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Abstract

We present a practical, stratified autocalibration al-
gorithm with theoretical guarantees of global optimality.
Given a projective reconstruction, the first stage of the algo-
rithm upgrades it to affine by estimating the position of the
plane at infinity. The plane at infinity is computed by glob-
ally minimizing a least squares formulation of the modulus
constraints. In the second stage, the algorithm upgrades
this affine reconstruction to a metric one by globally mini-
mizing the infinite homography relation to compute the dual
image of the absolute conic (DIAC). The positive semidefi-
niteness of the DIAC is explicitly enforced as part of the
optimization process, rather than as a post-processing step.

For each stage, we construct and minimize tight convex
relaxations of the highly non-convex objective functions in
a branch and bound optimization framework. We exploit
the problem structure to restrict the search space for the
DIAC and the plane at infinity to a small, fixed number of
branching dimensions, independent of the number of views.

Experimental evidence of the accuracy, speed and scal-
ability of our algorithm is presented on synthetic and real
data. MATLAB code for the implementation is made avail-
able to the community.

1 Introduction
This paper proposes practical algorithms that provably solve
well-known formulations for both affine and metric upgrade
stages of stratified autocalibration to their global minimum.

The affine upgrade, which is arguably the more diffi-
cult step in autocalibration, is succintly computable by es-
timating the position of the plane at infinity in a projective
reconstruction, for instance, by solving the modulus con-
straints [19]. Previous approaches to minimizing the modu-
lus constraints for several views rely on local, descent-based
methods with random reinitializations. These methods are
not guaranteed to perform well for such non-convex prob-
lems. Moreover, in our experience, a highly accurate esti-
mate of the plane at infinity is imperative to obtain a usable
metric reconstruction.

The metric upgrade step involves estimating the intrinsic
parameters of the cameras, which is commonly approached
by estimating the dual image of the absolute conic (DIAC).
A variety of linear methods exist towards this end, how-
ever, they are known to perform poorly in the presence of
noise [10]. Perhaps more significantly, most methods a pos-
teriori impose the positive semidefiniteness of the DIAC,
which might lead to a spurious calibration. Thus, it is im-
portant to impose the positive semidefiniteness of the DIAC
within the optimization, not as a post-processing step.

This paper proposes global minimization algorithms for
both stages of stratified autocalibration that furnish theoret-
ical certificates of optimality. That is, they return a solu-
tion at most ε away from the global minimum, for arbi-
trarily small ε. Our solution approach relies on construct-
ing efficiently minimizable, tight convex relaxations to non-
convex programs, using them in a branch and bound frame-
work [13, 27].

A crucial concern in branch and bound algorithms is the
exponential dependence of the worst case time complexity
on the number of branching dimensions. In this paper, we
exploit the inherent problem structure to restrict our branch-
ing dimensions to a small, fixed, view-independent number,
which allows our algorithms to scale gracefully with an in-
crease in the number of views.

A significant drawback of local methods is that they crit-
ically depend on the quality of a heuristic intialization. We
use chirality constraints derived from the scene to compute
a theoretically correct initial search space for the plane at
infinity, within which we are guaranteed to find the global
minimum [8, 9]. Our initial region for the metric upgrade is
intuitively specifiable as conditions on the intrinsic parame-
ters and can be wide enough to include any practical cases.

While we provide a unified framework for a global so-
lution to stratified autocalibration, in several ways, our con-
structions are general enough to find application in domains
beyond multiple view geometry.

In summary, our main contributions are the following:

• Highly accurate recovery of the plane at infinity in a
projective reconstruction by global minimization of the



modulus constraints.

• Highly accurate estimation of the DIAC by globally
solving the infinite homography relation.

• A general exposition on novel convexification methods
for global optimization of non-convex programs.

The outline of the rest of the paper is as follows. Sec-
tion 2 describes background relevant to autocalibration and
Section 3 outlines the related prior work. Section 4 is a
brief overview of branch and bound algorithms. Sections 5
and 6 describe our global optimization algorithms for esti-
mating the DIAC and the plane at infinity respectively. Sec-
tion 7 presents experiments on synthetic and real data and
Section 8 concludes with a discussion of further extensions.

2 Background
Unless stated otherwise, we will denote 3D world points
X by homogeneous 4-vectors and 2D image points x by
homogeneous 3-vectors. Given the images of n points in
m views, a projective reconstruction {P,X} computes the
Euclidean scene {P̂i, X̂j} up to a 4× 4 homography:

Pi = P̂iH
−1 , Xj = HX̂j .

