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Abstract

Image variability due to changes in pose and illumina-
tion can seriously impair object recognition. This paper
presents appearance-based methods which, unlike previ-
ous appearance-based approaches, require only a small
set of training images to generate a rich representation
that models this variability. Specifically, from as few
as three images of an object in fived pose seen under
slightly varying but unknown lighting, a surface and an
albedo map are reconstructed. These are then used to
generate synthetic images with large variations in pose
and illumination and thus build a representation useful
for object recognition. Our methods have been tested
within the domain of face recognition on a subset of
the Yale Face Database B containing 4050 images of 10
faces seen under variable pose and illumination. This
database was specifically gathered for testing these gen-
erative methods. Their performance is shown to exceed
that of popular existing methods.

1 Introduction

An object can appear strikingly different due to
changes in pose and illumination (see Figure 1). To
handle this image variability, object recognition sys-
tems usually use one of the following approaches: (a)
control viewing conditions, (b) employ a representation
that is invariant to the viewing conditions, or (c) di-
rectly model this variability. For example, there is a
long tradition of performing edge detection at an early
stage since the presence of an edge at an image location
is thought to be largely independent of lighting. It has
been observed, however, that methods for face recog-
nition based on finding local image features and using
their geometric relation are generally ineffective [4].
Here, we consider issues in modeling the effects of
both pose and illumination variability rather than try-
ing to achieve invariance to these viewing conditions.
We show how these models can be exploited for re-
constructing the 3-D geometry of objects and used to
significantly increase the performance of appearance-
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based recognition systems. We demonstrate the use
of these models within the context of face recognition,
but believe that they have much broader applicability.

Methods have recently been introduced which use
low-dimensional representations of images of objects
to perform recognition, see for example [8, 13, 19].
These methods, often termed appearance-based meth-
ods, differ from feature-based methods in that their
low-dimensional representation is, in a least-squares
sense, faithful to the original image. Systems such as
SLAM [13] and Eigenfaces [19] have demonstrated the
power of appearance-based methods both in ease of im-
plementation and in accuracy.

Yet, these methods suffer from an important draw-
back: recognition of an object under a particular pose
and lighting can be performed reliably provided the
object has been previously seen under similar circum-
stances. In other words, these methods in their original
form have no way of extrapolating to novel viewing con-
ditions. Here, we consider the construction of a gener-
ative appearance model and demonstrate its usefulness
for image-based rendering and recognition.

The presented approach is, in spirit, an appearance-
based method for recognizing objects under large varia-
tions in pose and illumination. However, it differs sub-
stantially from previous methods in that it uses as few
as three images of each object seen in fixed pose and
under small but unknown changes in lighting. From
these images, it generates a rich representation that
models the object’s image variability due to pose and
illumination. One might think that pose variation is
harder to handle because of occlusion or appearance of
surface points and the non-linear warping of the image
coordinates. Yet, as demonstrated by favorable recog-
nition results, our approach can successfully generalize
the concept of the illumination cone which models all
the images of a Lambertian object in fixed pose under
all variation in illumination [1].

New recognition algorithms based on these genera-
tive models have been tested on a subset of the Yale
Face Database B (see Figure 1) which was specifically
gathered for this purpose. This subset contained 4050
images of 10 faces each seen under 45 illumination con-
ditions over nine poses. As we will see, these new al-
gorithms outperform popular existing techniques.



b.
Figure 1: Example images from the Yale Face Database
B, showing the variability due to pose and illumination
in the images of a single individual. a. An image from
each of the nine different poses; b. A representative
image from each illumination subset—Subset 1 (12°),
Subset 2 (25°), Subset 3 (50°), Subset 4 (77°).

2 Modeling Illumination and Pose
2.1 The Illumination Cone

In earlier work, it was shown that for a convex ob-
ject with Lambertian reflectance, the set of all n-pixel
images under an arbitrary combination of point light
sources forms a convex polyhedral cone in the image
space IR". This cone can be built from as few as three
images [1]. Here, we outline the relevant results.

