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Abstract

The goal of object category discovery is to automatically
identify groups of image regions which belong to some new,
previously unseen category. This task is typically performed
in a purely unsupervised setting, and as a result, perfor-
mance depends critically upon accurate assessments of sim-
ilarity between unlabeled image regions.

To improve the accuracy of category discovery, we de-
velop a novel multiple kernel learning algorithm based
on structural SVM, which optimizes a similarity space for
nearest-neighbor prediction. The optimized space is then
used to cluster unlabeled data and identify new categories.

Experimental results on the MSRC and PASCAL
VOC2007 data sets indicate that using an optimized simi-
larity metric can improve clustering for category discovery.
Furthermore, we demonstrate that including both labeled
and unlabeled training data when optimizing the similarity
metric can improve the overall quality of the system.

1. Introduction

The design of accurate models for large collections of
object categories has become a central goal of object recog-
nition research. In recent years, the predominant approach
to tackling this problem has been to collect labeled exam-
ples of each category, which are then provided as input
to a machine learning algorithm. When only a relatively
small number of categories are to be learned, this general
approach performs quite well. However, as the number of
categories increases, the acquisition of a sufficiently large
and accurate set of training examples becomes an expensive
and time-consuming chore. As a result, much research has
been devoted to designing efficient schemes for collecting
training data for supervised object recognition [2, 3, 24].

By contrast, unsupervised approaches require no labeled
training data, and merely seek to discover latent structure in
the data, e.g., clusters [8, 16, 18, 20] or taxonomies [1, 19].
The goal in this setting is to uncover groupings of images
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Figure 1: A set of images is partially labeled with familiar
categories (e.g., car), while unfamiliar objects are left unla-
beled. Both labeled and unlabeled regions are used to learn
an optimized similarity space, which facilitates discovery of
unfamiliar categories in test data.

(or image segments) that share visual patterns, with the
hope that the majority of the images within a group come
from the same (unfamiliar) object category.

The quality of any system for unsupervised category dis-
covery will ultimately depend upon how it determines sim-
ilarity between image regions. Region similarity may be
defined in any number of ways, e.g., deriving from feature
descriptors, contextual cues, and so on. Recent work has
examined algorithms to optimize similarity for classifica-
tion [5, 25]. To the best of our knowledge, there has thus
far been no study of systematically optimizing a similarity
function for use in unsupervised category discovery.

In this work, we propose the use of metric learning to im-
prove the quality of unsupervised category discovery. Our
framework uses an initial set of familiar categories to learn
an optimal similarity space over image regions. In the op-
timized space, a nearest-neighbor classifier is used to deter-
mine if a new image region is familiar or unfamiliar. Then,
regions predicted to be unfamiliar are collected and clus-
tered. While our eventual goal is a full category discovery
system, we focus in this work on the optimization and eval-
uation of the similarity space for clustering unlabeled data.
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1.1. Our Approach: Improving Similarity

In our framework, we assume that a set of training im-
ages has been partially annotated with a set of known, fa-
miliar categories, so that all image regions corresponding
to familiar categories have been labeled (Figure 1). All re-
maining, unlabeled image regions are assumed to belong to
unfamiliar categories.

Because we do not know to which unfamiliar category
an unlabeled training image region may belong, we cannot
directly optimize a similarity function for unfamiliar cate-
gories. Instead, we train a similarity metric to discriminate
between familiar categories by k-nearest-neighbor predic-
tion. Our decision to optimize for nearest neighbor accuracy
is motivated by two ideas: first, improving nearest neighbor
classification provides a direct way to predict if a test seg-
ment belongs to a familiar or unfamiliar category, and sec-
ond, a metric optimized to discriminate familiar categories
should generalize to discriminate unfamiliar categories.

Moreover, because our framework is built upon nearest-
neighbor classification, it is inherently multi-class, and au-
tomatically extends to novel classes. It can therefore be eas-
ily integrated in a continuous learning system with no need
retrain each time a new category is discovered.1 We see this
as a key advantage over previous methods, where the de-
tection of unfamiliar categories derives from the output of
binary classifiers trained on familiar categories [13].

