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Abstract. We develop an approach to image segmentation for natural
scenes containing image texture. One general methodology which shows
promise for solving this problem is to characterize textured regions via
their responses to a set of filters. However, this approach brings with it
many open questions, including how to combine texture and intensity
information into a common descriptor and how to deal with the fact
that filter responses inside textured regions are generally spatially inho-
mogeneous. Our goal in this paper is to introduce two new ideas which
address these open questions and to demonstrate the application of these
ideas to the segmentation of natural images. The first idea consists of
a novel means of describing points in natural images and an associated
distance function for comparing these descriptors. This distance function
is aided in textured regions by the use of the second idea, a new process
introduced here which we have termed area completion. Experimental
segmentation results which incorporate our proposed approach into the
Normalized Cut framework of Shi and Malik are provided for a variety
of natural images.

1 Introduction

In this paper we study image segmentation, defined to be the process of par-
titioning the image into regions of coherent color, brightness, and texture. In
each region there may be smooth variation in the attributes due to shading and
texture gradients; segmentation should be tolerant to such variation.
There are several reasons why a satisfactory solution to image segmentation

for natural scenes has remained elusive. Perhaps the foremost of these is image
texture. Edge detection applied to natural images usually results in a tangled
web of edges, leaving the grouping problem to be addressed by processes that
might operate on such a representation. Approaches based on finding texture
boundaries will be reviewed in more detail later, but it is fair to say that such
algorithms have been demonstrated largely on synthetic collages of Brodatz
texture patches.
The boundaries that we wish to find are those that separate coherent regions

from one another. These are, in general, different from the boundaries that
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separate an object from its background, or from another object, since objects
are often made up of several coherent regions. To find an object boundary, one
must make use of a fairly specific model which encodes the knowledge of what
components, coherent or not, constitute the object.
By no means does this imply, however, that boundaries of coherent regions

are easy to find. The difficulties in this task principally arise from the need
to quantify the notion of perceptual coherence for image texture. One general
methodology which shows promise for solving this problem is to characterize
textured regions via their responses to a set of filters. However, as discussed in
the next section, this approach brings with it many open questions, including
how to combine texture and intensity information into a common descriptor,
and how to deal with the fact that filter responses inside textured regions are
generally spatially inhomogeneous. Our goal in this paper is to introduce two
new ideas. The first idea consists of a method of describing texture via the filter
outputs computed at a “point” and a means of including intensity and/or color
information in the same point descriptor. The second idea addresses the problem
of inhomogeneity of the filter responses in textured regions through the use of
area completion, which is analogous to contour completion.
The organization of this paper is as follows. In section 2 we discuss other

relevant work in the area of texture segmentation in relation to our approach.
In section 3 we introduce a novel means of describing “points” in natural images
and an associated distance function for comparing these descriptors. The process
of area completion is then discussed in section 4. In order to apply this new
distance function to the problem of finding boundaries, we need a grouping
criterion. For this purpose we appeal to the Normalized Cut approach of Shi
and Malik [25], discussed in 5. Experimental results using Normalized Cuts for
region segmentation and edge detection are presented in Sections 5.1 and 5.2.
We conclude and discuss future work in section 6.

2 Related Work

Since the early 1980s, many approaches have been proposed in the literature
which employ filter-based descriptions of texture [17,26,15,21,22,4,3]. By the term
filter-based we mean that the fundamental representation for a pixel in an image
includes not only its intensity or color information, but also the inner product
of the neighborhood centered on that pixel with a set of filters tuned to various
orientations and spatial frequencies.
As discussed for example in [16,19], vectors of filter responses have many

appealing properties, including relationships to physiological findings in the pri-
mate visual system [8] and to the basic mathematical notion of a Taylor series
expansion.
As rich as the information provided by these filter response vectors may be, a

number of complications arise when one tries to use them for segmenting regions
in natural images. Unlike intensity and color descriptors for a smooth image
region, filter response vectors in a patch of coherent texture cannot be expected
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to simply pool together into a tight cluster in feature space, where the only
variance is due to noise and measurement error. Rather, such a pool of feature
vectors is bound to contain representatives from many different distinctive points
throughout what may be called an “element” of the texture, or “texel.” For
example, assuming the filtering scale is not excessively large, filter responses
computed at the center of a polka dot are quite different from those computed
at the edge of a polka dot. (This is illustrated in Figure 2.)