A camera matrix is denoted by K[R|t] where K is an upper
triangular matrix that encodes the intrinsic parameters and
(R, t) constitute exterior orientation. A more detailed dis-
cussion of the material in this section can be found in [10].

2.1 The Infinite Homography Relation
We can always perform the projective reconstruction such
that P1 = [I|0]. Let the first world camera be P̂1 = K1 [I|0].
Then H has the form

H =
[

K1 0
−p>K1 1

]
(1)

where π∞ = (p, 1)> is the location to which the plane at in-
finity moves in the projective reconstruction from its canon-
ical position (0, 0, 0, 1)>. The aim of autocalibration is to
recover the plane at infinity and the intrinsic parameters.

Let Pi = [Ai|ai] where Ai is 3×3 and ai is a 3×1 vector.
Let P̂i = Ki [Ri|ti]. Then, for the case of constant intrinsic
parameters (Ki = K), we have

ω∗ = (Ai − aip>)ω∗(Ai − aip>)> (2)

where ω∗ = KK> denotes the dual image of the absolute
conic (DIAC). Equality here is up to a scale factor. Since
Hi
∞ = (Ai − aip>) is precisely the homography induced

between the views P1 = [I|0] and Pi = [Ai|ai] by the plane
at infinity (p, 1)>, it is called the infinite homography.

2.2 Modulus Constraints
Noting that the infinite homography is conjugate to a rota-
tion matrix and must have eigenvalues of equal moduli, one
can relate the roots of its characteristic polynomial

det(λI− (Ai − aip>)) = λ3 − αiλ
2 + βiλ− γi. (3)

to derive the so called modulus constraint [19]:

γiα
3
i = β3

i , (4)

where αi, βi, γi are affine functions of the coordinates
{p1, p2, p3} of the plane at infinity. Three views suffice to
restrict the solution space to a 43 = 64 possibilities (actu-
ally 21, see [23]), which can in theory be extracted using
continuation methods.

2.3 Chirality bounds on plane at infinity
Chirality constraints demand that the reconstructed scene
points lie in front of the camera. While a general projec-
tive transformation may result in the plane at infinity split-
ting the scene, a quasi-affine transformation is one that pre-
serves the convex hull of the scene points X and camera
centers C. A transformation Hq that upgrades a projective
reconstruction to quasi-affine can be computed by solving
the so-called chiral inequalities. A subsequent affine center-
ing, Ha, guarantees that the plane at infinity in the centered
quasi-affine frame, v = (HaHq)−>π∞, cannot pass through
the origin. So it can be parametrized as (v1, v2, v3, 1)> and
bounds on vi in the centered quasi-affine frame can be com-
puted by solving six linear programs:

min / max vi s.t. Xq>
j v > 0, Cq>

k v > 0, (5)

where Xq
j and Cq

k are points and camera centers in the quasi-
affine frame, j = 1, . . . , n and k = 1, . . . ,m. We refer the
reader to [8, 18] for a thorough treatment of the subject.

3 Previous work
Approaches to autocalibration [6] can be broadly classified
as direct and stratified. Direct methods seek to compute a
metric reconstruction by estimating the absolute conic. This
is encoded conveniently in the dual quadric formulation of
autocalibration [12, 28], whereby an eigenvalue decompo-
sition of the estimated dual quadric yields the homography
that relates the projective reconstruction to Euclidean. Lin-
ear methods [20] as well as more elaborate SQP based op-
timization approaches [28] have been proposed to estimate
the dual quadric, but perform poorly with noisy data. Meth-
ods such as [16] which are based on the Kruppa equations
(or the fundamental matrix), are known to suffer from addi-
tional ambiguities [25].

This work primarily deals with a stratified approach to
autocalibration [19]. It is well-established in literature that,



in the absence of prior information about the scene, esti-
mating the plane at infinity represents the most significant
challenge in autocalibration [9]. The modulus constraints
[19] propose a necessary condition for the coordinates of the
plane at infinity. Local minimization techniques are used
in [19] to minimize a noisy overdetermined system in the
multi-view case.

An alternate approach to estimating the plane at infinity
exploits the chirality constraints. The algorithm in [9] com-
putes bounds on the plane at infinity and a brute force search
is used to recover π∞ within this region. It is argued in [18]
that it might be advantageous to use camera centers alone
when using chirality constraints.