Our main technical contribution is a multiple-kernel ex-
tension to the metric learning to rank algorithm, which will
allow us to learn an optimized similarity space from multi-
ple, heterogeneous input features. Our experimental results
demonstrate that learning similarity from labeled data can
provide significant improvements over purely unsupervised
methods. Finally, we show that including unfamiliar data
during training improves the quality of the learned similar-
ity space.

2. Discovering Object Classes
Before describing our framework in more detail, we will

first introduce notation and formalize the problem.
Using ground truth label information (e.g., masks or

bounding boxes), each training image I is partitioned into
segments xi. Each segment xi belongs to exactly one object
of class `i ∈ L, where L is the set of familiar object labels.
The set Xm contains all training segments xi derived from
ground truth annotations across all images.

Additionally, we partition each training image I into
overlapping regions by running a segmentation algorithm
multiple times. Only those segments that overlap more than
50% with a ground truth mask corresponding to a famil-
iar label in L are collected into the set Xf. The rest of the

1Although one may expect to improve accuracy by re-training after the
discovery of a new category, in our framework, this step is purely optional.

segments, which lack (familiar) ground truth labels, are col-
lected in the set Xu. Throughout, we will refer to segments
corresponding to familiar classes (i.e., Xm and Xf) as fa-
miliar segments, and segments corresponding to unfamiliar
labels (Xu) as unfamiliar segments.2

All segments derived from training images are collected
to form the training set X = Xm ∪ Xf ∪ Xu. Although
including Xf and Xu introduces some noise into the system,
we demonstrate empirically in Section 4.3.1 that doing so
during training improves the quality of the final similarity
metric.

For each segment xi ∈ X , we compute several types of
features φt(xi), where each feature type φt corresponds to
a space characterized by a kernel function

kt(xi, xj) = 〈φt(xi), φt(xj)〉 .

From a collection ofm feature spaces over n training points,
we will learn a unified similarity metric which is optimized
for nearest neighbor classification.

At test time, object class discovery proceeds as follows
(illustrated in Figure 2). A collection of test images I ′
are segmented multiple times to form the test set X ′. For
each x′ ∈ X ′, we use the optimized metric to locate its k-
nearest neighbors from the training set, and a label for x′

is predicted by the majority vote of its neighbors. Unla-
beled training segments vote for a synthetic label `0, taken
to mean unfamiliar.

After classifying each x′ ∈ X ′, all segments with pre-
dicted label `0 are used as input to a clustering algorithm.
We use spectral clustering [15] with affinities defined by a
radial basis function (RBF) kernel on the learned distances:

Aij = exp
(
−d(x′i, x

′
j)/2σ

2
)
,

where d(x′i, x
′
j) is the squared distance between two test

segments x′i and x′j in the optimized space, and σ is a band-
width parameter.

Since our objective here is to produce a more accurate
similarity space for discovery, we perform our evaluation
with respect to the clustering of (predicted) unfamiliar test
segments. In practice, one would follow this step by anno-
tating the cluster with a (likely new) category label, but this
step is beyond the scope of this paper.

3. Optimizing the Space
The first step of our framework consists of learning an

optimized similarity function over image regions. Note that
we cannot know a priori which features will be discrimina-
tive for unfamiliar categories. We therefore opt to include
many different descriptors, capturing texture, color, scene-
level context, etc. (See Section 4.1.) In order to effectively

2Familiarity refers to a segment’s true label, which may or may not be
available: an unlabeled or test segment may be familiar or unfamiliar.
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Figure 2: Discovering object classes: Each test image is partitioned into multiple segments, each of which are mapped
into multiple kernel induced feature spaces, and then projected into the optimized similarity space learned by MKMLR
(Algorithm 2). Each segment is classified as belonging to a familiar or unfamiliar class by k-nearest-neighbor. Unfamiliar
segments are then clustered in the optimized space, enabling the discovery of new categories.

integrate heterogeneous features, we turn to multiple kernel
learning (MKL) [12]. While MKL algorithms have been
widely applied in computer vision applications [22, 23],
most research has focused on binary classifiers (i.e., sup-
port vector machines), with relatively little attention given
to the optimization of nearest neighbor classifiers.