Another way of saying this is that it is intrinsic to the nature of filter-based
approaches that the filter responses will vary from one point to the next inside
a region of coherent texture. The responses will of course vary from one point
to the next inside incoherent regions, as well; what makes these two situations
different, of course, is whether or not the variation exhibits a certain regularity.

Pervasive throughout the literature has been the use of profuse spatial av-
eraging, which serves in one way or another to beat down the feature vectors
until they become homogeneous [15,21,6]. Although the use of quadrature filter
pairs [17,11] allows for certain kinds of spatial texture variation to appear as a
phase factor, this component is often discarded in favor of the quadrature energy
[17,3,12] . Other approaches [20] seek to select a local scale at each pixel as a
preprocessing step, so as to disallow the very extraction of any feature vectors
which may be spatially inhomogeneous.

The price paid for these averaging approaches is that the richness of the
descriptors is lost. Less damaging in this sense is the use of histogramming
inside local patches [13,28,23] which does a much better job of preserving the
local empirical feature distribution, though local spatial information is discarded
for the sake of obtaining spatial homogeneity. Whether histogramming or simply
averaging, however, all of these methods rely on the use of local windows or
patches, which are naturally quite problematic around region boundaries.

It is worth noting that the ill effects of the use of patches are unlikely to
arise in segmentation experiments on Brodatz mosaics [3,23,15]. The piecewise-
coherent nature of such images can artificially induce clustering behavior in the
feature space since, due to a lack of shading and perspective effects, there is
not enough real-world variation present to challenge the cluster decision regions.
This is particularly true when the texture cut-outs in the mosaic are squarish,
lacking narrow or irregular regions, especially when the pixel coordinates are
thrown into the clustering machinery.

One of the points we wish to put forward in this work is that profuse averaging
of texture descriptors is both damaging and unnecessary. It is our view that a
filter-based approach can succeed without appealing to unduly large scales if one
properly exploits the behavior of feature response vectors in regions of coherent
texture. We feel that the proper domain for a filter-based approach is that of
describing points. Here we use the term point in the sense used by Koenderink
and Van Doorn in [18] and [19], i.e., a small Gaussian point spread, at a sub-texel
scale. The concept of area completion introduced in this paper is a step toward
what we believe to be a proper treatment of point descriptors and thereby of
filter-based texture segmentation in general.
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A challenge which is met along the way is the problem of how to encode
intensity alongside the filter responses. In the following section, we argue against
appending intensity onto the filter response vector as a single scalar value; though
it may seem intuitive since intensity is captured by the “zero-frequency” filter,
it is in fact on a completely different scale from tuned texture filters. In order
to be placed on equal footing with the texture filters, it must be represented in
a compatible way. In section 3.2 we present one such solution.

3 Representing Texture and Intensity in the Same
Feature Vector

In this section, we introduce a new method for describing and comparing points
in an image. As discussed in the preceding section, we use the term “point” to
refer to a small local neighborhood. Our approach is motivated by what one
is likely to find at a randomly selected point in a natural image. The filter set
described below allows us to characterize oriented edge or bar fragments, small
spots, and some simple junction types; this accounts for a large share of the
local structure one can expect to find in natural images. When such structure
is absent, however, the best descriptor for a point is simply its color, or for
grayscale images, its intensity.

Since there exists a continuum across these different point types, it is impor-
tant that the point descriptor gracefully adapt to whichever form of description
is most appropriate. The intensity encoding we propose in section 3.2, together
with the normalization step described in the following section, represents one
means of obtaining a point descriptor with this desirable property. We will also
see that the format of the point descriptor described here admits the definition of
a simple distance measure, described in 3.4, which allows us to measure similarity
in a consistent manner for both textured and non-textured points.

3.1 Linear Filters for Texture Description

The filter set used in our experiments, depicted in Figure 1, is composed of zero-
mean difference of Gaussian (DOG) and difference of offset Gaussian (DOOG)
kernels. This choice of filters is similar to those used in [21], except that we use
only one scale and we include odd-symmetric (edge-sensitive) oriented kernels.
Each filter is divided by its L1 norm in order to equalize the dynamic range
across the filter set.