Let x € IR" denote an image with n pixels of a
convex object with a Lambertian reflectance function
illuminated by a single point source at infinity. Let
B € R"*® be a matrix where each row in B is the
product of the albedo with the inward pointing unit

normal for a point on the surface projecting to a partic-
ular pixel in the image. A point light source at infinity
can be represented by s € IR* signifying the product
of the light source intensity with a unit vector in the
direction of the light source. A convex Lambertian sur-
face with normals and albedo given by B, illuminated
by s, produces an image x given by

x = max(Bs, 0), (1)

where max(Bs, 0) sets to zero all negative components
of the vector Bs. The pixels set to zero correspond to
the surface points lying in an attached shadow. Con-
vexity of the object’s shape is assumed at this point
to avoid cast shadows. Note that when no part of the
surface is shadowed, x lies in the 3-D subspace £ given
by the span of the columns of B [8, 14, 16].

If an object is illuminated by k light sources at in-
finity, then the image is given by the superposition of
the images which would have been produced by the
individual light sources, i.e.,

2
X = Z max(Bs;, 0) (2)
i=1
where s; is a single light source. Due to this super-
position, it follows that the set of all possible images
C of a convex Lambertian surface created by varying
the direction and strength of an arbitrary number of
point light sources at infinity is a convex cone. It is
also evident from Equation 2 that this convex cone is
completely described by matrix B.
Furthermore, any image in the illumination cone C
(including the boundary) can be determined as a con-
vex combination of extreme rays (images) given by

Xij = max(Bsij, 0), (3)

where

Sij = bz X bj. (4)
The vectors b; and b; are the rows of B with ¢ # j. It
is clear that there are at most m(m — 1) extreme rays
for m < n independent surface normals.

2.2 Constructing the Illumination Cone

Equations 3 and 4 suggest a way to construct the il-
lumination cone for each object: gather three or more
images in fixed pose under differing but unknown illu-
mination without shadowing and use these images to
estimate a basis for the 3-D illumination subspace L.
One way of estimation is to normalize the images to be
of unit length, and then use singular value decompo-
sition (SVD) to calculate in a least-squares sense the
best 3-D orthogonal basis in the form of matrix B*.
Note that even if the columns of B* exactly span the
subspace L, they differ from those of B by an unknown
linear transformation, i.e., B = B* A where A € GL(3);
for any light source, x = Bs = (B*A)(A~!s) [10].
Nonetheless, both B* and B define the same illumi-
nation cone C and represent valid illumination models.



From B*, the extreme rays defining the illumination
cone C can be computed using Equations 3 and 4.
Unfortunately, using SVD in the above procedure
leads to an inaccurate estimate of B*. For even a con-
vex object whose occluding contour is visible, there is
only one light source direction (the viewing direction)
for which no point on the surface is in shadow. For any
other light source direction, shadows will be present. If
the object is non-convex, such as a face, then shadow-
ing in the modeling images is likely to be more pro-
nounced. When SVD is used to find B* from images
with shadows, these systematic errors bias its estimate
significantly. Therefore, an alternative way is needed
to find B* that takes into account the fact that some
data values are invalid and should not be used in the
estimation. For the purpose of this estimation, any
invalid data can be treated as missing measurements.
The technique we use here is a combination of two
algorithms. A variation of [17] (see also [11, 18]) which
finds a basis for the 3-D linear subspace £ from image
data with missing elements is used together with the
method in [6] which enforces integrability in shape from
shading. We have modified the latter method to guar-
antee integrability in the estimates of the basis vectors
of subspace £ from multiple images. By enforcing inte-
grability a surface context is introduced. Namely, the
vector field induced by the basis vectors is guaranteed
to be a gradient field that corresponds to a surface.
Furthermore, enforcing integrability inherently leads
to more accurate estimates because there are fewer pa-
rameters (or degrees of freedom) to determine. It also
resolves six out of the nine parameters of A € GL(3).
The other three correspond to the generalized bas-relief
(GBR) transformation parameters which cannot be re-
solved with illumination information alone (i.e. shad-
ing and shadows) [2]. This means we cannot recover the
true matrix B and its corresponding surface, z(z,y).
We can only find their GBR versions B and Z(z, y).
Our estimation algorithm is iterative and to enforce
integrability, the possibly non-integrable vector field in-
duced by the current estimate of B* is, in each itera-
tion, projected down to the space of integrable vector
fields, or gradient fields [6]. To begin, let us expand
the surface Z(z,y) using basis surfaces (functions):

Z(z,y;8(w)) = Y &(w)d(w, y; w) (5)

where w = (w,,w,) is a two dimensional index, and
{é¢(z,y;w)} is a finite set of basis functions which are
not necessarily orthogonal. We chose the discrete co-
sine basis so that {¢(w)} is exactly the set of the 2-D
discrete cosine transform (DCT) coefficients of Z(z, y).