Several linear methods exist for estimating the DIAC
[10] for the metric upgrade, but they do not enforce its pos-
itive semidefiniteness. The only work the authors are aware
of which explicitly deals with this issue is [2], which is for-
mulated under the assumption of known principal point and
zero skew. The interested reader is refered to [10] and the
references therein for a more detailed overview of literature
relevant to autocalibration.

Of late, there has been significant activity towards de-
veloping globally optimal algorithms for various problems
in computer vision. The theory of convex LMI relaxations
[15] is used in [14] to find global solutions to several op-
timization problems in multiview geometry, while [5] dis-
cusses a direct method for autocalibration using the same
techniques. Triangulation and resectioning are solved with
a certificate of optimality using convex relaxation tech-
niques for fractional programs in [1]. An interval analysis
based branch and bound method for autocalibration is pro-
posed in [7], however the fundamental matrix based formu-
lation does not scale well beyond a small number of views.

4 Branch and bound theory
Branch and bound algorithms are non-heuristic methods
for global optimization in nonconvex problems [13]. They
maintain a provable upper and/or lower bound on the (glob-
ally) optimal objective value and terminate with a certificate
proving that the solution is ε-suboptimal (that is, within ε of
the global optimum), for arbitrarily small ε.

Consider a multivariate, nonconvex, scalar-valued objec-
tive function f(x), for which we seek a global minimum
over a rectangle Q0. Branch and bound algorithms re-
quire an auxiliary function flb(Q) which for every region
Q ⊆ Q0, satisfies two properties. One, the value of flb(Q)
is always less than or equal to the minimum value fmin(Q)
of f(x) for x ∈ Q. Two, if |Q| denotes the size along the
largest dimension, then for every sequence of rectangles Qk

such that |Qk| → 0, flb(Qk) → fmin(Qk) uniformly.
Computing the value of flb(Q) is referred to as bounding,

while choosing and subdividing a rectangle is called branch-
ing. The choice of the rectangle picked for refinement and

the actual subdivision itself are essentially heuristic. We
consider the rectangle with the smallest minimum of flb as
the most promising to contain the global minimum and sub-
divide it into k = 2 rectangles along the largest dimension.
A key consideration when designing bounding functions is
the ease with which they can be estimated . So, it is desir-
able to design flb(Q) as the solution of a convex optimiza-
tion problem for which efficient solvers exist [4]. In the
next two sections, we present branch and bound algorithms
based on two such constructions.

Although guaranteed to find the global optimum (or a
point arbitrarily close to it), the worst case complexity of
a branch and bound algorithm is exponential. While this
may initially appear to be discouraging, we will show in
our experiments that exploiting problem structure leads to
fast convergence rates in practice.

5 Globally optimal metric upgrade
For ease of exposition, we will first describe the metric up-
grade step, that is, assume that the affine upgrade has al-
ready been performed. The problem of finding the plane at
infinity for the affine upgrade is deferred to the next section.

5.1 Problem Formulation
Recall that when the camera intrinsic parameters are held
constant, the DIAC satisifes the infinite homography rela-
tions ω∗ = Hi

∞ω∗Hi>
∞ , i = 1, · · · ,m. Both ω∗ and Hi

∞ are
homogeneous quantities, so we must account for the scale
in the above relation before it can be used to search for the
optimal DIAC.

A necessary condition for the matrix ω∗ to be interpreted
as ω∗ = KK> is that ω∗33 = 1. Thus, we fix the scale in
the infinite homography relation by demanding that both the
matrices on the left and the right hand side of the relation
have their (3, 3) entry equal to 1. To this end, we introduce
additional variables λi and pose the minimization problem:

arg min
ω∗,λi

∑
i

‖ω∗ − λiH
i
∞ω∗Hi>

∞ ‖2
F (6)

s.t. ω∗33 = 1, λihi>

3 ω∗hi
3 = 1, ω∗ � 0, ω∗ ∈ D

Here, hi
3 denotes the third row of the 3× 3 infinite homog-

raphy Hi
∞ and D is some initial convex region within which

the individual entries of ω∗ lie.

5.2 Convex Relaxation
As discussed in Section 4, the success of a branch and bound
algorithm critically depends on the quality of underestima-
tors as well as the efficiency of their minimization. In this
section, we construct a high quality convex relaxation of (6)
that underestimates its minimum.

