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Abstract

We present a practical algorithm that provably achieves
the global optimum for a class of bilinear programs com-
monly arising in computer vision applications. Our ap-
proach relies on constructing tight convex relaxations of the
objective function and minimizing it in a branch and bound
framework. A key contribution of the paper is a novel, prov-
ably convergent branching strategy that allows us to solve
large-scale problems by restricting the branching dimensions
to just one set of variables constituting the bilinearity.

Experiments with synthetic and real data validate our
claims of optimality, speed and convergence. We contrast
the optimality of our solutions with those obtained by a tra-
ditional singular value decomposition approach. Among sev-
eral potential applications, we discuss two: exemplar-based
face reconstruction and non-rigid structure from motion. In
both cases, we compute the best bilinear fit that represents
a shape, observed in a single image from an arbitrary view-
point, as a combination of the elements of a basis.

1. Introduction

Bilinearity is an oft-encountered phenomenon in com-
puter vision, since observables in a vision system commonly
arise due to an interaction between physical aspects well-
approximated by linear models [27]. For instance, the co-
ordinates of an image feature are determined by a camera
matrix acting on a three-dimensional point [28]. Image in-
tensity for a Lambertian object is an inner product between
the surface normal and the light source direction. An image
in non-rigid structure from motion arises due to a camera
matrix observing a linear combination of the elements of a
shape basis [29]. Thus, in its most general form, bilinear
programming subsumes diverse sub-fields of computer vi-
sion such as 3D reconstruction, photometric stereo, non-rigid
SFM and several others.

This paper proposes a practical algorithm that provably
obtains the globally optimal solution to a class of bilinear
programs widely prevalent in computer vision applications.

The algorithm constructs tight convex relaxations of the ob-
jective function and minimizes it in a branch and bound
framework. For an arbitrarily small ¢, the algorithm termi-
nates with a guarantee that the solution lies within € of the
global minimum, thus, providing a certificate of optimality.

One of the key contributions of the paper is to establish,
with theoretical and empirical justification, that it is possi-
ble to attain convergence with a non-exhaustive branching
strategy that branches on only a particular set of variables.
(Note that this is different from bounds propagation schemes
proposed in [1, 8], which are essentially exhaustive.) This
has great practical significance for many computer vision
problems where bilinearity arises due to the interaction of a
small set of variables with a much larger, independent set.

For instance, one commonly represents an entity, say
shape, as a linear combination of basis entities. The image
formation process under this model can be understood as
a bilinear interaction between a small number of camera
parameters and a large number of coefficients for the basis
shapes. As an illustration, we present two applications where
the nature of this interaction is suitably exploited - recon-
structing the 3D structure of a face from a single input image
using exemplar models [7] and determining the cameras and
shape coefficients in non-rigid structure from motion [29].

In this paper, we globally minimize bilinear programs
under both the standard Ls-norm for Gaussian distributions
and the robust L;-norm corresponding to the heavier-tailed
Laplacian distribution. The convex relaxations are linear
programs (LP) for the L;-norm case and second order cone
programs (SOCP) for the Lo-norm, both of which are effi-
ciently solvable by modern interior point methods [3].

A traditional counterpoint to our approach would employ
linear regression followed by singular value decomposition
(SVD), which is suboptimal for this rank-constrained prob-
lem in the noisy case. Our experiments clearly demonstrate
the lower error rates compared to SVD attainable by our
globally optimal algorithms.

The remainder of the paper is organized as follows: Sec-
tion 2 describes related work and Section 3 briefly reviews
branch and bound theory. Section 4 presents convex relax-



ations for the bilinear programs under consideration. Sec-
tion 5 proposes a branching strategy to globally minimize
our programs and proves convergence. Experimental results
on real and synthetic data are presented in Section 6, while
Section 7 concludes with a discussion and future directions.

2. Related Work

Bilinear problems arise in several guises in computer vi-
sion [17], a fact highlighted by the wisespread use of singular
value decomposition in diverse vision algorithms. This is,
in part, due to the preponderance of linear models in our
understanding of several aspects of visual phenomena, such
as structure from motion [28], illumination models [6, 11],
color spectra [20] and 3D appearance [22].