Recently, multiple kernel large margin nearest neighbor
(MKLMNN) has been proposed as a method for integrating
heterogeneous data in a nearest-neighbor setting [6]. Like
the original LMNN algorithm [26], MKLMNN attempts to
find a linear projection of data such that each point’s target
neighbors (i.e., those with similar labels) are drawn closer
than dissimilar neighbors by a large margin. While this no-
tion of distance margins is closely related to nearest neigh-
bor prediction, it does not optimize for the actual nearest
neighbor accuracy.

Instead, we will derive a multiple kernel extension of the
metric learning to rank algorithm (MLR) [14], which opti-
mizes nearest neighbor retrieval more directly by examining
the ordering of points generated by the learned metric. Be-
fore deriving the multiple kernel extension, we first briefly
review the MLR algorithm for the linear case.

3.1. Metric Learning to Rank

Metric learning to rank (MLR, Algorithm 1) [14] is a
metric learning extension of the Structural SVM algorithm
for optimizing ranking losses [10, 21]. Whereas SVMstruct

learns a vectorw ∈ Rd, MLR learns a positive semi-definite
matrix W (denoted W � 0) which defines a distance

dW (i, j) = ‖i− j‖2W = (i− j)TW (i− j).

MLR optimizes W by evaluating the quality of rankings
generated by ordering the training data by increasing dis-
tance from a query point. Ranking quality may be evaluated
and optimized according to any of several metrics, includ-
ing precision-at-k, area under the ROC curve, mean average
precision (MAP), etc. Note that k-nearest neighbor accu-

Algorithm 1 Metric Learning to Rank [14]
Input: data X = {x1, x2, . . . , xn} ⊂ Rd,

true rankings y∗1 , y
∗
2 , . . . y

∗
n,

slack trade-off C ≥ 0
Output: d× d matrix W � 0

min
W�0, ξ

tr(W ) +
C

n

∑
x∈X

ξx

s. t. ∀x ∈ X , ∀y ∈ Y :
〈W,ψ(x, y∗x)〉 ≥ 〈W,ψ(x, y)〉+ ∆(y∗x, y)− ξx

racy can also be interpreted as a performance measure over
rankings induced by distance.

Although ranking losses are discontinuous and non-
differentiable functions over permutations, SVMstruct and
MLR resolve this issue by encoding constraints for each
training point as listed in Algorithm 1. Here, X is the train-
ing set of n points, Y is the set of all possible rankings
(i.e., permutations of X ), y∗x is the true or best ranking3 for
x ∈ X , ∆(y∗x, y) is the loss incurred for predicting y instead
of y∗ (e.g., decrease in precision-at-k), and ξx is a slack
variable. 〈W,ψ(x, y)〉 is the score function which evaluates
how well the model W agrees with the input-output pair
(x, y), encoded by the feature map ψ.

To encode input-output pairs, MLR uses a variant of the
partial order feature [10] adapted for distance ranking:

ψ(x, y) =
∑

i∈X+
x , j∈X−x

yij
D(x, i)−D(x, j)
|X+
x | · |X−x |

(1)

D(x, i) = −(x− i)(x− i)T.

Here, X+
x and X−x ⊆ X denote the sets of positive and

negative results with respect to example x (i.e., points of

3In this setting, a true ranking is any ranking which places all relevant
results before all irrelevant results.
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the same class or different class), and

yij =

{
+1 if i preceeds j in y
−1 if j preceeds i in y

.