Note that the partial derivatives of zZ(z,y) can also
be expressed in terms of this expansion, giving

Zo(z,y;e(w) = Y e(w)d(z,y; W) (6)

and

Zy(z,y;e(w)) = Y a(w)dy (z,y; w). (7)

Since the partial derivatives of the basis functions,
¢z (z,y; w) and ¢, (z,y; W), are integrable and the ex-
pansions of Z,(z,y) and Z,(z,y) share the same coeffi-
cients ¢(w), it is easy to see that zZy(z,y) = Zy.(z,y).

Suppose, now, we have the possibly non-integrable
estimate B* from which we can easily deduce the
possibly non-integrable partial derivatives z}(x,y) and
Z;(CU, y). These can also be expressed as a series, giving

ch ¢w T,Y; W ) (8)

zp(,y5c3(w) = Y (W) (,y; w). 9)

Note that in general ¢f(w) # ¢3(w) which implies that
2oy (T,) # 25, (2,Y).

Let us assume that z;(z,y) and z;(z,y) are known
from an estimate of B* and we would like to find
Zy(x,y) and Z,(z,y) (a set of integrable partial deriva-
tives) which are as close as possible to zX(z,y) and

zy(w, y) respectively, in a least-squares sense. The goal
is to minimize the followmg,
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(22 (w,y5¢) — 25 (2, y;¢))* +

(zy(x,y;0) — 25 (z,y5¢3))% (10)

In other words, take a set of possibly non-integrable
partial derivatives, z; (z,y) and z;(z,y), and “enforce”
integrability by finding the least-squares fit of inte-
grable partial derivatives Z,(z,y) and Z,(z,y). Notice
that to get the GBR transformed surface zZ(z,y) we
need only perform the inverse 2-D DCT on the coeffi-
cients ¢(w).

The above procedure is incorporated into the follow-
ing algorithm. To begin, define the data matrix for k
images of an individual to be X = [x1,...,x]. If there
were no shadowing, X would be rank 3 [15] (assuming
no image noise), and we could use SVD to factorize X
into X = B*S where S is a 3 x k matrix whose columns
s; are the light source directions scaled by their corre-
sponding source intensities for all £ images.

Since the images have shadows (both cast and at-
tached), and possibly saturations, we first have to de-
termine which data values do not satisfy the Lamber-
tian assumption. Unlike saturations, which can be sim-
ply determined, finding shadows is more involved. In
our implementation, a pixel is assigned to be in shadow
if its value divided by its corresponding albedo is be-
low a threshold. As an initial estimate of the albedo we
use the average of the modeling (or training) images.
A conservative threshold is then chosen to determine
shadows making it almost certain no invalid data is in-
cluded in the estimation process, at the small expense
of throwing away a few valid measurements. After find-
ing the invalid data, the following estimation method
is used:

1. Use the average of the modeling (or training) im-
ages as an initial estimate of the albedo.



Figure 2: The process of constructing the cone C.
a. The training images; b. Images corresponding to
columns of B; c¢. Reconstruction up to a GBR transfor-
mation; d. Sample images from the illumination cone
under novel lighting conditions in fixed pose.

2. Without doing any row or column permutations
sift out all the full rows (with no invalid data) of

matrix X to form a full sub-matrix X.
3. Perform SVD on X to get an initial estimate of S.

4. Fix S and the albedo, and estimate a possibly
non-integrable set z; (z,y) and z; (7, y) using least-
squares.

5. By minimizing the cost functional in Equation 10,
estimate (as functions of ¢(w)) a set of integrable
partial derivatives Z,(z,y) and Z,(z,y).

6. Fix S and use Z,(z,y) and Z,(z,y) to update the
albedo using least-squares.

7. Use the newly calculated albedo and the partial
derivatives Z,(z,y) and Z,(z,y) to construct B.

8. Then, fix B and update each of the light source
directions s; independently using least-squares.
9. Repeat steps 4-8 until the estimates converge.
10. Perform inverse DCT on the coeflicients ¢(w) to
get the GBR surface z(z,y).

In our experiments, the algorithm is well behaved, pro-
vided the input data is well conditioned, and converges
within 10-15 iterations.

