
Face Detection Using Mixtures of Linear Subspaces

Ming-Hsuan Yang Narendra Ahuja David Kriegman
Department of Computer Science and Beckman Institute

University of Illinois at Urbana-Champaign, Urbana, IL 61801
Email: fmyang1, n-ahuja, kriegmang@uiuc.edu

Abstract

We present two methods using mixtures of linear sub-
spaces for face detection in gray level images. One method
uses a mixture of factor analyzers to concurrently perform
clustering and, within each cluster, perform local dimen-
sionality reduction. The parameters of the mixture model
are estimated using an EM algorithm. A face is detected
if the probability of an input sample is above a predefined
threshold. The other mixture of subspaces method uses
Kohonen’s self-organizing map for clustering and Fisher
Linear Discriminant to find the optimal projection for pat-
tern classification, and a Gaussian distribution to model the
class-conditional density function of the projected samples
for each class. The parameters of the class-conditional den-
sity functions are maximum likelihood estimates and the de-
cision rule is also based on maximum likelihood. A wide
range of face images including ones in different poses, with
different expressions and under different lighting conditions
are used as the training set to capture the variations of hu-
man faces. Our methods have been tested on three sets of
225 images which contain 871 faces. Experimental results
on the first two datasets show that our methods perform as
well as the best methods in the literature, yet have fewer
false detects.

1 Introduction

Images of human faces are central to intelligent human
computer interaction. Much research is being done involv-
ing face images, including face recognition, face tracking,
pose estimation, expression recognition and gesture recog-
nition. However, most existing methods on these topics
assume human faces in an image or an image sequence
have been identified and localized. To build a fully auto-
mated system that extracts information from images of hu-
man faces, it is essential to develop robust and efficient al-
gorithms to detect human faces. Given a single image or a
sequence of images, the goal of face detection is to iden-

tify and locate all of the human faces regardless of their po-
sitions, scales, orientations, poses and lighting conditions.
This is a challenging problem because human faces are
highly non-rigid objects with a high degree of variability in
size, shape, color and texture. Most recent methods for face
detection can only detect upright, frontal faces under cer-
tain lighting conditions. In this paper, we present two face
detection methods that use mixtures of linear subspaces to
detect faces with different features and expressions, in dif-
ferent poses, and under different lighting conditions.

Since the images of a human face lie in a complex sub-
set of the image space that is unlikely to be modeled by
a single linear subspace, we use a mixture of linear sub-
spaces to model the distribution of face and nonface pat-
terns. The first detection method is an extension of factor
analysis. Factor analysis (FA), a statistical method for mod-
eling the covariance structure of high dimensional data us-
ing a small number of latent variables, has analogue with
principal component analysis (PCA). However PCA, unlike
FA, does not define a proper density model for the data since
the cost of coding a data point is equal anywhere along the
principal component subspace (i.e., the density is unnormal-
ized along these directions). Further, PCA is not robust to
independent noise in the features of the data since the prin-
cipal components maximize the variances of the input data,
thereby retaining unwanted variations. Hinton et al. have
applied FA to digit recognition and they compare the per-
formance of PCA and FA models [10]. A mixture model
of factor analyzers has recently been extended [7] and ap-
plied to face recognition [6]. Both studies show that FA per-
forms better than PCA in digit and face recognition. Since
pose, orientation, expression, and lighting affect the appear-
ance of a human face, the distribution of faces in the image
space can be better represented by a mixture of subspaces
where each subspace captures certain characteristics of cer-
tain face appearances. We present a probabilistic method
that uses a mixture of factor analyzers (MFA) to detect faces
with wide variations. The parameters in the mixture model
are estimated using an EM algorithm.

The second method that we present uses Fisher Linear



Discriminant (FLD) to project samples from a high dimen-
sional image space to a lower dimensional feature space.
Recently, the Fisherface method has been shown to out-
perform the widely used Eigenface method in face recog-
nition [2]. The reason for this is that FLD provides a bet-
ter projection than PCA for pattern classification. In the
second proposed method, we decompose the training face
and nonface samples into several classes using Kohonen’s
Self Organizing Map (SOM). From these labeled classes,
the within-class and between-class scatter matrices are com-
puted, thereby generating the optimal projection based on
FLD. For each subspace, we use a Gaussian to model each
class-conditional density function where the parameters are
estimated based on maximum likelihood [5]. To detect
faces, each input image is scanned with a rectangular win-
dow in which the class-dependent probability is computed.
The maximum likelihood decision rule is used to determine
whether a face is detected or not.

