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based recognition systems. We demonstrate the useof these models within the context of face recognition,but believe that they have much broader applicability.Methods have recently been introduced which uselow-dimensional representations of images of objectsto perform recognition, see for example [8, 13, 19].These methods, often termed appearance-based meth-ods, di�er from feature-based methods in that theirlow-dimensional representation is, in a least-squaressense, faithful to the original image. Systems such asSLAM [13] and Eigenfaces [19] have demonstrated thepower of appearance-based methods both in ease of im-plementation and in accuracy.Yet, these methods su�er from an important draw-back: recognition of an object under a particular poseand lighting can be performed reliably provided theobject has been previously seen under similar circum-stances. In other words, these methods in their originalform have no way of extrapolating to novel viewing con-ditions. Here, we consider the construction of a gener-ative appearance model and demonstrate its usefulnessfor image-based rendering and recognition.The presented approach is, in spirit, an appearance-based method for recognizing objects under large varia-tions in pose and illumination. However, it di�ers sub-stantially from previous methods in that it uses as fewas three images of each object seen in �xed pose andunder small but unknown changes in lighting. Fromthese images, it generates a rich representation thatmodels the object's image variability due to pose andillumination. One might think that pose variation isharder to handle because of occlusion or appearance ofsurface points and the non-linear warping of the imagecoordinates. Yet, as demonstrated by favorable recog-nition results, our approach can successfully generalizethe concept of the illumination cone which models allthe images of a Lambertian object in �xed pose underall variation in illumination [1].New recognition algorithms based on these genera-tive models have been tested on a subset of the YaleFace Database B (see Figure 1) which was speci�callygathered for this purpose. This subset contained 4050images of 10 faces each seen under 45 illumination con-ditions over nine poses. As we will see, these new al-gorithms outperform popular existing techniques.
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b.Figure 1: Example images from the Yale Face DatabaseB, showing the variability due to pose and illuminationin the images of a single individual. a. An image fromeach of the nine di�erent poses; b. A representativeimage from each illumination subset|Subset 1 (12�),Subset 2 (25�), Subset 3 (50�), Subset 4 (77�).2 Modeling Illumination and Pose2.1 The Illumination ConeIn earlier work, it was shown that for a convex ob-ject with Lambertian reectance, the set of all n-pixelimages under an arbitrary combination of point lightsources forms a convex polyhedral cone in the imagespace IRn. This cone can be built from as few as threeimages [1]. Here, we outline the relevant results.Let x 2 IRn denote an image with n pixels of aconvex object with a Lambertian reectance functionilluminated by a single point source at in�nity. LetB 2 IRn�3 be a matrix where each row in B is theproduct of the albedo with the inward pointing unit

normal for a point on the surface projecting to a partic-ular pixel in the image. A point light source at in�nitycan be represented by s 2 IR3 signifying the productof the light source intensity with a unit vector in thedirection of the light source. A convex Lambertian sur-face with normals and albedo given by B, illuminatedby s, produces an image x given byx = max(Bs;0); (1)where max(Bs;0) sets to zero all negative componentsof the vector Bs. The pixels set to zero correspond tothe surface points lying in an attached shadow. Con-vexity of the object's shape is assumed at this pointto avoid cast shadows. Note that when no part of thesurface is shadowed, x lies in the 3-D subspace L givenby the span of the columns of B [8, 14, 16].If an object is illuminated by k light sources at in-�nity, then the image is given by the superposition ofthe images which would have been produced by theindividual light sources, i.e.,x = kXi=1 max(Bsi;0) (2)where si is a single light source. Due to this super-position, it follows that the set of all possible imagesC of a convex Lambertian surface created by varyingthe direction and strength of an arbitrary number ofpoint light sources at in�nity is a convex cone. It isalso evident from Equation 2 that this convex cone iscompletely described by matrix B.Furthermore, any image in the illumination cone C(including the boundary) can be determined as a con-vex combination of extreme rays (images) given byxij = max(Bsij ;0); (3)where sij = bi � bj : (4)The vectors bi and bj are the rows of B with i 6= j. Itis clear that there are at most m(m� 1) extreme raysfor m � n independent surface normals.2.2 Constructing the Illumination ConeEquations 3 and 4 suggest a way to construct the il-lumination cone for each object: gather three or moreimages in �xed pose under di�ering but unknown illu-mination without shadowing and use these images toestimate a basis for the 3-D illumination subspace L.One way of estimation is to normalize the images to beof unit length, and then use singular value decompo-sition (SVD) to calculate in a least-squares sense thebest 3-D orthogonal basis in the form of matrix B�.Note that even if the columns of B� exactly span thesubspace L, they di�er from those of B by an unknownlinear transformation, i.e., B = B�A where A 2 GL(3);for any light source, x = Bs = (B�A)(A�1s) [10].Nonetheless, both B� and B de�ne the same illumi-nation cone C and represent valid illumination models.