Figure 2 demonstrates the process for constructing
the illumination cone: Figure 2.a shows six of the 19
single light source images of a face used in the estima-
tion of matrix B. Note that the light source in each
image moves only by a small amount (£15° in either
direction) about the viewing axis. Despite this, the im-
ages do exhibit some shadowing, e.g. left and right of
the nose. Figure 2.b shows the basis images of the es-
timated matrix B. These basis images encode not only
the albedo (reflectance) of the face but also its surface
normal field. They can be used to construct images
of the face under arbitrary and quite extreme illumi-
nation conditions. Figure 2.c shows the reconstructed
surface of the face Z(z,y) up to a GBR transformation.
The first basis image of matrix B shown in Figure 2.b
has been texture-mapped on the surface.

Figure 2.d shows images of the face generated using
the image formation model in Equation 1 which has
been extended to account for cast shadows. To deter-
mine cast shadows, we employ ray-tracing that uses the
reconstructed GBR surface of the face Z(z,y). With
this extended image formation model, the generated
images exhibit realistic shading and, unlike the images
in Figure 2.a, have strong attached and cast shadows.

2.3 Image Synthesis Under Differing Pose
and Lighting
The reconstructed surface and the illumination cones
can be combined to synthesize novel images of an ob-
ject under differing pose and lighting. However, one
complication arises because of the generalized bas-relief
(GBR) ambiguity. Even though shadows are preserved
under GBR transformations [2], without resolution of
this ambiguity, images with non-frontal view-point syn-
thesized from a GBR reconstruction will differ from a
valid image by an affine warp of image coordinates. (It
is affine because GBR is a 3-D affine transformation
and the weak perspective imaging model assumed here
is linear.) Since the affine warp is an image transfor-
mation, one could perform recognition over variation in
viewing direction and affine image transformations. Al-
ternatively, one can attempt to resolve the GBR ambi-
guity to obtain a Euclidean reconstruction using class-
specific information. In our experiments with faces,
we essentially try to fit the GBR reconstructions to
a canonical face. We take advantage of the left-to-
right symmetry of faces and the fairly constant ratios



Figure 3: Synthesized images under variable pose and
lighting. The representation was constructed from the
images in Figure 2.a.

of distances between facial features such as the eyes,
the nose, and the forehead to resolve the three param-
eters of the GBR ambiguity. Once resolved, it is a
simple matter to use ray-tracing techniques to render
synthetic images under variable pose and lighting.

Figure 3 shows synthetic images of the face under
novel pose and lighting. These images were generated
from the images in Fig. 2.a where the pose is fixed and
there are only small, unknown variations in illumina-
tion. In contrast, the synthetic images exhibit not only
large variations in pose but also a wide range in shading
and shadowing.

3 Representations for Recognition

It is clear that for every pose of the object, the set of
images under all lighting conditions is a convex cone.
Therefore, the previous section provides a natural way
for generating synthetic representations of objects suit-
able for recognition under variable pose and illumina-
tion. For every sample pose of the object, generate its
illumination cone and with the union of all the cones
form its representation.

However, the number of independent normals in B
can be large (more than a thousand) hence the number
of extreme rays needed to completely define the illu-
mination cone can run in the millions (see Section 2).
Therefore, we must approximate the cone in some fash-
ion; in this work, we choose to use a small number
of extreme rays (images). The hope is that a sub-
sampled cone will provide an approximation that neg-
ligibly decreases recognition performance; in our expe-
rience, around 80 images are sufficient, provided that
the corresponding light source directions s;; are more
or less uniform on the illumination sphere. The result-
ing cone C* is a subset of the object’s true cone C for
a particular pose.

Closest image in cone representation

Figure 4: TOP ROW: Three images from the test set.
BOTTOM ROW: The closest reconstructed image from
the representation. Note that these images are not ex-
plicitly stored, but lie within the closest matching lin-
ear subspace.

Another simplifying factor that can reduce the size
of the representation is the assumption of a weak per-
spective imaging model. Under this model, the effect
of pose variation can be decoupled into that due to
image plane translation, rotation, and scaling (a simi-
larity transformation), and that due to the viewpoint
direction. Within a face recognition system, the face
detection process generally provides estimates for the
image plane transformations. Neglecting the effects of
occlusion or appearance of surface points, the variation
due to viewpoint can be seen as a non-linear warp of the
image coordinates with only two degrees of freedom.