To capture the variations in face patterns, we use a set of
1,681 face images from Olivetti [20], UMIST [8], Harvard
[9], Yale [2] and FERET [15] databases. Both methods have
been tested using the databases in [18] [22] to compare their
performances with other methods. Our experimental results
on the data sets used in [18] [22] (which consist of 225 im-
ages with 619 faces) show that our methods perform as well
as the reported methods in the literature, yet with fewer false
detects. To further test our methods, we collect a set of 80
images containing 252 faces. This data set is rather chal-
lenging since it contains profile faces, faces with expres-
sions and faces with heavy shadows. Our methods are able
to detect most of these faces regardless of their poses, fa-
cial expressions and lighting conditions. Furthermore, our
methods have fewer false detects than other methods.

2 Related Work

Numerous intensity-based methods have been proposed
recently to detect human faces in a single image or a se-
quence of images. In this section, we give a brief review
of intensity-based face detection methods. See [23] for a
comprehensive survey on face detection. Sung and Pog-
gio [22] report an example-based learning approach for lo-
cating vertical frontal views of human faces. They use a
number of Gaussian clusters to model the distributions of
face and nonface patterns. For computational efficiency,
a subspace spanned by each cluster’s eigenvectors is then
used to compute the evidence of a face. A small window
is moved over all portions of an image to determine, based
on distance metrics measured in the subspaces, whether a
face exists in each window. In [16], a detection algorithm
is proposed that combines template matching and feature-
based detection method using hierarchical Markov random
fields (MRF) and maximuma posterioriprobability (MAP)

estimation. The watershed algorithm is used to segment an
image at some fixed scales and to generate an image pyra-
mid. To reduce the search, a heuristic is used to select ar-
eas where faces may appear. Layered processes are used
in a MRF to reflecta priori knowledge about the spatial
relationships between facial features (eye, mouth and the
whole face) which are identified by template matching and
gradient of intensity. Detection decision is based on MAP
estimation. Colmenarez and Huang [3] apply Kullback rel-
ative information for maximal discrimination between pos-
itive and negative examples of faces. They use a family
of discrete Markov processes to model the face and back-
ground patterns and estimate the density functions. De-
tection of a face is based on the likelihood ratio computed
during training. Moghaddam and Pentland [12] propose a
probabilistic method that is based on density estimation in
a high dimensional space using an eigenspace decomposi-
tion. In [18], Rowley et al. use an ensemble of neural net-
works to learn face and nonface patterns for face detection.
Schneiderman et al. describe a probabilistic method based
on local appearance and principal component analysis [21].
Their method gives some preliminary results on profile face
detection. Finally, hidden Markov models [17], higher or-
der statistics [17], and support vector machines (SVM) [13]
[14] have also been applied to face detection and demon-
strated some success in detecting upright frontal faces under
certain lighting conditions.

3 Mixture of Factor Analyzers

In the first method, we fit the mixture model of factor an-
alyzers to the training samples using an EM algorithm and
obtain a distribution of face patterns. To detect faces, each
input image is scanned with a rectangular window in which
the probability of the current input being a face pattern is
calculated. A face is detected if the probability is above
a predefined threshold. We briefly describe factor analysis
and a mixture of factor analyzers in this section. The details
of these models can be found in [1] [7].3.1 Fator Analysis

Factor analysis is a statistical model in which the ob-
served vector is partitioned into an unobserved systematic
part and an unobserved error part. The systematic part is
taken as a linear combination of a relatively small number
of unobserved factor variables while the components of the
error vector are considered as uncorrelated or independent.
From another point of view, factor analysis gives a descrip-
tion of the interdependence of a set of variables in terms of
the factors without regard to the observed variability. In this
model, ad-dimensional real-valued observable data vectorx is modeled using ap-dimensional vector of real-valued



factorsz wherep is generally much smaller thand. The
generative model is given by:x = �z + u (1)