With this choice of ψ, the rule to predict y for a test point
x is to simply sort i ∈ X in descending order of

〈W,D(x, i)〉 = −〈W, (x− i)(x− i)T〉 = −‖x− i‖2W . (2)

Equivalently, sorting by increasing distance ‖x− i‖W
yields the ranking needed for nearest neighbor retrieval.

Although Algorithm 1 lists exponentially many con-
straints, cutting-plane techniques can be applied to quickly
find an approximate solution [11].

3.2. Multiple Kernel Metric Learning

The MLR algorithm, as described in the previous sec-
tion, produces a linear transformation of vectors in Rd.
In this section, we first extend the algorithm to support
non-linear transformations via kernel functions, and then to
jointly learn transformations of multiple kernel spaces.

Kernel MLR

Typically, non-linear variants of structural SVM algorithms
are derived by observing that the SVMstruct dual program
can be expressed in terms of the inner products (or ker-
nel function) between feature maps: 〈ψ(x1, y1), ψ(x2, y2)〉.
(See, e.g., Tsochantaridis, et al. [21].) However, to preserve
the semantics of distance ranking (Equation 2), it would be
more natural to apply non-linear transformations directly to
x while preserving linearity in the structure ψ(x, y). We
therefore take an alternative approach in deriving kernel
MLR, which is more in line with previous work in non-
linear metric learning [7, 6].

We first note that by combining Equations 1 and 2 and
exploiting linearity of ψ, the score function can be ex-
pressed in terms of learned distances:

S(W,x, y) = 〈W,ψ(x, y)〉

=
∑

i∈X+
x ,j∈X−x

yij
‖x− j‖2W − ‖x− i‖2W

|X+
x | · |X−x |

. (3)

Let φ : X → H denote a feature map from X to a repro-
ducing kernel Hilbert space (RKHS) H. Inner products in
H are computed by a kernel function

k(x1, x2) = 〈φ(x1), φ(x2)〉H .

Let L : H → Rn be a linear operator on H which will de-
fine our learned metric, and let ‖L‖HS denote the Hilbert-
Schmidt operator norm4 of L.

4The Hilbert-Schmidt norm is a natural generalization of the Frobenius
norm. For our purposes, this can be understood as treating L as a collection
of n elements vi ∈ H (one per output dimension of L), and summing over
the squared-norms ‖L‖HS =

pP
i〈vi, vi〉H.

Next, we define a score function in terms of L, which, as
in Equation 3, compares learned distances:

SH(L, x, y) =
∑

i∈X+
x , j∈X−x

yij
dL(x, j)− dL(x, i)
|X+
x | · |X−x |

. (4)

dL(x, i) = ‖L(φ(x))− L(φ(i))‖2

We may now formulate an optimization program similar to
Algorithm 1 in terms of L:

L∗ = argmin
L,ξ

‖L‖2HS +
C

n

∑
x∈X

ξx s. t. (5)

∀x, y : SH(L, x, y∗x) ≥ SH(L, x, y) + ∆(y∗x, y)− ξx.

The choice of ‖L‖2HS as a regularizer on L allows us to
invoke the generalized representer theorem [17]. It follows
that an optimum L∗ of Equation 5 admits a representation
of the form

L∗ = MΦT,

where M ∈ Rn×n, and Φ ∈ Hn contains the training set in
feature space: Φx = φ(x). By defining W = MTM and
K = ΦTΦ, we observe two facts:

‖L∗(φ(x)− φ(i))‖2 = ‖MΦTφ(x)−MΦTφ(i)‖2

= ‖Kx −Ki‖2MTM

= ‖Kx −Ki‖2W , (6)

and ‖L∗‖2HS = tr
(
ΦMTMΦT

)
= tr (WK) , (7)

where for any z,Kz = ΦTφ(z) = [k(x, z)]x∈X is a column
vector of the kernel function evaluated at a point z and all
training points x.