From B�, the extreme rays de�ning the illuminationcone C can be computed using Equations 3 and 4.Unfortunately, using SVD in the above procedureleads to an inaccurate estimate of B�. For even a con-vex object whose occluding contour is visible, there isonly one light source direction (the viewing direction)for which no point on the surface is in shadow. For anyother light source direction, shadows will be present. Ifthe object is non-convex, such as a face, then shadow-ing in the modeling images is likely to be more pro-nounced. When SVD is used to �nd B� from imageswith shadows, these systematic errors bias its estimatesigni�cantly. Therefore, an alternative way is neededto �nd B� that takes into account the fact that somedata values are invalid and should not be used in theestimation. For the purpose of this estimation, anyinvalid data can be treated as missing measurements.The technique we use here is a combination of twoalgorithms. A variation of [17] (see also [11, 18]) which�nds a basis for the 3-D linear subspace L from imagedata with missing elements is used together with themethod in [6] which enforces integrability in shape fromshading. We have modi�ed the latter method to guar-antee integrability in the estimates of the basis vectorsof subspace L from multiple images. By enforcing inte-grability a surface context is introduced. Namely, thevector �eld induced by the basis vectors is guaranteedto be a gradient �eld that corresponds to a surface.Furthermore, enforcing integrability inherently leadsto more accurate estimates because there are fewer pa-rameters (or degrees of freedom) to determine. It alsoresolves six out of the nine parameters of A 2 GL(3).The other three correspond to the generalized bas-relief(GBR) transformation parameters which cannot be re-solved with illumination information alone (i.e. shad-ing and shadows) [2]. This means we cannot recover thetrue matrix B and its corresponding surface, z(x; y).We can only �nd their GBR versions �B and �z(x; y).Our estimation algorithm is iterative and to enforceintegrability, the possibly non-integrable vector �eld in-duced by the current estimate of B� is, in each itera-tion, projected down to the space of integrable vector�elds, or gradient �elds [6]. To begin, let us expandthe surface �z(x; y) using basis surfaces (functions):�z(x; y; �c(w)) =X �c(w)�(x; y;w) (5)where w = (wx; wy) is a two dimensional index, andf�(x; y;w)g is a �nite set of basis functions which arenot necessarily orthogonal. We chose the discrete co-sine basis so that f�c(w)g is exactly the set of the 2-Ddiscrete cosine transform (DCT) coe�cients of �z(x; y).Note that the partial derivatives of �z(x; y) can alsobe expressed in terms of this expansion, giving�zx(x; y; �c(w)) =X �c(w)�x(x; y;w) (6)and �zy(x; y; �c(w)) =X �c(w)�y(x; y;w): (7)

Since the partial derivatives of the basis functions,�x(x; y;w) and �y(x; y;w), are integrable and the ex-pansions of �zx(x; y) and �zy(x; y) share the same coe�-cients �c(w), it is easy to see that �zxy(x; y) = �zyx(x; y).Suppose, now, we have the possibly non-integrableestimate B� from which we can easily deduce thepossibly non-integrable partial derivatives z�x(x; y) andz�y(x; y). These can also be expressed as a series, givingz�x(x; y; c�1(w)) =X c�1(w)�x(x; y;w) (8)and z�y(x; y; c�2(w)) =X c�2(w)�y(x; y;w): (9)Note that in general c�1(w) 6= c�2(w) which implies thatz�xy(x; y) 6= z�yx(x; y).Let us assume that z�x(x; y) and z�y(x; y) are knownfrom an estimate of B� and we would like to �nd�zx(x; y) and �zy(x; y) (a set of integrable partial deriva-tives) which are as close as possible to z�x(x; y) andz�y(x; y), respectively, in a least-squares sense. The goalis to minimize the following,min�c Xx;y (�zx(x; y; �c)� z�x(x; y; c�1))2 +(�zy(x; y; �c)� z�y(x; y; c�2))2: (10)In other words, take a set of possibly non-integrablepartial derivatives, z�x(x; y) and z�y(x; y), and \enforce"integrability by �nding the least-squares �t of inte-grable partial derivatives �zx(x; y) and �zy(x; y). Noticethat to get the GBR transformed surface �z(x; y) weneed only perform the inverse 2-D DCT on the coe�-cients �c(w).The above procedure is incorporated into the follow-ing algorithm. To begin, de�ne the data matrix for kimages of an individual to be X = [x1; : : : ;xk]. If therewere no shadowing, X would be rank 3 [15] (assumingno image noise), and we could use SVD to factorize Xinto X = B�S where S is a 3�k matrix whose columnssi are the light source directions scaled by their corre-sponding source intensities for all k images.Since