Yet, recognition using this representation consisting
of sub-sampled illumination cones will still be costly
since computing distance to a cone is O(n e?), where n
is the number of pixels and e is the number of extreme
rays (images). From an empirical study, it was conjec-
tured in [1] that the cone for typical objects is flat (i.e.,
all points lie near a low-dimensional linear subspace),
and this was confirmed for faces in [5]. Hence, an alter-
native is to model a face in fixed pose but over all light-
ing conditions by a low-dimensional linear subspace.
Finally, for a set of sample viewing directions, we con-
struct subspaces which approximate the corresponding
cones. We chose to use an 11-D linear subspace for
each pose since 11 dimensions capture over 99% of the
variation in the sample extreme rays. Recognition of a
test image x is then performed by finding the closest
linear subspace to x. Figure 4 shows the closest match
for images of an individual in three poses. This figure
qualitatively demonstrates how well the union of 11-D
subspaces approximates the true cones.

For the experimental results reported below, sub-
spaces were constructed by sampling the viewing
sphere at 4° intervals over the elevation from —24° to
+24° and the azimuth from —4° to +28° about frontal.
As a final speed-up, the 117 11-D linear subspaces were
projected down to a 100-dimensional subspace of the
image space whose basis vectors were computed using



Figure 5: A geodesic dome with 64 strobes used to
gather images under variable illumination and pose.

SVD. In summary, each person’s face was represented
by the union of 117 11-D linear subspaces within a 100-
dimensional subspace of the image space. Recognition
was then performed by computing the distance of a test
image to each 100-D subspace plus the distance to the
11-D subspaces within the 100-D space.

4 Recognition Results

The experimentation reported here was performed on
the Yale Face Database B. For capturing this database,
we have constructed a geodesic lighting rig with 64
computer controlled xenon strobes shown in Figure 5.
With this rig, we can modify the illumination at frame
rates and capture images under variable pose and il-
lumination. Images of ten individuals were acquired
under 64 different lighting conditions in nine poses
(frontal pose, five poses at 12° and three poses at 24°
from the camera’s axis). Of the 64 images per person
in each pose, 45 were used in our experiments, a to-
tal of 4050 images. The images from each pose were
divided into 4 subsets (12°, 25°, 50° and 77°) accord-
ing to the angle of the light source with the camera’s
axis (see Figure 1). Subset 1 (respectively 2, 3, 4) con-
tains 70 (respectively 120, 120, 140) images per pose.
Throughout, the 19 images of Subsets 1 and 2 from the
frontal pose of each face were used as training images
for generating its representation.

4.1 Extrapolation in Illumination

The first set of experiments was performed under fixed
pose on the 450 images from the frontal pose (45 per
person). This was to compare three other recogni-
tion methods to the illumination cones representation.
From a set of face images labeled with the person’s
identity (the learning set) and an unlabeled set of face
images from the same group of people (the test set),
each algorithm is used to identify the person in the
test images. For more details about the comparison
algorithms, see [3] and [7]. We assume that each face
has been located and aligned within the image.
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Figure 6: Extrapolation in Illumination: Each of
the methods is trained on images with near frontal illu-
mination (Subsets 1 and 2) from Pose 1 (frontal pose).
This graph shows the error rates under more extreme
light source conditions in fixed pose.

The simplest recognition scheme is a nearest neigh-
bor classifier in the image space [4]. An image in the
test set is recognized (classified) by assigning to it the
label of the closest point in the learning set, where dis-
tances are measured in the image space. When all of
the images are normalized to have zero mean and unit
variance, this procedure is also known as Correlation.

A technique now commonly used in computer
vision—particularly in face recognition—is principal
components analysis (PCA) which is popularly known
as Eigenfaces [8, 12, 13, 19]. One proposed method for
handling illumination variation in PCA is to discard
the three most significant principal components; in
practice, this yields better recognition performance [3].
For both the Eigenfaces and Correlation tests, the im-
ages were normalized to have zero mean and unit vari-
ance, as this improved the performance of these meth-
ods. This also made their results independent of light
source intensity. For the Eigenfaces method, we used
20 principal components; recall that performance ap-
proaches correlation as the dimension of the feature
space is increased [3, 13]. Error rates are also presented
when the principal components four through twenty-
three were used.

A third approach is to model the illumination varia-
tion of each face with the three-dimensional linear sub-
space L described in Section 2.1. To perform recogni-



tion, we simply compute the distance of the test image
to each linear subspace and choose the face correspond-
ing to the shortest distance. We call this recognition
scheme the Linear Subspace method [2]; it is a variant
of the photometric alignment method proposed in [16]
and is related to [9, 14]. While this models the varia-
tion in image intensities when the surface is completely
illuminated, it does not model shadowing.