We begin by introducing a new set of variables νi =
λiω

∗. Here each matrix νi is a symmetric 3× 3 matrix with
entries νijk = λiω

∗
jk. Also let us assume that the domain D



is given in the form of bounds [ljk, ujk] on the five unknown
symmetric entries ω∗jk of ω∗. Then (6) can be re-written as

arg min
ω∗,νi,λi

∑
i

∥∥ω∗ − Hi
∞νiH

i>
∞

∥∥2

F
(7)

s.t. νijk = λiω
∗
jk, λihi>

3 ω∗hi
3 = 1

ω∗ � 0, ω∗33 = 1, ljk ≤ ω∗jk ≤ ujk

The non-convexity in the above optimization problem has
been reduced to the bilinear equality constraints νijk =
λiω

∗
jk and λihi>

3 ω∗hi
3 = 1.

Given bounds on the entries of ω∗, a relaxation of (7) is
obtained by replacing the constraint λihi>

3 ω∗hi
3 = 1 by a

pair of linear inequalities of the form Li ≤ λi ≤ Ui, where
Li and Ui are computed by simply inverting the bounds on
hi>

3 ω∗hi
3. Thus, the lower bound Li can be computed as

the reciprocal of the result of the maximization problem:

max
ω∗

hi>

3 ω∗hi
3 (8)

s.t. ω∗33 = 1, ω∗ � 0, ljk ≤ ω∗jk ≤ ujk

The upper bound Ui can be computed similarly by comput-
ing the reciprocal of the minimizer of the above. The re-
laxed optimization problem can now be stated as:

arg min
ω∗,νi,λi

∑
i

∥∥ω∗ − Hi
∞νiH

i>
∞

∥∥2

F
(9)

s.t. νijk = λiω
∗
jk, ω∗ � 0, ω∗33 = 1

ljk ≤ ω∗jk ≤ ujk, Li ≤ λi ≤ Ui

In effect, the above ensures that the introduction of an
additional view does not translate into an increase in the di-
mensionality of our search space. Instead, the cost is limited
to solving a small SDP to compute bounds on λi, while the
number of branching dimensions remains equal to number
of unknowns in ω∗, irrespective of the number of views.

Appendix A.2 discusses the synthesis of convex relax-
ations of bilinear equalities, which allows us to replace each
bilinear equality by a set of linear inequalities. Using them,
a convex relaxation of the above optimization problem can
be stated as

arg min
ω∗,νi,λi

∑
i

∥∥ω∗ − Hi
∞νiH

i>
∞

∥∥2

F
(10)

s.t. νijk ≤ Uiω
∗
jk + ljkλi − Uiljk

νijk ≤ Liω
∗
jk + ujkλi − Liujk

νijk ≥ Liω
∗
jk + ljkλi − Liljk

νijk ≥ Uiω
∗
jk + ujkλi − Uiujk

ljk ≤ ω∗jk ≤ ujk, Li ≤ λi ≤ Ui

ω∗33 = 1, ω∗ � 0

The objective function of the above optimization problem
is convex quadratic. The constraint set includes linear in-
equalities and a positive semidefiniteness constraint. Such
problems can be efficiently solved to their global optimum
using interior point methods and a number of software pack-
ages exist for doing so. We use SeDuMi in this paper [24].

The user of the algorithm specifies valid ranges for the
entries of the calibration matrix K. From this input, we de-
rive intervals [ljk, ujk] for the entries ω∗jk of the matrix ω∗

using the rules of interval arithmetic [17].

6 Global estimation of plane at infinity

6.1 Problem Formulation
Given more than the minimal number of views and in
the presence of noise, the modulus constraints must be
solved in a least squares sense. Previous work [19] has at-
tempted to estimate of the plane at infinity by minimizing∑

i(γiα
3
i − β3

i )2, using non-linear local minimization tech-
niques. This cost function is a polynomial and some recent
work in computer vision [14, 5] exploits LMI relaxations
to achieve global optimality in polynomial programs. How-
ever, this is a degree 8 polynomial in three variables, which
is far beyond what present-day solvers [11, 22] can handle.
We instead consider the equivalent formulation:

min
p1,p2,p3

∑
i

(γ1/3
i αi − βi)2 (11)

6.2 Convex Relaxation
As an illustration of higher-level concepts, we show con-
struction of convex underestimators for the non-convex ob-
jective in (11). The actual objective we minimize incorpo-
rates chirality bounds and is derived in Section 6.3.

Let us suppose it is possible to derive a convex un-
derestimator conv (γi

1/3αi) and concave overestimator
conc (γi

1/3αi) for γ
1/3
i αi. Then the following convex opti-

mization problem underestimates the solution to (11).

min
p1,p2,p3

∑
i

(si − βi)2 (12)

s.t. conv (γi
1/3αi) ≤ si ≤ conc (γi

1/3αi)

As shown in Appendix A.3, our convex and concave relax-
ations are piecewise linear and representable using a small
set of linear inequalities. Thus the above optimization prob-
lem is a convex quadratic program that can be solved using
a QP or an SOCP solver.