The vector of filter responses to an image I is defined as

utex = (f1 ∗ I, f2 ∗ I, . . . , fNF ∗ I)
T

where in our case NF = 14. Note that relative to the dimensions of our test
images, which are 128× 192, all of the filters reside at a fine scale.
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Fig. 1. Impulse responses of the filters f1 through f14, numbered left to right, top to
bottom. Each kernel, which is of size 13 × 13, has been divided by its L1 norm. f1
are f2 are DOG2 and DOG1 filters, respectively; f3 through f8 are DOOG1 filters;
f9 through f14 are DOOG2 filters. The oriented kernels are spaced at 30

◦ increments,
and have been offset by 15◦ to make quantization error more evenly distributed across
the different orientations.

3.2 Intensity Value Encoding

In order to represent intensity alongside the components of the filter response
vector, we make use of a “soft binning” of the intensity axis. Specifically, we
encode the intensity I by the values taken on by NI equally spaced Gaussians
gk(I) on the interval [0, 1].
The functions gk(I) are given by

gk(I) = Ce
−(I−µk)

2/2α2, k = 1, . . . , NI

where

µk =
k − 1

NI − 1
, α2 =

1

2N2I

The variance is chosen so as to make the sum of the NI Gaussians approximately
uniform on [0, 1]. The constant C is set to 0.1 so as to approximately match the
dynamic range of the texture components.
The intensity feature vector is defined as

uint = (g1(I), g2(I), . . . , gNI (I))
T

In our experiments we use NI = 10. Thus, for a value of I = 0.5, the k = 5 and
k = 6 components will “fire” strongly while the rest of the components will be
quite small.
This representation is an example of a value encoding, as opposed to a variable

encoding, in the sense discussed in [2]. In this manner, an intensity of 0.1 is held
in as high a regard as an intensity of 0.9; each has its own place on the number
line, and the former should not be viewed as a weak or low-magnitude version
of the latter. Value encodings in this sense have been widely accepted in the
context of filter orientation and scale, with various filters occupying different
points on the frequency plane. It is natural therefore that a similar encoding be
used for points on the intensity axis. An immediate benefit of this “equal-footing”
representation is the appealing interpretation it lends to the normalization of the
combined texture/intensity feature vector; this is discussed next.
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3.3 Normalization

The complete feature vector at pixel i and the normalized feature vector are
defined as

ui = (u
T
tex,i,u

T
int,i)

T , ûi =
ui
‖ui‖2

respectively. Since the L2 norm of uint is approximately equal to a constant,
which we will refer to as β, we can also express ûi as

ûi =
ui√

‖utex,i‖22 + β

Thus we may think of the normalization step as a form of gain control, which
diminishes the contribution of the intensity components when there is a lot of
activity in the texture components. This can be related to the model of local
gain control in primary visual cortex simple cells discussed in [5].
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Fig. 2. Examples of normalized feature vectors for selected points in (a). Feature
vectors from spot centers, marked by +’s, and spot edges, marked by x’s, are plotted in
(b) and (c), respectively. Components 1-14 correspond to the texture filter responses,
where the numbering is consistent with that in Figure 1. The remaining 10 components
correspond to the intensity value encoding.

3.4 Distance Measure

We define the distance between two normalized feature vectors ûi and ûj as

d2(ûi, ûj) = (ûi − ûj)
TΣ−1(ûi − ûj) (1)

where the covariance matrix is given by

Σ = diag(1, . . . , 1︸ ︷︷ ︸
NF

, σ2I , . . . , σ
2
I︸ ︷︷ ︸

NI

)

The value of σ2I represents the tolerance allowed on differences in the intensity
components relative to those in the texture components. Its value was chosen
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empirically according to the following heuristic: distances inside regions possess-
ing perceptually equivalent coherence should be as similar as possible, whether
those regions be uniformly gray or uniformly textured. By observing distances
within uniform regions of “clear sky” and “zebra stripes,” to name two examples,
we arrived at the value σ2I = 0.01.

4 Area Completion

Fig. 3. Comparison of contour completion and area completion. Shown on the left is a
set of disconnected contour fragments. These are readily grouped into a single smooth
contour. In this process, the gaps, which locally bear no resemblance to the fragments,
are assimilated into the final grouping when the “sum of the parts” is brought to bear.
With area completion, the basic idea is the same. This is illustrated using the stylized
polka dot texture boundary shown on the right. The grouping bridges the gaps between
the dots and the area is completed.