the images have shadows (both cast and at-tached), and possibly saturations, we �rst have to de-termine which data values do not satisfy the Lamber-tian assumption. Unlike saturations, which can be sim-ply determined, �nding shadows is more involved. Inour implementation, a pixel is assigned to be in shadowif its value divided by its corresponding albedo is be-low a threshold. As an initial estimate of the albedo weuse the average of the modeling (or training) images.A conservative threshold is then chosen to determineshadows making it almost certain no invalid data is in-cluded in the estimation process, at the small expenseof throwing away a few valid measurements. After �nd-ing the invalid data, the following estimation methodis used:1. Use the average of the modeling (or training) im-ages as an initial estimate of the albedo.



a.
b.
c.
d.Figure 2: The process of constructing the cone C.a. The training images; b. Images corresponding tocolumns of �B; c. Reconstruction up to a GBR transfor-mation; d. Sample images from the illumination coneunder novel lighting conditions in �xed pose.2. Without doing any row or column permutationssift out all the full rows (with no invalid data) ofmatrix X to form a full sub-matrix ~X.3. Perform SVD on ~X to get an initial estimate of S.4. Fix S and the albedo, and estimate a possiblynon-integrable set z�x(x; y) and z�y(x; y) using least-squares.5. By minimizing the cost functional in Equation 10,estimate (as functions of �c(w)) a set of integrablepartial derivatives �zx(x; y) and �zy(x; y).

6. Fix S and use �zx(x; y) and �zy(x; y) to update thealbedo using least-squares.7. Use the newly calculated albedo and the partialderivatives �zx(x; y) and �zy(x; y) to construct �B.8. Then, �x �B and update each of the light sourcedirections si independently using least-squares.9. Repeat steps 4-8 until the estimates converge.10. Perform inverse DCT on the coe�cients �c(w) toget the GBR surface �z(x; y).In our experiments, the algorithm is well behaved, pro-vided the input data is well conditioned, and convergeswithin 10-15 iterations.Figure 2 demonstrates the process for constructingthe illumination cone: Figure 2.a shows six of the 19single light source images of a face used in the estima-tion of matrix �B. Note that the light source in eachimage moves only by a small amount (�15o in eitherdirection) about the viewing axis. Despite this, the im-ages do exhibit some shadowing, e.g. left and right ofthe nose. Figure 2.b shows the basis images of the es-timated matrix �B. These basis images encode not onlythe albedo (reectance) of the face but also its surfacenormal �eld. They can be used to construct imagesof the face under arbitrary and quite extreme illumi-nation conditions. Figure 2.c shows the reconstructedsurface of the face �z(x; y) up to a GBR transformation.The �rst basis image of matrix �B shown in Figure 2.bhas been texture-mapped on the surface.Figure 2.d shows images of the face generated usingthe image formation model in Equation 1 which hasbeen extended to account for cast shadows. To deter-mine cast shadows, we employ ray-tracing that uses thereconstructed GBR surface of the face �z(x; y). Withthis extended image formation model, the generatedimages exhibit realistic shading and, unlike the imagesin Figure 2.a, have strong attached and cast shadows.2.3 Image Synthesis Under Di�ering Poseand LightingThe reconstructed surface and the illumination conescan be combined to synthesize novel images of an ob-ject under di�ering pose and lighting. However, onecomplication arises because of the generalized bas-relief(GBR) ambiguity. Even though shadows are preservedunder GBR transformations [2], without resolution ofthis ambiguity, images with non-frontal view-point syn-thesized from a GBR reconstruction will di�er from avalid image by an a�ne warp of image coordinates. (Itis a�ne because GBR is a 3-D a�ne transformationand the weak perspective imaging model assumed hereis linear.) Since the a�ne warp is an image transfor-mation, one could perform recognition over variation inviewing direction and a�ne image transformations. Al-ternatively, one can attempt to resolve the GBR ambi-guity to obtain a Euclidean reconstruction using class-speci�c information. In our experiments with faces,we essentially try to �t the GBR reconstructions toa canonical face. We take advantage of the left-to-right symmetry of faces and the fairly constant ratios