Given bounds on {p1, p2, p3}, a branch and bound algo-
rithm can now be used to obtain a global minimum to the
modulus constraints. All that remains to be shown is that
it is possible to estimate an initial region which bounds the
coordinates of π∞.



6.3 Incorporating the bounds on π∞
One way to derive bounds on the coordinates of the plane
at infinity is by using the chirality conditions overviewed
in Section 2.3. Let v be the plane at infinity in the cen-
tered quasi-affine frame, where v = (v1, v2, v3, 1)>, so that
we can find bounds on each vi. However, the modulus con-
straints require that the first metric camera be of the form
K [I|0] and the first projective camera have the form [I|0],
which might not be satisfiable in a centered quasi-affine
frame, in general. Thus, we need to use the bounds derived
in the centered quasi-affine frame within the modulus con-
straints for the original projective frame.

The centered quasi-affine reconstruction differs from the
projective one by a transformation Hqa = HaHq, where Hq

takes the projective frame to some quasi-affine frame and
Ha is the affine centering in that quasi-affine frame. Let hi

be the i-th column of Hqa, then we have pi = h>i v/h>4 v.
Recall that, for the j-th view, αj , βj and γj are affine ex-
pressions in p1, p2 and p3 [19]. Then, for instance,

αj = αj1p1 + αj2p2 + αj3p3 + αj4 =
aj(v)
d(v)

, (13)

where aj(v) = αj1h>1 v + αj2h>2 v + αj3h>3 v + αj4h>4 v
and d(v) = h>4 v. Similary, let

βj =
bj(v)
d(v)

, γj =
cj(v)
d(v)

(14)

where aj(v), bj(v), cj(v), d(v) are linear functions of v. In
the following, for the sake of brevity, we will drop the ref-
erence to v and just use aj , bj , cj , d. Now the optimization
problem (11) can be rewritten as

min
v1,v2,v3

∑
j

(
c
1/3
j aj − d1/3bj

)2

d8/3
, s.t. li ≤ vi ≤ ui (15)

Introducing new scalar variables for some of the non-linear
terms, the above is equivalent to

min
v1,v2,v3

r (16)

s.t. re ≥
∑

j

(fj − gj)2, li ≤ vi ≤ ui

fj = c
1/3
j aj , gj = d1/3bj , e = d8/3

As we did for the case of the metric upgrade, we have re-
duced the non-convexity in the above optimization problem
to a set of equality constraints. The quadratic inequality con-
straint is convex and is known as a rotated cone [4]. Given
bounds on vi, it is easy to calculate bounds on aj , bj , cj , d,
by solving eight linear programs in three variables. Given
these bounds, we can construct convex and concave en-
velopes of the non-linear functions, and use them to con-
struct the following convex program that underestimates the

minimum of the above problem.

min
v1,v2,v3

r (17)

s.t. re ≥
∑

j

(fj − gj)2, j = 1, . . . ,m

conv
(
c
1/3
j aj

)
≤ fj ≤ conc

(
c
1/3
j aj

)
conv

(
d1/3bj

)
≤ gj ≤ conc

(
d1/3bj

)
e ≤ conc (d8/3), li ≤ vi ≤ ui

Notice that the convex envelope of d8/3 is not needed. Since
(17) is a minimization problem, e always takes its maximum
possible value and does not require a lower bound.

Following Appendix A, our convex relaxation in (17)
consists of a linear objective subject to linear and SOCP con-
straints, which can be efficiently minimized [24]. A branch
and bound algorithm can now be used to obtain an estimate
of {v1, v2, v3}, which globally minimizes the modulus con-
straints. Thereafter, the plane at infinity in the projective
frame can be recovered as π∞ = H>qav, which completes
the projective to affine upgrade.

7 Experiments
In this section, we will describe the experimental evaluation
of our algorithms using synthetic and real data.

For evaluating performance metrics, we simulated a
scene where 100 3D points are randomly generated in a
cube with sides of length 20, centered at the origin and a
varying number of cameras are randomly placed at a nomi-
nal distance of 40 units. Zero mean, Gaussian noise of vary-
ing standard deviation is added to the image coordinates.
A projective transformation is applied to the scene with a
known, randomly generated plane at infinity and the ground
truth intrinsic calibration matrix is identity.