Finally, recognition is performed using the illumina-
tion cone representation. In fact, we tested on three
variations. In the first (Cones-attached), the represen-
tation was constructed without cast shadows, so the ex-
treme rays are generated directly from Equation 3. In
the second variation (Cones-cast), the representation
was constructed as described in Section 2.2 where we
employed ray-tracing that uses the reconstructed sur-
face of a face zZ(x, y) to determine cast shadows. In both
variations, recognition was performed by computing
the distance of the test image to each cone and choosing
the face corresponding to the shortest distance. Since
cones are convex, the distance can be found by solving
a convex optimization problem (see [7]).

In the last variation, the illumination cone of each
face with cast shadows C* is approximated by an 11-D
dimensional linear subspace (Cones-cast subspace ap-
proximation). As mentioned before, it was empirically
determined that 11 dimensions capture over 99% of
the variance in the sample extreme rays. The basis
vectors for this space are determined by performing
SVD on the extreme rays in C* and then picking the 11
eigenvectors associated with the largest singular values.
Recognition was performed by computing the distance
of the test image to each linear subspace and choosing
the face corresponding to the shortest distance. Us-
ing the cone subspace approximation reduces both the
storage and the computational time. Since the basis
vectors of each subspace are orthogonal the computa-
tional complexity is only O(n m) where n is the number
of pixels and m is the number of the basis vectors.

Similar to the extrapolation experiment described
in [3], each method was trained on samples from Sub-
sets 1 and 2 (19 samples per person) and then tested
on samples from Subsets 3 and 4. Figure 6 shows the
results from this experiment. (This test was also per-
formed on the Harvard Robotics Lab face database and
was reported in [7].) Note that the cone subspace ap-
proximation performed as well as the raw illumination
cones without any mistakes on 450 images. This sup-
ports the use of low dimensional subspaces in the full
representation of Section 3 that models image varia-
tions due to viewing direction and lighting.

4.2 Recognition Under Variable Pose and
INlumination

Next, we performed recognition experiments on images
in which the pose varies as well as illumination. Im-
ages from all nine poses in the database were used in
these tests. Four recognition methods were compared
on 4050 images. Each method was trained on images
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Figure 7: Extrapolation in Pose: Error rates as
the viewing direction becomes more extreme. Again,
the methods were trained on images with near frontal
illumination (Subsets 1 and 2) from Pose 1 (frontal
pose). Note that each reported error rate is for all
illumination subsets (1 through 4).

with near frontal illumination (Subsets 1 and 2) from
the frontal pose, and tested on all images from all nine
poses—an extrapolation in both pose and illumination.

The first method was Correlation as described in the
previous section. The next one (Cones approximation)
modeled a face with an 11-D subspace approximation of
the cone (with cast shadows) in the frontal pose. No ef-
fort was done to accommodate pose during recognition,
not even a search in image plane transformations. The
next method (Cones approximation with planar trans-
formations) also modeled a face with an 11-D subspace
approximation of the cone in the frontal pose, but un-
like the previous method, recognition was performed
over variations of planar transformations. Finally, a
face was modeled with the representation described in
Section 3. Each of the 10 individuals was represented
by a 100-D subspace which contained 117 11-D lin-
ear subspaces each modeling the variation in illumina-
tion for each sampled view-point. As with the previous
method, recognition was performed over a variation of
planar transformations. The results of these experi-
ments are shown in Figure 7. Note that each reported
error rate is for all illumination subsets (1 through 4).
Figure 8, on the other hand, shows the break-down of
the results of the last method for different poses against
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Figure 8: Error rates for different poses against variable
lighting using the representation of Section 3.

variable illumination. As demonstrated in Figure 7,
the method of cone subspace approximation with pla-
nar transformations performs reasonably well for poses
up to 12° from the viewing axis but fails when the
viewpoint becomes more extreme.

We note that in the last two methods the search in
planar transformations did not include image rotations
(only translations and scale) to reduce computational
time. We believe that the results would improve if im-
age rotations were included or even if the view-point
space and illumination cones were more densely sam-
pled and the 11-D subspaces were not projected down
to a 100-D subspace.

5 Discussion

In constructing the representation of an object from
a small set of training images, we have assumed that
the object’s surface exhibited a Lambertian reflectance
function. Although our results support this assump-
tion, more complex reflectance functions may yield bet-
ter recognition results. Other exciting domains for
these representations include facial expression recog-
nition and object recognition with occlusions.
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