that each detected
face is bounded by a single window in the final detection result. We first compute the
centroid c of all the overlapping windows that have detected faces. The resulting ¢ defines
the centroid of a surrounding window that contains a detected face.

In our experiments, a detected face is a successful detection if the subimage contains both
eyes and the mouth. Otherwise, it is a false detection. The detection rate is the ratio between
the number of successful detections and the number of faces in the test set. Table 1 shows
the detection rates of our methods and the reported results of several detection methods
described in Section 2 on the test set in [28]. Experimental results on test set 1, which
consists of 125 images (483 faces) excluding 5 images of hand-drawn faces, show that our
methods have a detection performance comparable with that of other methods, yet with
fewer false detections.

Table 2 shows the our experimental results on the test set of Sung and Poggio [35], which
consists of 20 images excluding 3 images of line-drawn faces (136 faces). Consistent with
the results from test set 1, both of our methods consistently perform well and have few false
detections.

Test set 3 consists of 80 images (252 faces), collected from the World Wide Web,
with different poses, expressions and faces with heavy shadows. This data set is available
at http://vision.ai.uiuc.edu/mhyang/face-dataset.html. The detection rates are 86.7% and
88.2% for MFA- and FLD-based methods. The number of false detections are 45 and 40,

TABLE 1
Experimental Results on Images from Test Set 1
(125 Images with 483 Faces) in [28]

Method Detection rate False detection
Mixture of factor analyzers 92.3% 82
Fisher’s linear discriminant 93.6% 74
Distribution-based [35] N/A N/A
Neural network [28] 92.5% 862
Naive Bayes classifier [32] 93.0% 88
Kullback relative information [6] 98.0% 12758

Support vector machine [21] N/A N/A
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TABLE 2
Experimental Results on Images from Test Set 2
(20 Images with 136 Faces) in [35]

Method Detection rate False detection
Mixture of factor analyzers 89.4% 3
Fisher’s linear discriminant 91.5% 1
Distribution-based [35] 81.9% 13
Neural network [28] 90.3% 42
Naive Bayes classifier [32] 91.2% 12
Kullback relative information [6] N/A N/A
Support vector machine [21] 74.2% 20

respectively. Both methods perform similarly well in detecting these faces, though the FLD-
based method performs slightly better than the method using a mixture of factor analyzers.
Figure 6 shows the results of our methods on some test images. For clarity, each face is
shown with the window that is closest to the center of the face, though in some test images
there exist multiple detections of the same face.

Note that there is a false detection in the upper left corner of the image in Fig. 6 since one
window resembles a face. Also note that our methods can detect, up to a certain degree, some
profile faces and faces with heavy shadows. However occluded, rotated faces or faces with
sunglasses cannot be detected effectively by both methods due to lack of such examples in
the training sets. None of the existing detection methods can effectively detect these types
of faces, although a recent method is able to detect faces rotated in the image [29].

Figure 7 shows more results of our methods on test images. These results show that faces
of different scales in cluttered backgrounds can be detected by our methods.

5.2. Discussion

Although Tables 1 and 2 show the performance of several methods on the same data set,
it is still difficult to have a fair evaluation. There are at least three factors that complicate the
assessment of these appearance-based methods. First, these learning methods usually use
different training sets and different tuning parameters. The number of training examples
has a direct effect on the classification performance. However this factor is often ignored
when evaluating methods. The second factor is the training and execution time. Although
the training time is usually ignored by most systems, it may be important for real-time
applications that require training on different data sets. Finally, the number of scanned
window locations in these methods vary a lot because they are designed to operate in
different environments (i.e., to detect faces within a size range). For example, Colmenarez
and Huang [6] argue that their method scans more windows than others and thus the number
of false detections is higher than others. Furthermore, the criteria adopted in the reported
detection rates is usually not clearly described in most systems. It is clear that a uniform
criteria should be adopted in a fair assessment of these methods. Nevertheless, based on the
reported results, our methods have a detection performance comparable with that of other
methods, yet with fewer false detections.

Based on the motivation for the mixture of factor analyzers model, one might expect it to
have a performance better than that of the mixture of Gaussians [35], and the experimental
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FIG. 6. Sample experimental results using the proposed methods. The bottom two test images are from data
set 1 and the the top right image is from data set 2. The remaining 3 images on the top left corner are from data set 3.
Both methods successfully detect all faces in these images where each detected face is shown with an enclosing
window. However, the first method using a mixture of factor analyzers has one false positive as shown in the upper
left image, whereas the second method does not have any false positive in that image. Also note that a profile face
in the lower left image is detected but one partially occluded face is not.

results on two benchmark data sets show this to be true. These empirical results can be
attributed to several reasons. First, FA explicitly models covariance structure, which allows
FA to model variation in pixel noise across the face images, whereas PCA cannot. For
modeling faces, FA is likely to be immune to the fact that different dimensions in the

input vectors might have different intrinsic amounts of noise and look for the structure in
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FIG. 7. Sample experimental results on images from data set 1. Both methods successfully detect all faces
in these images without false positives, and since the localization is qualitatively similar, only the results for the
first method are presented. A detected face is shown with an enclosing window. Note that faces against cluttered
backgrounds are detected without false positives and that a profile face is detected in the upper left image.

faces. Second, PCA extracts a linear subspace that maximizes the variance retained in the
subspace, but does not model the off-space noise nor the variance in the subspace, whereas
in FA, the discrepancies (i.e., noise) between the model and the image are independent from
one pixel to the next, given the factors.

In this study, we do not find much difference between two reported methods in the exper-
iments with benchmark data sets, although the method using Fisher’s linear discriminant
performs slightly better than that using a mixture of factor analyzers. However, the ac-
tual computation time for learning in the second method using Fisher’s linear discriminant
is higher than that for the first method. One reason is that the second method involves
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clustering and computation of several covariance matrices for positive and negative ex-
amples, whereas the first method uses only face images to estimate a multimodal density
function for positive samples in which the clustering and dimensionality procedures are
performed concurrently. In terms of running time, the method using a mixture of factor
analyzers is slightly faster than the other method in our experiments. Finally, it would be in-
teresting to merge the proposed methods with the “Anti-faces” techniques [15] to potentially
improve the detection speed without compromising detection rates.

6. CONCLUDING REMARKS

We have described two methods using multimodal density models to detect human faces
regardless of their pose, facial expression, and lighting conditions. The first method fits a
mixture of factor analyzers to estimate the density function of face images, and the second
method uses a self-organizing map to partition the training set into classes and Fisher’s
linear discriminant to find the optimal projection for classification. Experimental results on
three sets of images demonstrate that both methods perform as well as the best algorithms
in detecting upright frontal faces, yet with fewer false detections. Furthermore, our methods
are able to detect faces with shadows and a range of poses.

The contributions of this paper can be summarized as follows. First, we introduce projec-
tion methods that have the potential to perform better than PCA in classification problems.
The classification results in our experiments show that these methods perform well against
several state-of-the-art systems. Second, we apply multimodal density models such that the
each modality can better capture the variations of face patterns. Although some methods
have used mixture models for face detection [19, 35], PCA is used for projection, and as
mentioned earlier this does not maximize class separation as FLD does. On the other hand,
it is not clear how well SVM performs in face detection since the study in [21] applied
SVMs to a rather small test set of 136 faces. It will be of great interest to compare our
methods with SVMs on a large test set since SVMs aim to find an optimal hyperplane that
minimizes the generalization error under the theoretical upper bounds.
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