where� is known as thefactor loading matrix. The factorsz are assumed to beN (0; I) distributed (zero-mean inde-
pendent normals with unit variance). Thed-dimensional
random variableu is distributedN (0;	) where	 is a di-
agonal matrix, due to the assumption that the observed vari-
ables are independent given the factors. According to this
model,x is therefore distributed with zero mean and covari-
ance� = ��T+	. The goal of factor analysis is to find the� and	 that best model the covariance structure ofx. The
factor variablesz model correlations between the elements
of x, while theu variables account for independent noise
in each elementx. Thep factors play the same role as the
principal components in PCA, i.e., they are informative pro-
jections of the data. Given� and	, the expected value of
the factors can be computed through the linear projections:E[zjx℄ = �x (2)E[zzT jx℄ = I � ��+ �xxT �T (3)

where� = �T��1.3.2 Mixture Model
In this section, we consider a mixture ofm factor an-

alyzers (indexed byfj ; j = 1; : : : ;m) where each factor
analyzer has the same number ofp factors and each fac-
tor analyzer has a different mean�j . The generative model
obeys the mixture distribution:P (x) = mXj=1 Z P (xjz; fj)P (zjfj)P (fj)dz (4)

where P (zjfj) = P (z) = N (0; I) (5)P (xjz; fj) = N (�j +�jz;	) (6)

The parameters of this mixture model aref(�j , �j)mj=1, �,	g where� is the vector of adaptable mixing proportions,�j = P (fj). The latent variables in this model are the fac-
torsz and the mixture indicator variablefj , wherefj = 1
when the data point is generated by the first factor analyzer.

Given a set of training images, the EM algorithm [4] is
used to estimatef (�j ;�j)mj=1, �, 	g. For the E-step of the
EM algorithm, we need to compute expectations of all the
interactions of the hidden variables that appear in the log
likelihood, E[fjzjxi℄ = E[fj jxi℄E[zjfj ; xi℄ (7)

E[fjzzT jxi℄ = E[fj jxi℄E[zzT jfj ; xi℄ (8)

Defininghij = E[fj jxi℄ / P (xi; fj) = �jN (xi � �j ;�j�Tj +	)
(9)

and using equations (2) and (6), we obtainE[fjzjxi℄ = hij�j(xi � �j) (10)

where�j � �Tj (�j�Tj )�1. Similarly, using equations (3)
and (8), we obtainE[fjzzT jxi℄ = hij(I ��j�j +�j(xi��j)(xi��j)T�Tj )

(11)
The EM algorithm for mixture of factor analyzers can be
stated as follows:� E-step: ComputeE[fj jxi℄, E[z jfj ; xi℄ andE[zzT jfj ; xi℄ for all data pointsi and mixture componentsj.� M-step: Solve a set of linear equations for�j ,�j , �j

and	.

The mixture of factor analyzers is essentially a reduced di-
mensionality mixture of Gaussians. Each factor analyzer
fits a Gaussian to a portion of the data, weighted by the
posterior probabilities,hij . Since the covariance matrix for
each Gaussian is specified through the lower dimensional
factor loading matrices, the model hasmpd+ d, rather thanmd(d+ 1)=2 parameters dedicated to modeling covariance
structure in high dimensions.3.3 Deteting Fae Patterns

To detect faces, each input image is scanned with a rect-
angular window in which the probability of there being a
face pattern is estimated as given in equation (4). A face is
detected if the probability is above a predefined threshold.
In order to detect faces of different scales, each input im-
age is repeatedly subsampled by a factor of 1.2 and scanned
through for 10 iterations.

4 Mixture of Linear Spaces Using Fisher Lin-
ear Discriminant

In the second mixture model, we first use Kohonen’s
self-organizing map [11] to divide the face and nonface
samples into1 face classes and2 nonface classes, thereby
generating labels for the samples. Next, Fisher projection
is computed based on all1 + 2 classes to maximize the
ratio of the between-class scatter (variance) and the within-
class scatter (variance). The now labeled training set is pro-
jected from a high dimensional image space to a lower di-
mensional feature space, and a Gaussian distribution is used



to model the class-conditional density function for each
class where the parameters are estimated using the maxi-
mum likelihood principle. For detection, the conditional
probability of each sample given each class is computed
and the maximum likelihood principle is used to decide to
which class the sample belongs. In our experiments, the
reason that we choose 25 face and 25 nonface classes is be-
cause of the size of training set. If the number of classes
is too small, the clustering results may be poor. On the
other hand, we may not have enough samples to estimate
the class-conditional density function well if we choose a
large number of classes.4.1 Labeling Samples Using SOM