Note that the constraints in Equation 5 render the
program non-convex in L, which may itself be infinite-
dimensional and therefore impossible to optimize directly.
However, by substituting Equation 6 into Equation 4, we re-
cover a score function of the same form as Equation 3, ex-
cept with x, i and j replaced by their corresponding kernel
vectors Kx, Ki and Kj . We may then define the kernelized
metric partial order feature:

ψK(x, y) =
∑

i∈X+
x , j∈X−x

yij
DK(x, i)−DK(x, j)
|X+
x | · |X−x |

(8)

DK(x, i) = −(Kx −Ki)(Kx −Ki)T.

Thus, at the optimum L∗, the score function can be repre-
sented equivalently as

SH(L∗, x, y) = 〈W,ψK(x, y)〉. (9)

Taken together, Equations 7 and 9 allow us to re-formulate
Equation 5 in terms of W and K, and obtain a convex op-
timization similar to Algorithm 1. The resulting program
may be seen as a special case of Algorithm 2.
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Multiple Kernel MLR

To extend the above derivation to the multiple kernel set-
ting, we must first define how the kernels will be combined.
LetH1,H2, . . . ,Hm each denote an RKHS, each equipped
with corresponding kernel functions k1, k2, . . . , km and
feature maps φ1, φ2, . . . , φm. From each spaceHt, we will
learn a corresponding linear projection Lt. Each Lt will
project to a subspace of the output space, so that each point
x is embedded according to

x 7→ {φt(x)}mt=1 7→ [Lt(φt(x))]mt=1 ∈ Rnm,

where [·]mt=1 denotes the concatenation of projections
Lt(φt(x)). The (squared) Euclidean distance between the
projections of two points x and j is

dM(x, j) =
m∑
t=1

‖Lt(φt(x))− Lt(φt(j))‖2. (10)

If we substitute Equation 10 in place of dL in Equation 4,
we can define a multiple-kernel score function SMKL. By
linearity, this can be decomposed into the sum of single-
kernel score functions:

SMKL ({Lt}, x, y) =
∑

i∈X+
x , j∈X−x

yij
dM(x, j)− dM(x, i)
|X+
x | · |X−x |

=
m∑
t=1

SHt
(Lt, x, y). (11)

Again, we formulate an optimization problem as in Equa-
tion 5 by regularizing each Lt independently:

min
{Lt},ξ

m∑
t=1

‖Lt‖2HS +
C

n

∑
x∈X

ξx s. t. (12)

∀x, y : SMKL({Lt} , x, y∗x) ≥ SMKL({Lt} , x, y)
+ ∆(y∗x, y)− ξx.

The representer theorem may now be applied indepen-
dently to each Lt, yielding L∗t = MtΦT

t . We define posi-
tive semi-definite matrices W t = MT

t Mt specific to each
kernel Kt = ΦT

t Φt. Similarly, for kernel Kt, let ψKt be as
in Equation 8. Equations 9 and 11 show that, at the opti-
mum, SMKL decomposes linearly into kernel-specific inner
products:

SMKL ({L∗t }, x, y) =
m∑
t=1

〈W t, ψKt (x, y)〉. (13)

We thus arrive at the Multiple Kernel MLR program
(MKMLR) listed as Algorithm 2. Algorithm 2 is a linear
program over positive semi-definite matrices W t and slack
variables ξ, and is therefore convex.

Algorithm 2 Multiple Kernel MLR (MKMLR)
Input: Training kernel matrices K1,K2, . . . ,Km,

true rankings y∗1 , y
∗
2 , . . . y

∗
n,

slack trade-off C ≥ 0
Output: n× n matrices W 1,W 2, . . . ,Wm � 0

min
W t�0, ξ

m∑
t=1

tr(W tKt) +
C

n

∑
x∈X

ξx

s. t. ∀x ∈ X , ∀y ∈ Y :
m∑
t=1

〈W t, ψKt (x, y∗x)〉 ≥
m∑
t=1

〈W t, ψKt (x, y)〉

+ ∆(y∗x, y)− ξx

We also note that like the original score function (Equa-
tion 3), SMKL is linear in each yij , so the dependency on
y when moving from MLR to MKMLR is essentially un-
changed. This implies that the same cutting plane tech-
niques used by MLR — i.e., finding the most-violated con-
straints — may be directly applied in MKMLR without
modification.