Figure 3: Synthesized images under variable pose andlighting. The representation was constructed from theimages in Figure 2.a.of distances between facial features such as the eyes,the nose, and the forehead to resolve the three param-eters of the GBR ambiguity. Once resolved, it is asimple matter to use ray-tracing techniques to rendersynthetic images under variable pose and lighting.Figure 3 shows synthetic images of the face undernovel pose and lighting. These images were generatedfrom the images in Fig. 2.a where the pose is �xed andthere are only small, unknown variations in illumina-tion. In contrast, the synthetic images exhibit not onlylarge variations in pose but also a wide range in shadingand shadowing.3 Representations for RecognitionIt is clear that for every pose of the object, the set ofimages under all lighting conditions is a convex cone.Therefore, the previous section provides a natural wayfor generating synthetic representations of objects suit-able for recognition under variable pose and illumina-tion. For every sample pose of the object, generate itsillumination cone and with the union of all the conesform its representation.However, the number of independent normals in Bcan be large (more than a thousand) hence the numberof extreme rays needed to completely de�ne the illu-mination cone can run in the millions (see Section 2).Therefore, we must approximate the cone in some fash-ion; in this work, we choose to use a small numberof extreme rays (images). The hope is that a sub-sampled cone will provide an approximation that neg-ligibly decreases recognition performance; in our expe-rience, around 80 images are su�cient, provided thatthe corresponding light source directions sij are moreor less uniform on the illumination sphere. The result-ing cone C� is a subset of the object's true cone C fora particular pose.

Test Images
Closest image in cone representationFigure 4: TOP ROW: Three images from the test set.BOTTOM ROW: The closest reconstructed image fromthe representation. Note that these images are not ex-plicitly stored, but lie within the closest matching lin-ear subspace.Another simplifying factor that can reduce the sizeof the representation is the assumption of a weak per-spective imaging model. Under this model, the e�ectof pose variation can be decoupled into that due toimage plane translation, rotation, and scaling (a simi-larity transformation), and that due to the viewpointdirection. Within a face recognition system, the facedetection process generally provides estimates for theimage plane transformations. Neglecting the e�ects ofocclusion or appearance of surface points, the variationdue to viewpoint can be seen as a non-linear warp of theimage coordinates with only two degrees of freedom.Yet, recognition using this representation consistingof sub-sampled illumination cones will still be costlysince computing distance to a cone is O(n e2), where nis the number of pixels and e is the number of extremerays (images). From an empirical study, it was conjec-tured in [1] that the cone for typical objects is at (i.e.,all points lie near a low-dimensional linear subspace),and this was con�rmed for faces in [5]. Hence, an alter-native is to model a face in �xed pose but over all light-ing conditions by a low-dimensional linear subspace.Finally, for a set of sample viewing directions, we con-struct subspaces which approximate the correspondingcones. We chose to use an 11-D linear subspace foreach pose since 11 dimensions capture over 99% of thevariation in the sample extreme rays. Recognition of atest image x is then performed by �nding the closestlinear subspace to x. Figure 4 shows the closest matchfor images of an individual in three poses. This �gurequalitatively demonstrates how well the union of 11-Dsubspaces approximates the true cones.For the experimental results reported below, sub-spaces were constructed by sampling the viewingsphere at 4� intervals over the elevation from �24� to+24� and the azimuth from �4� to +28� about frontal.As a �nal speed-up, the 117 11-D linear subspaces wereprojected down to a 100-dimensional subspace of theimage space whose basis vectors were computed using