For various numbers of cameras and noise levels, errors
in the estimation of the plane at infinity and the intrinsic
parameters are tabulated in Table 1. The following metrics
are defined for evaluation:

∆p =

√√√√ 3∑
i=1

(pi/p0
i − 1)2, ∆f =

∣∣∣∣ f1 + f2

f0
1 + f0

2

− 1
∣∣∣∣

∆uv =
∣∣(|u|+ |v|)− (|u0|+ |v0|)

∣∣ /2, ∆s = |s− s0|

where pi are estimated coordinates of the plane at infinity,
f1, f2 represents the two focal lengths, (u, v) stands for the
principal point and s for the skew. p0

i , f
0
1 , f0

2 , u0, v0 and s0

are the corresponding ground truth quantities.
The accuracy of the algorithm is evident from the very

low error rates obtained for reasonable noise levels. It is
interesting that the algorithm performs quite well even for
noise as high as 1%. In general, the accuracy improves as
expected when a greater number of cameras are used.



The column π∞(1) in Table 1 reports the number of
branch and bound iterations using the algorithm described
in 6.3. However, an additional optimization is possible: we
can refine the value of the feasible point f(q∗) using a gra-
dient descent method within the rectangle that contains it.
This does not compromise optimality, but allows the value
of the current best estimate to be lower than the value cor-
responding to the minimum of the lower bounding function.
The number of iterations with this refinement is tabulated
under π∞(2). The error metrics reported are computed us-
ing the refined algorithm, however, since both algorithms
are run with the same very stringent tolerance (ε = 1e− 7),
the solutions obtained are comparable. The number of itera-
tions for the DIAC estimation (with no refinement) are tab-
ulated under ω∗. The metric upgrade setup was performed
with ε = 1e− 5.

Typical time for each iteration of branch and bound is a
few seconds on a Pentium IV, 1 GHz computer with 1GB
of RAM. For 0.5% noise, each iteration of π∞ estimation
takes about 4 seconds for 10 views and 14 seconds for 40
views. The corresponding times are 8 and 32 seconds for
ω∗ estimation. Our code is unoptimized MATLAB with an
off-the-shelf SDP solver [24], so these timings should be
understood only as rough qualitative indicators.

While the metrics above are intuitive for evaluating the
intrinsic parameters, it is not readily evident how ∆p must
be interpreted. Towards that end, we perform a set of exper-
iments, inspired by [19], where three mutually orthogonal
5 × 5 grids are observed by varying numbers of randomly
placed cameras. Noise ranging from 0.1 to 1% is added to
the image coordinates. Parallelism of the various grid lines
is evaluated for the affine upgrade, while orthogonality and
parallelism are measured in the metric reconstruction. The
results are tabulated in Table 2(b).

Again, we observe that the algorithm achieves very good
accuracy for reasonable noise and performs quite well even
for 1% noise. With just 5 cameras, it is quite likely for
the configuration to be ill-conditioned or degenerate, which
causes the algorithm to break down in some cases.

To demonstrate performance on real data, we consider
images of marker targets on two orthogonal walls (Fig-
ure 2(a)). Using image correspondences from detected cor-
ners, we perform a projective reconstruction using the pro-
jective factorization algorithm [26] followed by bundle ad-
justment. The normalization procedure and exact imple-
mentation follows the description in [10].

Bounds on the plane at infinity are computed using chi-
rality (5). Focal lengths are assumed to lie in the interval
[500, 1500], principal point within [250, 450] × [185, 385]
(image size is 697×573) and skew [−0.1, 0.1]. The plane at
infinity and DIAC are estimated using our algorithm. While
ground truth measurements for the scene are not available,
we can indirectly infer some observable properties.

The coplanarity of the individual targets is indicated by
the ratio of the first eigenvalue of the covariance matrix of
their points to the sum of eigenvalues. This ratio is mea-
sured to be 3.1×10−6, 4.1×10−5, 6.2×10−5 and 4.1×10−4

for the four polygonal targets. The angle between the nor-
mals to the planes represented by two targets on the adjacent
walls is 88.1◦ in our metric reconstruction. The same angle
is measured as 89.8◦ in a reconstruction using [21]. The
precise ground truth angle between the targets is unknown.

All the results that we have reported are for the raw out-
put of our algorithm. In practice, a few iterations of bun-
dle adjustment following our algorithms might be used to
achieve a slightly better estimate.

8 Conclusions and further discussions
In this paper, we have presented globally minimal solutions
to the affine and metric stages of stratified autocalibration.
Although our cost function is algebraic, this is the first work
that provides optimality guarantees for a scalable stratified
autocalibration. We hope the methods presented here will
be of use elsewhere in computer vision too.