4. Experiments
In this section we evaluate our optimized similarity by:

(i) the accuracy of segment classification for familiar and
unfamiliar classes, (ii) how well the similarities between
intra- and inter-class instances are learned, and (iii) the pu-
rity of the clustering performed in the optimized space.

To evaluate the classification and clustering accuracy
of the proposed system, we use the MSRC and PAS-
CAL 2007 [4] databases. Our selection of these datasets
was motivated by three factors:

(a) Both datasets contain at least 20 categories, multiple
objects per image, and present challenges such as high
intra-class, scale and viewpoint variability.

(b) MSRC provides pixel-level ground truth labels for all
the objects in the scene, offering more detailed infor-
mation with which we can evaluate our framework.

(c) PASCAL presents ground truth bounding boxes for a
few objects in each image, making the problem more
difficult in cases where segments with different labels
fall inside of the bounding boxes. However, this makes
the evaluation more realistic, as bounding boxes are a
popular way of labeling objects for recognition tasks.

For experiments with MSRC, we use the same train and
test split as Lee and Grauman [13] (hereafter referred to
as LG10), and the object detection split of PASCAL VOC
2007 [4]. We adopt three different partitionings of each
dataset into unfamiliar/familiar classes from LG10 for com-
parison purposes.
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Set Unfamiliar Familiar
1 1, 2, 7, 11, 20 3–6, 8–10, 12–19, 21

(a) 2 1–4, 10, 16, 17, 19–21 5–9, 11–15, 18
3 1–7, 9–11, 13, 16–19 8, 12, 14, 15, 20, 21
1 1, 3, 10, 14, 20 2, 4–9, 11–13, 15–19

(b) 2 1, 4–6, 9, 11, 14, 15, 17–19 2, 3, 7, 8, 10, 12, 13, 16, 20
3 4–14, 16, 18–20 1–3, 15, 17

Table 1: Partitions for unfamiliar and familiar classes for (a)
MSRC and (b) PASCAL VOC 2007.

MSRC PASCAL
Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

|L| 16 11 6 15 10 5
|Xm| 640 548 322 458 278 174
|Xf| 870 583 318 535 321 183
|Xu| 261 435 813 180 394 532
|X ′f | 4124 3160 2375 583 330 206
|X ′u | 1975 2939 3724 200 453 577

Table 2: The number of known categories (L) and training
and test segments in each partition of the datasets.

The different class partitions are shown in Table 1 and
statistics of each partition are reported in Table 2.

Note that the number of examples in PASCAL VOC 07
is smaller than in MSRC. This is because PASCAL images
may contain unlabeled regions, and few objects are labeled
in each scene. Training segmentations were sub-sampled in
order to preserve balance within the training set with respect
to the bounding box regions. We retain only the largest two
segments per object in each image.

4.1. Features

Six different appearance and contextual features were
computed: SIFT, Self-similarity (SSIM), LAB color his-
togram, PHOG, GIST contextual neighborhoods and LAB
color histogram for Boundary Support. For each feature
type, we apply an RBF kernel over χ2-distances, with pa-
rameters set to match those reported in [6].

4.2. Implementation

The implementation uses the 1-slack margin-rescaling
cutting plane algorithm [11] to solve for allW t within a pre-
scribed tolerance ε = 0.01. We further constrain each W t

to be a diagonal matrix. This simplifies the semi-definite
program to a linear program. For m kernels and n training
points, this also reduces the number of parameters needed
to learn from O(mn2) (m symmetric n-by-n matrices) to
mn.