Figure 5: A geodesic dome with 64 strobes used togather images under variable illumination and pose.SVD. In summary, each person's face was representedby the union of 117 11-D linear subspaces within a 100-dimensional subspace of the image space. Recognitionwas then performed by computing the distance of a testimage to each 100-D subspace plus the distance to the11-D subspaces within the 100-D space.4 Recognition ResultsThe experimentation reported here was performed onthe Yale Face Database B. For capturing this database,we have constructed a geodesic lighting rig with 64computer controlled xenon strobes shown in Figure 5.With this rig, we can modify the illumination at framerates and capture images under variable pose and il-lumination. Images of ten individuals were acquiredunder 64 di�erent lighting conditions in nine poses(frontal pose, �ve poses at 12� and three poses at 24�from the camera's axis). Of the 64 images per personin each pose, 45 were used in our experiments, a to-tal of 4050 images. The images from each pose weredivided into 4 subsets (12�, 25�, 50� and 77�) accord-ing to the angle of the light source with the camera'saxis (see Figure 1). Subset 1 (respectively 2, 3, 4) con-tains 70 (respectively 120, 120, 140) images per pose.Throughout, the 19 images of Subsets 1 and 2 from thefrontal pose of each face were used as training imagesfor generating its representation.4.1 Extrapolation in IlluminationThe �rst set of experiments was performed under �xedpose on the 450 images from the frontal pose (45 perperson). This was to compare three other recogni-tion methods to the illumination cones representation.From a set of face images labeled with the person'sidentity (the learning set) and an unlabeled set of faceimages from the same group of people (the test set),each algorithm is used to identify the person in thetest images. For more details about the comparisonalgorithms, see [3] and [7]. We assume that each facehas been located and aligned within the image.
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tion, we simply compute the distance of the test imageto each linear subspace and choose the face correspond-ing to the shortest distance. We call this recognitionscheme the Linear Subspace method [2]; it is a variantof the photometric alignment method proposed in [16]and is related to [9, 14]. While this models the varia-tion in image intensities when the surface is completelyilluminated, it does not model shadowing.Finally, recognition is performed using the illumina-tion cone representation. In fact, we tested on threevariations. In the �rst (Cones-attached), the represen-tation was constructed without cast shadows, so the ex-treme rays are generated directly from Equation 3. Inthe second variation (Cones-cast), the representationwas constructed as described in Section 2.2 where weemployed ray-tracing that uses the reconstructed sur-face of a face �z(x; y) to determine cast shadows. In bothvariations, recognition was performed by computingthe distance of the test image to each cone and choosingthe face corresponding to the shortest distance. Sincecones are convex, the distance can be found by solvinga convex optimization problem (see [7]).In the last variation, the illumination cone of eachface with cast shadows C� is approximated by an 11-Ddimensional linear subspace (Cones-cast subspace ap-proximation). As mentioned before, it was empiricallydetermined that 11 dimensions capture over 99% ofthe variance in the sample extreme rays. The basisvectors for this space are determined by performingSVD on the extreme rays in C� and then picking the 11eigenvectors associated with the largest singular values.Recognition was performed by computing the distanceof the test image to each linear subspace and choosingthe face corresponding to the shortest distance. Us-ing the cone subspace approximation reduces both thestorage and the computational time. Since the basisvectors of each subspace are orthogonal the computa-tional complexity is only O(nm) where n is the numberof pixels and m is the number of the basis vectors.Similar to the extrapolation experiment describedin [3], each method was trained on samples from Sub-sets 1 and 2 (19 samples per person) and then testedon samples from Subsets 3 and 4. Figure 6 shows theresults from this experiment. (This test was also per-formed on the Harvard Robotics Lab face database andwas reported in [7].) Note that the cone subspace ap-proximation performed as well as the raw illuminationcones without any mistakes on 450 images. This sup-ports the use of low dimensional subspaces in the fullrepresentation of Section 3 that models image varia-tions due to viewing direction and lighting.4.2 Recognition Under Variable Pose andIlluminationNext, we performed recognition experiments on imagesin which the pose varies as well as illumination. Im-ages from all nine poses in the database were used inthese tests. Four recognition methods were comparedon 4050 images. Each method was trained on images
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