The basic motivation behind area completion comes from the related process
of contour completion. The latter problem is illustrated in Figure 3, left, by a set
of disconnected contour fragments. We readily group the fragments together into
a single contour [27]. In this grouping process, one implicitly absorbs the gaps
between the fragments into the final smooth, continuous contour: the contour is
completed. Conversely, we might conceive that the grouping takes place among
the gaps, which then assimilate the fragments into the final contour. Of course
the former interpretation is more readily apparent, but the latter highlights
an important fact. This fact is that two kinds of elements, which locally bear
negligible similarity, can become members of the same group, and thereby similar
to one another, when the “sum of the parts” is taken into account.
The process of area completion logically extends this idea to 2D patterns, or

in our context, to textures. The idea is the same: if two points are highly similar
in terms of proximity and similarity, then they and that which is between them
most likely belong together, as well. Figure 3, right, illustrates this idea with a
stylized polka dot texture boundary.
Both contour completion and area completion rely on the statistics of the

real world. In the case of contour completion, the relevant statistics pertain to
the fact that object boundaries tend to be smooth and continuous. In the case
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of area completion, we appeal to the tendency for object surfaces to be smooth
and continuous.

We shall operationalize this idea shortly. We wish to emphasize that the
approach described here represents a departure from the practice of studying
texture via large patches centered on pixels. Rather, we advocate an approach
based on local computation of similarity, and the judicious propagation of this
similarity along lines between matching points according to the process of area
completion.

4.1 Explanation of Algorithm

The area completion algorithm begins with the computation of connection weights
between pixel pairs in the M ×N image I. A “weight” in this context refers to
a monotonically decreasing function of d(ûi, ûj), such as a Gaussian. (A specific
choice of weighting function is given in Equation (3).)
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Fig. 4. Illustration of area completion. On the left, two pixels i and j in a textured
image patch are depicted along with a line segment of length L starting at pixel i and
passing through pixel j. A profile of hypothetical connection weights between pixel i
and the pixels along this line segment is plotted on the right. The position of pixel j is
indicated by a tick mark on the abscissa. Initially, the connection weight from pixel j
to pixel i is zero. After area completion, this weight is updated to the maximum weight
found along the line segment between j and the point at L. As indicated by the dashed
lines, this procedure is equivalent to a “flood fill” operation on the original solid curve.

The area completion step is illustrated in Figure 4. Consider a line segment
of length L extending from pixel i through pixel j. The solid curve in the plot on
the right illustrates a hypothetical profile of connection weights for pixels along
the line segment to pixel i. As indicated in the plot, the original connection
weight from pixel j to pixel i is zero.

The connection weight from pixel j to pixel i after area completion is shown
by the dashed curve: it is equal to the maximum over the weights between pixel
j and the pixel at the far end of the line segment. This process is illustrated for
a patch of real texture in Figure 5.



Finding Boundaries in Natural Images 759

Let the matrix W̃ denote the set of connection weights over all i and j
after the area completion step. In general, W̃ will be asymmetric. This arises
from the fact that different points within a texture have varying amounts of
distinctiveness. For example, the connection weight from one spot center to
another spot center in Figure 4 is likely to be greater than the weights between
pixels located elsewhere.
W̃ can be made symmetric in a number of ways, including reassigning it as

the maximum or minimum of W̃ and W̃T , computed component-wise. In gen-
eral, it is most appropriate to use the maximum since this choice automatically
favors the weights contributed by the most distinctive elements.
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Fig. 5. Illustration of the area completion step applied to a patch of zebra texture.
The point descriptor (feature vector) for the pixel marked in (a) is plotted in (b).
Components 1-14 correspond to the texture filter responses, where the numbering is
consistent with that in Figure 1. The remaining 10 components correspond to the
intensity value encoding. The raw connection weights from each pixel in the image
to the pixel marked in (a) are shown in (c), where the pixel intensity is proportional
to the weight strength. The point descriptor for the marked pixel is highly similar to
those found along other vertical white stripes, but is highly dissimilar to those found
elsewhere. The connection weights to the marked pixel after area completion (out to a
radius of L = 10) are shown in (d).