Several important extensions to the methods introduced
in this paper can be envisaged. For instance, an L1-norm
formulation will allow us to use an LP solver for the affine
upgrade, making it possible to solve larger problems faster.
Another important direction to pursue is the development
of alternate bounding techniques for the plane at infinity be-
sides chirality, which will allow us to use the simpler relax-
ation presented in Section 6.2.
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A Convex and Concave Relaxations
In this appendix, we briefly describe the convex and con-
cave relaxations of the intermediate non-linear terms that
were relaxed as part of the various convex relaxations in the
main text. In each instance, the variables x and y take values
in the intervals [xl, xu] and [yl, yu], respectively.

A.1 Functions of the form f(x) = x8/3

The function x8/3 is convex, and thus the line joining
(xl, x

8/3
l ) and (xu, x

8/3
u ) is a tight concave overestimator,

thus the relaxation is given by

z ≤ x
8/3
l +

x− xl

xu − xl
(x8/3

u − x
8/3
l ) (18)



σ m Error Iterations Failure
(%) ∆p ∆f ∆uv ∆s π∞(1) π∞(2) ω∗ (%)

5 3.13e-3 6.70e-3 4.34e-3 2.35e-3 22.5 ± 14.7 3.7± 4.4 37.5 ± 14.4 0
0.1 10 8.45e-4 8.07e-4 1.02e-3 3.85e-4 14.5 ± 4.6 2.4 ± 2.4 40.9 ± 13.1 0

20 8.39e-4 7.41e-4 3.90e-4 2.73e-4 14.4 ± 5.7 1.4 ± 1.2 31.8 ± 14.8 0
40 7.65e-4 4.24e-4 2.82e-4 2.01e-4 13.8 ± 4.4 1.5 ± 3.2 27.5 ± 16.9 0
5 6.64e-3 7.50e-3 4.97e-3 2.33e-3 24.7 ± 15.3 4.5 ± 5.8 41.0 ± 16.2 0

0.5 10 3.03e-3 2.51e-3 1.81e-3 1.20e-3 15.7 ± 5.6 3.0 ± 3.9 43.9 ± 15.9 0
20 4.06e-3 2.13e-3 1.63e-3 1.10e-3 16.4 ± 10.5 4.1 ± 12.0 38.5 ± 11.6 0
40 4.00e-3 1.69e-3 1.39e-3 7.09e-4 18.0 ± 9.0 9.3 ± 13.0 33.5 ± 11.7 0
5 1.09e-2 1.60e-2 7.03e-3 4.96e-3 25.0 ± 20.3 5.1 ± 10.4 42.7 ± 17.4 2

1.0 10 5.81e-3 4.05e-3 3.01e-3 2.03e-3 18.6 ± 8.5 5.7 ± 8.8 44.3 ± 12.0 1
20 8.16e-3 4.01e-3 2.44e-3 1.69e-3 21.5 ± 12.9 13.2 ± 17.2 43.6 ± 13.2 0
40 7.80e-3 3.23e-3 2.37e-3 1.41e-3 24.3 ± 9.7 20.5 ± 13.7 43.3 ± 13.9 0

Figure 1. Error in camera calibration parameters for random synthetic data. The errors in the table are reported relative to ground truth for
the indicated quantities. All quantities reported are averaged over a 100 trials. σ stands for percentage noise in image coordinates and m
stands for number of views.

(a)

Noise m Affine Metric Failure
(%) (Parallel) (Parallel) (Perpendicular) (%)

5 0.49 ± 0.13 0.49 ± 0.12 0.45 ± 0.33 1
0.1 10 0.31 ± 0.07 0.31 ± 0.07 0.24 ± 0.06 0

20 0.21 ± 0.04 0.21 ± 0.04 0.17 ± 0.03 0
5 2.32 ± 0.50 2.33 ± 0.52 2.02 ± 0.87 3

0.5 10 1.50 ± 0.30 1.50 ± 0.30 1.14 ± 0.25 0
20 1.07 ± 0.17 1.07 ± 0.17 0.81 ± 0.15 0
5 5.34 ± 1.57 5.36 ± 1.63 5.70 ± 4.00 10

1.0 10 3.17 ± 0.63 3.18 ± 0.63 2.48 ± 0.66 0
20 2.05 ± 0.39 2.05 ± 0.38 1.60 ± 0.38 0

(b)

Figure 2. (a) Four of the twelve images consisting of marker targets that we use for reconstruction for our experiments with real data.
(b) Error in affine and metric properties for three synthetically generated, mutually orthogonal planar grids. The table reports angular
deviations from parallelism and orthogonality, measured in degrees. All quantities reported are averaged over 100 trials.