In applying Fisher Linear Discriminant to find a projec-
tion, we need to know the class label of each training sam-
ple. However, such information is not available in the train-
ing samples. Therefore, we use Kohonen’s Self-Organizing
Map [11] to divide face samples into a finite number of
classes. In our experiments, we divide the face sample im-
ages into 25 classes. After training, the final weight vector
for each node is the centroid of the class, i.e., the prototype
vector, which corresponds to the prototype of each class.
The same procedure is applied to nonface samples. Figure 1
shows the prototypical face of each class. It is clear that the
sample face images with different poses and under different
lighting conditions (intensity increases from the lower right
corner to the upper left corner) have been classified into dif-
ferent classes. Note that the SOM algorithm also places the
prototypes in the two dimensional feature map, shown in
1, in accordance with their topological relationships in the
image space. In other words, prototype vectors correspond-
ing to nearby points on the feature map grid have nearby
locations in the high dimensional image space (e.g., nearby
prototypes have similar intensity and pose).4.2 Fisher Linear Disriminant

While PCA is commonly used to project face patterns
from a high dimensional image space to a lower dimen-
sional feature space, a drawback of this approach is that
it defines a subspace such that it has the greatest variance
of the projected sample vectors among all the subspaces.
However, such projection is not suitable for classification
since it may contain principal components which retain un-
wanted large variations. Therefore, the classes in the pro-
jected space may not be well clustered and instead smeared
together [2] [6] [10]. Fisher Linear Discriminant is an ex-
ample of a class specific method that finds the optimal pro-
jection for classification. Rather than finding a projection
that maximizes the projected variance, FLD determines a
projection,z = W TFLD x, that maximizes the ratio be-

Figure 1. Prototype of eah fae lass.
tween the between-class scatter (variance) and the within-
class scatter (variance). Consequently, classification issim-
plified in the projected space. Recently, it has been demon-
strated that the Fisherface method outperforms the Eigen-
face method in face recognition [2].

Consider a-class problem, let the between-class scatter
matrix be defined asSB = Xi=1Ni(�i � �)(�i � �)T (12)

and the within-class scatter matrix be defined asSW = Xi=1 Xxk2Xi(xk � �i)(xk � �i)T (13)

where� is the mean of all samples,�i is the mean of classXi, andNi is the number of samples in classXi. The
optimal projectionWFLD is chosen as the matrix with or-
thonormal columns which maximizes the ratio of the deter-
minant of the between-class scatter matrix of the projected
samples to the determinant of the within-class scatter matrix
of the projected sampled, i.e.,WFLD = argmaxw jW TSBW jjW TSWW j = [w1 w2 : : : wm℄ (14)

wherefwiji = 1; 2; : : : ;mg is the set of generalized eigen-
vectors ofSB andSW , corresponding to them largest gen-
eralized eigenvaluesf�iji = 1; 2; : : : ;mg. However, the
rank ofSB is  � 1 or less because it is the sum of ma-
trices of rank one or less. Thus, the upper bound onm is



 � 1 [5]. See [2] for details about a method to overcome
singularity problems in computingWFLD.4.3 Class-Conditional Density Funtion

OnceWFLD is computed, the now labeled training set
is projected to the � 1 dimensional feature space, i.e.,z = W TFLD x , and a Gaussian distribution is used to
model each class-conditional density (CCD) function, i.e.,P (zjXi) = N (�Xi ;�Xi) wherei = 1; : : : ; . The param-
eters,�Xi = (�Xi ;�Xi)g of each CCD are the maximum
likelihood estimates, i.e.,�̂Xi = 1jXij Xzk2Xi zk (15)

and �̂Xi = 1jXij Xzk2Xi(zk � �̂Xi)(zk � �̂Xi)T (16)4.4 Deteting Fae Patterns
Each input image is scanned with a rectangular window

to determine whether a face exists in the window or not.
The decision rule for deciding whether an input window
contains a face or not is based on maximum likelihood,X� = argmaxXi P (zjXi) (17)

To detect faces of different scales, each input image is re-
peatedly subsampled by a factor of 1.2 and scanned through
for 10 iterations.

5 Experiments

For training, we use a set of 1,681 face images (collected
from Olivetti [20], UMIST [8], Harvard [9], Yale [2] and
FERET [15] databases) which have wide variations in pose,
facial expression and lighting condition. In the second mix-
ture method, we start with 8,422 nonface examples from
400 images of landscapes, trees, buildings, etc. Although it
is extremely difficult to collect a representative set of non-
face examples, the bootstrap method similar to [22] is used
to include more nonface examples during training. Each
face sample is manually cropped and normalized such that
it is aligned vertically and its size is20 � 20 pixels. To
make the detection method less sensitive to scale and ro-
tation variation, 10 face examples are generated from each
original sample. The images are produced by randomly ro-
tating the images by up to15 degrees with scaling between80% and120%. This produces 16,810 face samples.