The bilinear coupling between head pose and facial ex-
pression is recovered in [5] for actor-driven animation. Dis-
parate applications like typography, face pose estimation and
color constancy are tackled in [9] by learning and fitting bi-
linear models in an EM framework. A perceptual motivation
for the abundance of bilinearity in vision is presented in [27].

From the perspective of optimization algorithms, bilin-
ear programming is quite well-studied [21], particularly as
a special case of biconvex programming [2]. A variety of
approaches, such as cutting-plane algorithms [18] and refor-
mulation linearization techniques [25] have been proposed
to solve bilinear programs. Our approach differs in exploit-
ing structure to achieve optimality in problems which would
otherwise be considered too large for global optimization.

There has been significant recent activity in the commu-
nity towards global optimization for vision problems, using
a variety of tools, such as LMI relaxations [16], SOCP/SDP
relaxations in a branch and bound framework [1, 8], Groeb-
ner basis for polynomial systems [26] and interval analysis
methods [10]. Note that bilinear programming is a special
case of polynomial optimization, however, the problem sizes
that concern us in this paper are far greater than what modern
polynomial solvers can handle [12].

Numerous computer vision applications involve norms
besides Ls. Supergaussian distributions like Laplacian rou-
tinely arise in independent component analysis [14]. The L;
norm has been used where robustness is a primary concern,
such as [30] for range image integration. The underlying con-
vexity or quasi-convexity of L; and L, formulations of mul-
tiview geometry problems have been studied in [1, 15, 24].

3. Branch and Bound

Branch and bound algorithms are non-heuristic methods
for global optimization of nonconvex problems [13]. For
arbitrarily small ¢, they terminate with a certificate guaran-
teeing an e-suboptimal solution.

Let ®(x) be a multivariate scalar function that we wish to
globally minimize over a rectangular domain Q. Branching

refers to splitting a rectangle into two or more sub-rectangles.
Let Py be a partition of Qg after k& branching operations.
The bounding operation computes provable lower and up-
per bounds within each Q); € Py, denoted by @y, (Q);) and
®yp (Q;). The algorithm also maintains global lower and up-
per bounds for the function ® after k branching operations:

l : u :
- Oy (O), = Dy (Q;). (1
Uy, Ql?égk w(Qi), i Qlflelgk b (@) (1)

The algorithm is convergent if ¢} — ¢! — 0 as k — oc.

The success of a branch and bound scheme greatly de-
pends on the quality of the bounds. They must be good
approximations to the original function, as well as efficiently
computable and minimizable. The bounding function must
also satisfy a technical condition: namely, it must approx-
imate the function increasingly well as the “size” of the
rectangle shrinks, for some notion of “size”.

Choosing a rectangle for branching is essentially heuristic
and does not affect convergence. We choose the rectangle
with the lowest value of @y, (Q) and subdivide it along a par-
ticular dimension. The choice of branching dimension and
the actual subdivision do influence convergence. While the
worst-case complexity of a branch and bound algorithm can
be exponential, we significantly expedite the solution with a
branching strategy that exploits problem structure. Section 5
describes our approach and proves it to be convergent.

4. Formulation

To motivate the derivations and establish a consistent
terminology, we will refer to a concrete example, namely
reconstructing a 3D shape from a single image, given basis
shapes. Modulo suitable variable reorderings, the following
derivations hold for other bilinear programs too.

For simplicity, we will write expressions for one coor-
dinate of the 2D image, extension to two coordinates is
straightforward. Let u = {u;}7_, be the observed image,
a € R” be a row of the camera matrix (n = 4 for 3D shapes)
and o = {a'}™, be the shape coefficients corresponding
to the m basis shapes B’ = {X € R"™}. Then, the shape is
represented as y ; &' B’ and the affine imaging equation is

uj:aTZ;ilo/X} j=1--,N ()
4.1. LP relaxation for the L,-norm case

The L;-norm bilinear program to find the globally opti-
mal camera and shape coefficients is:

N m
min E uj—aT E oﬂX}
a,a

j=1 i=1

a€Q,, acQ,, Gla,a) >0

3)

subject to

where X?- € R™ and Q,, Q, specify rectangular domains

for a and . G(a, ) represents a set of linear constraints



(or constraints which can be relaxed into linear ones) on a
and/or « to fix the scale of the variables.