In all experiments with MKMLR, we choose the rank-
ing loss ∆ as the normalized discounted cumulative gain
(NDCG) [9] truncated at 10. Slack parameters C and kernel
bandwidth σ for spectral clustering were found by cross-
validation on the training set. For testing, we fix k = 17
as the number of nearest neighbors for classification across
all experiments. Multiple stable segmentations were com-
puted — 9 different segmentations for each image — each

Xm Xm ∪ Xf
Training subset Set 1 Set 2 Set 3 Set 1 Set 2 Set 3
Xm 0.57 0.49 0.14 0.65 0.64 0.14
Xm ∪ Xf 0.64 0.48 0.72 0.68 0.63 0.80
Xm ∪ Xf ∪ Xu 0.65 0.56 0.72 0.68 0.66 0.80

Table 3: Classification accuracy achieved for various train-
ing subsets of MSRC, and retrieval sets Xm or Xm ∪ Xf.

of which contains between 2 and 10 segments, resulting in
54 segments per image [6].

4.3. Classification accuracy

In order to evaluate the quality of our similarity space,
we perform two different classification experiments: one to
measure the benefits of training with unlabeled data when
predicting familiar classes, and another to assess the accu-
racy of predicting if a test segment is familiar or not, and if
so, its correct label.

4.3.1 The benefits of unlabeled data

Unlabeled data could potentially introduce noise to the met-
ric learning step. Therefore, to objectively evaluate the con-
tributions of labeled and unlabeled data during training, we
evaluate classification accuracy by training metrics on three
subsets of the training data: familiar regions (Xm), familiar
regions and segments (Xm ∪ Xf), and all training segments
(Xm ∪ Xf ∪ Xu). Due to its dense region labeling, we focus
on the MSRC dataset for this experiment. We restrict the
test set to only familiar classes, and repeat the experiment
for each partition of classes.

We also vary which subset of training data is used to
form nearest-neighbor predictions — the retrieval set — at
test time: either just Xm, or Xm ∪ Xf. This allows us to
evaluate the impact on accuracy due to auto-segmentation
of training images.

Table 3 illustrates that including both Xf and Xu during
training provides significant improvements in test-set accu-
racy. Similarly, includingXf in the retrieval set at prediction
time also provides substantial boosts in performance. This
is likely due to the fact that test images are automatically
segmented, and Xf provides examples closer in distribution
to the test set.

4.3.2 Classification of unfamiliar segments

We evaluate our learned similarity space by computing clas-
sification accuracy over the full test set (X ′f ∪X ′u). For each
partition (Set 1,2,3) of MSRC and PASCAL, we train a met-
ric with MKMLR on the entire training set. For comparison
purposes, we repeat the experiment on metrics learned by
MKLMNN, as well as the “native” feature spaces formed
by taking the unweighted combination of base kernels. At
test time, a segment is predicted to belong either to one of
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Algorithm Set 1 Set 2 Set 3
Native 0.51 0.59 0.71

MSRC MKLMNN 0.61 0.57 0.69
MKMLR 0.62 0.61 0.72
Native 0.31 0.58 0.74

PASCAL07 MKLMNN 0.32 0.51 0.67
MKMLR 0.33 0.54 0.70

Table 4: Nearest-neighbor classification accuracy of
MKMLR, MKLMNN, and the native feature space, includ-
ing `0.

the familiar classes L, or the unfamiliar class `0. The over-
all accuracy is reported in Table 4.

When there are fewer familiar classes from which to
choose, the problem becomes easier because more test seg-
ments must belong to the unfamiliar class. This trend is
demonstrated by the increasing accuracy of each algorithm
from Set 1 (5 unfamiliar classes) to Set 2 (10 unfamiliar)
and Set 3 (15 unfamiliar).

In MSRC, where image regions are densely labeled, we
observe that MKMLR consistently outperforms MKLMNN
and the native space, although the gap in performance is
largest when more supervision is provided. On PASCAL,
however, we observe that the unweighted kernel combina-
tion achieves the highest accuracy for Sets 2 and 3, i.e., the
sets with the least supervision. This may be attributed to
MKLMNN and MKMLR over-fitting the training set, which
for PASCAL is considerably smaller than that of MSRC
(see Table 2).