5 Normalized Cuts

The normalized cut approach frames the task of image segmentation as a graph
partitioning problem, wherein each vertex represents a pixel and each edge
represents a connection weight between two pixels. The term normalized cut
actually refers to a criterion for measuring the goodness of a putative graph
partition. This criterion, abbreviated as NCut, is related to the graph-theoretic
notion of a cut. It is shown in [25] that, in the context of perceptual grouping,
the minimum-NCut criterion leads to partitions which are preferable to those
offered by the standard minimum-cut criterion.
Consider the graph G = (V, E) with vertices V , edges E, and weighted

adjacency matrix W. We may think of the weights Wij which comprise W as
a measure of similarity between pixels (i.e. vertices) i and j. Since the weights
are symmetric, we say that G is an undirected graph. Let A and B represent
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two disjoint sets on G, A ∪B = V , A ∩B = ∅, obtained by removing the edges
connecting the two sets. These sets may represent, for example, pixels on the
tiger skin and pixels on the pond background, respectively, in the tiger image in
Figure 8. The normalized cut for (A,B) is a function of the cut between A and
B and the association between A and B, as given by the expression

NCut(A,B) =
cut(A,B)

assoc(A, V )
+
cut(A,B)

assoc(B, V )

where
cut(A,B) =

∑
i∈A,j∈B

Wij

and
assoc(A, V ) =

∑
i∈A,j∈V

Wij , assoc(B, V ) =
∑

i∈B,j∈V

Wij

As shown in [25], an approximation to the partition that minimizes the
normalized cut criterion can be found by solving

(D−W)vk = λkDvk (2)

for v2, the generalized eigenvector corresponding to the second smallest eigen-
value λ2, where D is the diagonal matrix of total connection weights given by
Dii =

∑
jWij.

Since v2 is real-valued, it represents a soft assignment of pixels to the sets
A and B. Similarly, successive eigenvectors suggest further partitioning of A
and B into smaller groups. To transform this soft information into a more final
result, one can proceed in two general directions: that of recursive thresholding to
produce regions, and that of combining information from across the eigenvectors
to produce edges.

5.1 Region Segmentation

The recursive thresholding procedure used in [25] proceeds as follows. First, 10
equally spaced values are considered between the maximum and minimum values
in v2. Next, v2 is split into two groups using each threshold, thus resulting in
10 different choices for the sets A and B. The winner is then declared as the
one for which NCut(A,B) is a minimum. If K eigenvectors are found, then the
above thresholding procedure can be run recursively within each partition until
the NCut value exceeds a threshold.1

In our implementation of the above described algorithm, we have used the
following Gaussian weighting function,

Wij =

{
e−d

2(ûi,ûj)/2 if ‖xi − xj‖ < R
0 otherwise

(3)

1 Note that the maximum NCut value is 2, since in Equation (5), cut is always less
than or equal to assoc.
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Fig. 6. Segmentation of leopard scene. Please refer to text for parameter settings.

Fig. 7. Segmentation of landscape, with parameter settings as in Figure 6.

Fig. 8. Segmentation of tiger scene, with parameter settings as in Figure 6.
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where d2(ûi, ûj) is as given in Equation (1), and xk represents the coordinates
of pixel k. Note that W will be sparse as a result of the distance threshold at
radius R.
Our results are shown in Figures 6–10. The test images are all grayscale, of

size 128× 192. Each example was processed using the same parameter settings
of L = 10, R = 16, K = 14, and an NCut threshold of 0.07. In order to save
memory, the connection weights were subsampled by a factor of 3 with respect
to each dimension of the original image.
We used the Matlab function eigs.m to solve the eigenvalue problem using

the area-completed weights W̃ in place ofW in Equation (2).2

In each figure, the original image is shown at the top left, followed by a
set of masked-out partitions found using the technique described above. The
segmented regions are sorted in descending order according to area; segments
comprising less than 2% of the total possible area are not shown.

Fig. 9. Segmentation of person with parameter settings as in Figure 6.