Introducing scalar variables t;, 7 = 1,--- , IV, an equiva-
lent constrained optimization problem is

N n

m
) _ 3¢
min st t; > |u; ZZaka ik 4)

min t;,
j=1 k=1i=1

acQ,,acQ,, Glaa)>0

where a = (a1, ,a,)" and X! = (X7 .-, X )T,
Note that the non-convexity in the problem is now contained
in the bilinear terms ax¢’ in the constraints. The convex
and concave relaxations for a bilinear term 2y in the domain
[1, 4] X [y1, Y] are given by, respectively, the two pairs of

linear inequalities [2, 21]:

z <min{x.y + yix — xuy, 1Y + Yot — T1yu}  (6)

z > max{zy + Yz — Ty, Ty + Yu —

We will collectively refer to the four inequalities above as
conv (zy) < z < conc (xy).

Each constraint of the form ¢; > |- | in (4) can be equiv-
alently replaced by the pair of constraints ¢; > () and
t; > —(-). Substituting 'y,i = apa’, we can construct a
convex relaxation of (4):

N n o m
Jnin, Sty ostot; > (ZZX;‘,W/?—UJ) ©)

j=1 k=1 i=1
n m
b2 (33 Kk
k=1 i=1
conv (akai) < 'y,i < conc (ako/)
acQ,, aecQ,, Ga,a)>0.
Introducing new variables p; =t; — >, , X; W Yh +uj and

eliminating ¢; from the resulting system of equations, the
program (7) can be equivalently rewritten as

N n m
i > (Z DX — s+ w) (8)

k=11i=1

subjectto  —2 (Z

k=11i=1

m

X v — Uj) —11; <0

AVl

pj =0
conv (akozi) < 'y,i < conc (ak.o/)
acQ,, acQ,, Gla,a) >0.

While both (7) and (8) are linear programs, (7) has two
“general” linear inequalities in the constraint set for each
7 =1,---,N. In (8), one of them has been replaced by a
comparison of the scalar variable 1, to 0, which can be han-
dled in a more efficient manner in interior point solvers [3].

In computer vision applications where N > n, the impor-
tance of this transformation is immense - it improves timings
by up to an order of magnitude in some of our experiments.

4.2. SOCP relaxation for the L,-norm case

The Lo-norm bilinear problem is:

N m 2
; . _aT ixXi
I;lgl Zl <uj a Zla Xj> 9
j= i=

subject to ac Qa7 [a S Qom g(a7 a) > 0.

A convex relaxation for (9) can be easily constructed in
the form of a second order cone program using the same
principles as for the L case:

min =D X ke un = Xy
conv (akai) < 7,’; < conc (akai)
acQ,, acQ,, Glaa)>0. (10)
The convex relaxations in (8) and (10) are tight and effi-
ciently computable, so they are ideal for use in a branch and
bound algorithm (Section 5).

4.3. Additional notes for the L, case

A traditional approach to solving such bilinear problems
as (9) might use SVD. In particluar, one may substitute

t =alay,i=1,--- ,mand k = 1,--- ,n and solve for
(3% by minimizing the linear least squares
min 355 (u; =324y X507 (11)

Subsequently, arrange 3}, in a n x m matrix 3, perform
SVD and retain the first singular vector. However, this is
not optimal in the noisy case as the rank 1 structure of 3 is
ignored by the linear regression in (11). Some of the experi-
ments in Section 6 will underline the global optimality of our
Lo-norm solution by comparison against linear regression
followed by SVD.

A second observation is that, for a differentiable problem
like (9), an additional optimization is possible. Once the
lower bounding obtains a feasible point, we can refine the
objective function value using a gradient descent method
within the rectangle under consideration. Note that this does
not compromise optimality, it simply allows the best estimate
in a rectangle to push closer to the lower bound. Since our
experiments are designed to validate the effectiveness of the
branch and bound strategy, all of them are conducted without
this additional optimization.