We test both methods on the three sets of images col-
lected by Rowley [18], Sung [22] and ourselves. In our

experiments, a detected face is a successful detect is if the
subimage contains eyes and mouth. Otherwise, it is a false
detect. The detection rate is the ratio between the number
of successful detects and the number of faces in the test set.
Table 1 shows the detection rates of our methods and the
reported results of several detection methods on the test set
in [18]. Experimental results on test set 1, which consists of
125 images (483 faces) excluding 5 images of hand drawn
faces, show that our methods have comparable detection
performance with other methods, yet with fewer false de-
tects. Table 1 also shows the our experimental results on
the test set of Sung and Poggio [22] which consists of 20
images excluding 3 images of line drawn faces (136 faces).
Both of our methods consistently perform well and have few
false detects.

Test set 3 consists of 80 images (252 faces), collected
from the World Wide Web, with different poses, expres-
sions and faces with heavy shadows. The detection rates
are86:7% and88:2% for MFA and FLD-based methods.
The number of false detects are45 and 40, respectively.
Both methods perform equally well in detecting these faces
though the FLD-based method performs slightly better than
the first one. Figures 2 and 3 show the results of our meth-
ods on some test images. See the web page mentioned
above for more results. Notice that there is a false detect in
the upper left corner of the image in Figure 2 since one win-
dow resembles a face. Also notice that our methods can de-
tect, up to certain degree, profile faces and faces with heavy
shadows. However occluded, rotated faces or faces with
sunglasses cannot be detected effectively by both methods
due to lack of such examples in the training sets. None
of the existing detection methods cannot effectively detect
these types of faces except one recent method [19] seems
to able to detect rotated faces. Nevertheless, this method
cannot detect occluded faces or face with heavy shadows.

6 Discussion and Conclusion

We have described methods using mixture of linear sub-
spaces methods to detect human faces regardless of their
poses, facial expressions and lighting conditions. Both
methods find better projection than PCA for pattern clas-
sification, thereby facilitating detection of face and nonface
patterns. The first method fits a mixture of factor analyzers
to estimate the density function of face images, and the sec-
ond method uses Self-Organizing Map to partition the train-
ing set into classes and Fisher Linear Discriminant to find
the optimal projection for classification. Experimental re-
sults on three sets of images demonstrate that both methods
perform as well as the best algorithms in detecting upright
frontal faces, yet with fewer false detects.

The contributions of this paper can be summarized as
follows. First, we introduce projection methods that per-



Table 1. Experimental results on images from test set 1 (125 images with 483 faes) in [18℄ and testset 2 (20 images with 136 faes) in [22℄ (see text for details).
Test Set 1 Test Set 2

Method Detect Rate False Detects Detect Rate False Detects

Mixture of factor analyzers 92.3% 82 89.4% 3
Fisher linear discriminant 93.6% 74 91.5% 1
Distribution-based [22] N/A N/A 81.9% 13
Neural network [18] 92.5% 862 90.3% 42
Naive Bayes [21] 93.0% 88 91.2% 12
Kullback relative information [3] 98.0% 12758 N/A N/A
Support vector machine [13] N/A N/A 74.2% 20

Figure 2. Sample experimental results usingmixture of fator analyzers on images fromthree test sets. Every deteted fae is shownwith an enlosing window. Figure 3. Sample experimental results usingmixture of subspaes with Fisher Linear Dis-riminant on images from three test sets. Ev-ery deteted fae is shown with an enlosingwindow.



form better than PCA. Consequently, the classification re-
sult in the linear subspace is better. Second, we apply mix-
ture models such that the linear subspaces can better cap-
ture the variations of face patterns. Although some methods
[12][22] have applied mixture model, they use PCA for pro-
jection which is suboptimal for classification in subspaces.
On the other hand, it is not clear how SVM performs in
face detection since the study in [13] has applied SVM on
a rather small test set with 136 faces. It will be of great in-
terest to compare our methods with SVM on a large test set
since SVM aims to find the optimal hyperplane that min-
imizes the generalization error under the theoretical upper
bounds.
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