5.2 Combined Brightness/Texture Edge Detection Using the
Inter-Group Distance

As discussed in the introduction to this section, the Normalized Cut algorithm
requires the solution of a generalized eigensystem involving the weighted ad-
jacency matrix. In this section, we consider a physical interpretation of this

2 eigs.m uses Arnoldi iteration, which reduces to Lanczos iteration since W̃ is sym-
metric. The processing time for this operation is approximately 2 minutes on an HP
J200/9000 using a convergence tolerance of 1e-10.
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Fig. 10. Segmentation of building scene with parameter settings as in Figure 6.

eigensystem which leads to a new measure of “edginess” that we call inter-group
distance.
The inter-group distance idea arises from the connection between gener-

alized eigensystems and the analysis of mechanical vibrations in mass-spring
systems[7,10]. One can readily verify that the symmetric positive semidefinite
matrix (D−W), known in graph theory as the Laplacian of the graph G, cor-
responds to the stiffness matrix while the diagonal positive semidefinite matrix
D represents a mass matrix. These matrices are typically denoted by K andM,
respectively, and appear in the equations of motion as

Mẍ(t) = −Kx(t)

If we assume a solution of the form x(t) = vk cos(ωkt+φ), we obtain the following
generalized eigenvalue problem for the time-independent part,

Kvk = ω
2
kMvk

in analogy to Equation (2).
The intuition is that each pixel represents a mass and each connection weight

represents a Hooke spring constant. If the system is shaken, tightly connected
groups of pixels will tend to shake together.
In light of this connection, the generalized eigenvectors in Equation (2) rep-

resent normal modes of vibration of an equivalent mass-spring system based on
the pairwise pixel similarities.3When the system is excited, the resulting motion
may be expressed as a superposition of the modes, with each mode weighted by
a sinusoidal time-dependent term times some constant,

x(t) =
∑
k

αkvk cos(ωkt+ φ)

where ωk is equal to
√
λk in Equation (2). A few eigenvectors for the test image

of Figure 7 are shown in Figure 11, together with a snapshot of x(t).

3 Note that since we assume free boundary conditions around the edges of the image,
we ignore the first mode since it corresponds to uniform translation.
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(a) (b) (c) (d)

Fig. 11. Three generalized eigenvectors (v2, v3 and v4) for the landscape test image
are shown in (a)-(c), reshaped as images. As an illustration of the connection between
Normalized Cuts and the analysis of mass-spring systems, a superposition of the modes
at an arbitrary time instant is shown in (d) as a surface plot.

The inter-group distance emerges when one considers the maximum extension
of a spring over all time. In order to quantify this, we must specify a value for
the αk’s that are used to combine the modes. For this purpose, we appeal to the
equipartition theorem [24] which states that if a system described by classical
statistical mechanics is in equilibrium, then it has equal energy in each mode.
Since the energy of the kth mode [10] is given by

Ek =
1

2
α2kω

2
k

we set αk equal to 1/ωk for k = 2, . . . , K.

Given this choice of αk, we may define the inter-group distance between two
pixels i and j as

dIG(i, j) =

K∑
k=2

1
√
λk
|vik − v

j
k| (4)

As a simple illustration of the inter-group distance, we have shown in Figure
12 the average inter-group distance from each pixel to its closest four neighbors
for the test images of the preceding section. Noting the similarity to conventional
edge gradient images, one may employ contour closure techniques such as [9,14,1]
to cut salient regions out of such a representation.

Fig. 12. Illustration of the inter-group distance from each pixel to its closest four
neighbors.
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6 Conclusion

In this work we have presented two new ideas which allow one to compute
meaningful distances in feature space between points in natural images. The first
idea consists of a new point descriptor which represents texture and intensity
information in a compatible manner. The second idea is a process which is
analogous to contour completion for textured regions which we have termed
area completion. In order to demonstrate the effectiveness of these ideas, we
performed several experiments using our new feature distance in the Normalized
Cut framework.
In developing our proposed technique, we never appeal to the use of large

amounts of spatial averaging to eliminate the inhomogeneities that occur in tex-
tured regions. As our method is based on the use of highly local point descriptors,
the problem of patches straddling texture boundaries does not arise.
It is important to note that our experiments have been performed on natural

images, rather than synthetic mosaics, and that the parameter settings are the
same from image to image. Our plans for future work include further investiga-
tion of uses of the inter-group distance and the incorporation of color information
into the point descriptor.
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