Finally, for an orthographic camera, orthogonality con-
straints of the form a'b = 0 are bilinear equalities and



can be handled using (5) and (6). Unit norm constraints
such as ||al| = 1, however, can only be imposed indi-
rectly. One approach would be to consider only those rect-
angles, (), feasible for branching that satisfy the condition
minacga’a < 1 < maxaep(g)a’ a, where V(Q) is the
set of vertices of the rectangle (). The left inequality is a
small convex quadratic program while the right inequality is
a small enumeration. Thus, at a negligible cost, rectangles
which are guaranteed not to contain the ||a|| = 1 solution
can be pruned away.

5. Branching strategy

Suppose we wish to globally minimize a bilinear function
f(x,y), where x € R"y € R™, which might contain
bilinear terms involving x;y; and linear terms involving x;.
Given a procedure for constructing the convex relaxations as
in Section 4, we propose a branching strategy to minimize
the bilinear objective. Let ¢! and ¥% be the global lower and
upper bounds maintained by the branch and bound algorithm
at the end of k iterations, as defined in equation (1). The
branching strategy of the algorithm is given by:

e k=0,Py={Qo}.
e while ¢! — 1% > €

— choose Q) € Py such that @y, (Q) = L

— bisect the longest edge of @ that corresponds only
to some x; to form two rectangles ()1 and Q2

- Prr1 = {Pe\Q} U{Q1,Q2}
Sy Y

The algorithm differs from traditional approaches in the
choice of branching dimensions - we restrict the branch-
ing dimensions to those corresponding to only one set of
variables that make up the bilinear forms. To borrow the
terminology of [27], we branch over either the style variables
or the content ones.

We will prove below that this branching strategy results in
a convergent algorithm. The practical advantage in computer
vision applications is that, typically, one set of variables in
a bilinear model has far fewer elements than the other. For
instance, Section 6 exploits this fact to branch over just the
camera parameters while optimizing for both the camera and
the linear coefficients of a shape basis consisting of tens to
hundreds of exemplars. The convergence is also empirically
demonstrated in the experiments in Section 6.1.

Proposition 1. The above branch and bound algorithm is
convergent.

We will prove the claim for bilinear functions of the form
f(x,y) = >, z;y;. It can be easily extended to deal
with more general bilinear forms by replacing y; with linear

functions of y and appending f with linear functions of x.
The program we solve in, say (9), contains the bilinearity in
the constraint set, rather than the objective. With continuity
arguments, the following analysis holds for that case too.

Let the initial region be specified as Qo = [l1,u1] X - - - X
[ln,un) X [L1,U1] X - -+ X [Ly, Uy], where z; € [l;, u;] and
yi € [Li,U;]. Define x(Q) to be the length of the longest
edge of rectangle @) corresponding only to some x;, that
is, x(Q) = max; (u; — l;). We show that the branch and
bound algorithm is convergent if the sub-division rule at each
branching step is to bisect an x;-edge of length x(Q).

We first prove the following main result:

Lemma 1. As x(Q) — 0, @44 (Q) — 1 (Q) — 0.

Proof. Let us begin with a single bilinear term x;y;. For
ease of notation, we drop the subscript and denote x; by
z and y; by y. The corresponding rectangle is denoted by
[l,u] x [L,U]. We define

L-U  uU-IL

- U-L
u—1 u—1 N

ul — U
T .
u—1

A Y
u—1
(12)
Noting the form of the convex and concave relaxations of xy
in (5) and (6), respectively, the following four cases arise:
y>Nys<N = Op—®p = (u—2a)(U—-1L)
y> A y>2 N = Oy -0 = (u—1)(U —y)
y<AysSN = @y —Pp = (u—I)(y—L) (13)
y < )\, yZA/ = Oy — Py, = (f*l)(U*L)
The lemma is proved for a single bilinear term, if Ve >
0,36 > 0 such that

u—1I1 <= Oy — Py, <¢, V€ [L,u], Vy € [L,U]. (14)

And indeed, given € > 0, choosing ¢ < ﬁ, satisfies the

condition (14) for each of the above four cases.