A.2 Bilinear functions f(x, y) = xy

We begin by considering convex and concave relaxations of
the blinear function f(x) = xy. It can be shown [3] that
the tightest convex lower bound for f(x, y) is given by the
function z = max{xly +ylx−xlyl, xuy +yux−xuyu}.
Similarly, the tightest concave upper bounding function is
given by z = min(xuy + ylx− xuyl, xly + yux− xlyu).
Thus, the convex relaxation of the equality constraint z =
xy over the domain [xl, yl]× [yl, yu] is given by

z ≥ xly + ylx− xlyl, z ≥ xuy + yux− xuyu

z ≤ xuy + ylx− xuyl, z ≤ xly + yux− xlyu (19)

A.3 Functions of the form f(x, y) = x1/3y

We now consider the construction of the convex relaxation
for a bivariate function f(x, y) = x1/3y.

Case 1: [xl > 0 or xu < 0] Suppose xl > 0,
then f(x, y) is concave in x and convex in y. It can be

shown [27] that the convex envelope for f(x, y) is given by

min z ≥ (1− λ)f(xl, ya) + λf(xu, yb) (20)
s.t. x = xl + (xu − xl)λ, 0 ≤ λ ≤ 1

y = (1− λ)ya + λyb, yl ≤ ya, yb ≤ yu

Noting that f(x, y) = x1/3y, substituting yp = (1 − λ)ya

and simplifying results in the following convex relaxation:

z ≥ x
1/3
l yp + x1/3

u (y − yp), (1− λ)yl ≤ yp ≤ (1− λ)yu

λyl ≤ y − yp ≤ λyu, λ =
x− xl

xu − xl
. (21)

A concave relaxation for x1/3y can be constructed
by considering the negative of the convex envelope of
x1/3(−y). This leads to

z ≤ (x1/3
u − x

1/3
l )y′p + x1/3

u y, λyu ≥ y + y′p ≥ λyl

(1− λ)yu ≥ −y′p ≥ (1− λ)yl, λ =
x− xl

xu − xl
. (22)



For the case when xu < 0, we observe that a convex re-
laxation for x1/3y is given by the negative of the concave
relaxation of t1/3y, where t = −x. Appropriate manipula-
tion of (21) gives us the convex and concave envelopes for
this case too.

Case 2: [xl ≤ 0 ≤ xu] The function x1/3 is convex
for x < 0 and concave for x > 0. The derivation in (21)
depends critically on the convexity of x1/3 over its domain,
and thus, cannot be used for the case when xl ≤ 0 ≤ xu.
So instead of a one step relaxation, we will instead consider
the two equality constraints t = x1/3, z = ty and relax each
of them individually. Once we have the relaxation for t =
x1/3, we can then apply the bilinear relaxation to z = ty.

To construct a concave overestimator for x1/3, we note
that the line tangent to the curve x1/3 and passing through
(xl, x

1/3
l ) will always overestimate the curve. This line is

given by t = (4x − xl)/3(−xl)2/3. Further, we can show
that the point of tangency is (−xl/8,−x

1/3
l /2). Now if

−xl/8 < xu, then another line which upper bounds x1/3

is the line passing through xl and tangent at (xu, x
1/3
u ) :

t = 1
3x

−2/3
u x+ 2

3x
1/3
u . Thus, the overestimator for t = x1/3

is given by the minimum of these two lines.
Further, when −xl/8 ≥ xu, we can get a better concave

overestimator as simply the line passing through (xl, x
1/3
l )

and (xu, x
1/3
u ). Thus, the unified concave overestimator for

x1/3 is given by

t ≤


min

(
4x− xl

3(−xl)2/3 , x + 2xu

3x2/3
u

)
, −xl/8 < xu

(x1/3
u − x

1/3
l )x + (xux

1/3
l − xlx

1/3
u )

xu − xl
, −xl/8 ≥ xu

By similar arguments, we can derive the convex underesti-
mator for x1/3 when xl ≤ 0 ≤ xu as

t ≥


max

(
4x− xu

3x2/3
u

, x + 2xl

3(−xl)2/3

)
, −xu/8 > l

(x1/3
u − x

1/3
l )x + (xux

1/3
l − xlx

1/3
u )

xu − xl
, −xu/8 ≤ xl
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