4.4. Intra-class versus Inter-class affinities

Our second evaluation replicates an experiment on
MSRC Set 1 in LG10 (Table 1, [13]). A distance matrix
is computed for all pairs of test segments predicted to be
unfamiliar by the segment classification step. Then, using
the ground-truth labels, the average precision is computed
for each test segment. Finally, the MAP score is computed
for all unfamiliar classes.

Relying on the segment classification step to determine
which points are familiar and unfamiliar may introduce bias
to the evaluation. We therefore repeat the above experiment
using ground-truth familiar and unfamiliar labels. Table 5
shows the MAP results for both experiments. For complete-
ness, we again compare the performance of MKMLR to
MKLMNN [6]. 5

We observe in the unbiased evaluation (Table 5b) that
MKMLR outperforms the other methods under considera-
tion for all categories.

4.5. Cluster purity

Our final evaluation concerns the purity of clusters dis-
covered in the test data. Again, we compare the native (un-

5In Table 5, MKLMNN has no MAP score for class tree because there
was only one test segment of that class predicted as unfamiliar.

Airplane Bicycle Building Cow Tree
(a) [13] 0.36 0.21 0.32 0.41 0.36

MKLMNN 0.75 0.51 0.38 0.71 -
Native 0.61 0.37 0.30 0.40 0.49
Ours 0.84 0.58 0.38 0.41 0.70

(b) MKLMNN 0.68 0.50 0.44 0.59 0.59
Native 0.65 0.43 0.33 0.36 0.57
Ours 0.81 0.55 0.45 0.71 0.66

Table 5: Comparison of MAP scores for Set 1 in MSRC. (a)
MAP for segments predicted to be unfamiliar. (b) MAP on
true unfamiliar segments. Test segments are correctly clas-
sified as familiar with 95% accuracy and unfamiliar with
54% accuracy.

weighted) kernel combination, MKLMNN, and MKMLR
on each partition of MSRC and PASCAL. For each set, we
replicate the experiment of LG10 (Figure 5, [13]), and us-
ing the ground-truth labels, perform spectral clustering in
the optimized space on the test segments belonging to unfa-
miliar classes. We vary the number of clusters c ∈ [2, 35],
and for each c, compute the average purity of the clustering,
where a cluster B’s purity is defined as

purity(B) = max
`∈L
|{x′ ∈ B ∧ `(x′) = `}| /|B|.

For each value of c, we generate 10 different clusterings,
and report the average purity. The resulting mean purity
curves are reported in Figure 3.

We observe that in all cases, the mean purity achieved
by MKMLR is consistently above that of the native space
(almost always significantly so), and is often significantly
above that achieved by MKLMNN.

The reduced purity scores for PASCAL (relative to
MSRC) can be attributed to two facts. First, the sparsity of
ground truth labels in PASCAL indicates that the evaluation
here is somewhat less thorough than for MSRC. Second, as
described in Section 4.3.2 , the reduced size of the training
set leads to some overfitting by both MKLMNN and
MKMLR. However, while in Section 4.3.2 we observed a
decrease in classification accuracy (compared to the native
space), here we observe an increase in cluster purity. This
indicates that MKMLR is learning some useful information
which is not directly reflected in classification accuracy.

5. Conclusion
We have introduced a novel framework for improving

object class discovery. By optimizing similarity by learning
from a set of familiar category labels, we are able to more
accurately cluster unlabeled test data. We also show that
including unlabeled data during training can significantly
improve the quality of the learned space. In future work,
we intend to integrate this system with an active learning
framework, to continuously explore large sets of object cat-
egories.
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Figure 3: Mean cluster purity curves. Top plots correspond to different sets in MSRC, and bottom plots correspond to
PASCAL VOC2007. Error bars correspond to one standard deviation. Dashed lines correspond to bounds on purity scores
reported by LG10 (Figure 5e, [13]).
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