For the case where f is a sum of bilinear terms, we appeal
to a result from [13]: let <I>§b and @ib be the convex and con-
cave envelopes of z;y; in the domain [I;, u;] x [L;, U;]. Then
the convex and concave envelope of f(x,y) = >, z;y;
in the domain Q@ = [J,[l;,u;|[];[Ls,U;] are given by
Py (Q) = Zi @, and Oy, (Q) = Zi Q-

Consequently, Lemma 1 stands proved if Ve > 0,36 > 0
such that, Va; € [I;,u;], Vy; € [L;, U]

X(Q)<d=>, i, — Do CI)fb <e (15)
And indeed, since x(Q) > max;(u; — I;), choosing ¢ such
that nd max; (U; — L;) < e always satisfies (15). O

With Lemma 1 proved, the convergence of our algorithm
can be easily derived by standard arguments [4, 13]. Our
choice of branching strategy induces some minor techni-
cal differences, so the appendix includes a short proof for
completion.



6. Experiments

We conduct experiments for performance evaluation with
synthetic data, with and without outliers, for the optimal
L5 and the optimal L; methods as well as the (suboptimal)
linear regression followed by SVD method. Experiments are
also reported for two applications - face reconstruction from
exemplar 3D models (with real data) and bilinear fitting for
non-rigid structure from motion (with synthetic data).

Both the LP and SOCP relaxations are implemented using
the MOSEK solver [3], in an unoptimized MATLAB environ-
ment!. The branch and bound terminates when the difference
between the global optimum and the convex underestimator
is less than a stringent tolerance of 0.001. Regardless of the
problem norm, any reprojection (image) errors we report are
computed as Root Mean Squares (RMS) errors.

6.1. Synthetic data

The purpose of these experiments is to understand the
behavior of the algorithm across varying noise levels, num-
ber of exemplars and number of point correspondences. For
each experiment, the exemplar models are generated ran-
domly in the cube [—1, 1], while o are random numbers
in [0, 1] such that ), a* = 1. The camera, which is a € R*
in equations (3) and (9), is generated randomly with each

IPrototype code at http://vision.ucsd.edu/ bilinear
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Figure 1. Errors with varying percentage of noise levels for linear
regression + SVD (black, dotted curve), the Lo-norm bilinear al-
gorithm (red, dashed curve) and the L-norm bilinear algorithm
(blue, solid curve). (a) Reprojection error (b) Error in camera en-
tries (c) Error in shape coefficients (d) Error in 3D coordinates of
reconstructed shape. All quantities plotted are averages of 50 trials.

a; € [—1,1]. Zero mean, Gaussian noise of varying standard
deviation is added to the image coordinates. We define:

Reprojection error : \/Zj\;l(u] —a;)?/N
Camera error s /S, (ax — a7)?/(n] a7
Shape coefficient error : /Y -, (o —@%)?/(m Y, @)
3D error : v/ 0, (X; — X;)2/N

The hat denotes ground truth entities. All the quantitative
errors that we report are averaged over 50 trials for each
combination of experimental parameters.

We also compare the errors obtained by the optimal L,
and Lo algorithms to those obtained by linear regression
followed by SVD. Note that camera translation cannot be
recovered by SVD as the data needs to be centered. There is
also a sign and scale ambiguity in the SVD solution, which is
corrected by demanding that all the o’ are non-negative and
imposing, post-optimization, the condition that >, a* = 1.

In the first set of experiments, we compute the above
errors with m = 20 exemplars and N = 100 points, for
various noise levels from 0.1% to 1% of the image size. The
observations are plotted in Figure 1, whereby the L; and Lo
algorithms clearly outperform the SVD method, especially
for higher noise levels. Note that the L, algorithm does not
minimize the Ly-reprojection error, so it is not meaningful
to compare its image error to that of the other two methods.

The next set of experiments are performed with outliers
in the data. For these experiments, m = 20, N = 100 and
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Figure 2. Errors with varying percentage of outliers in the data for
linear regression + SVD (black, dotted curve), optimal L2-norm
algorithm (red, dashed curve) and optimal L-norm algorithm (blue,
solid curve). All quantities plotted are averages of 50 trials.
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Figure 3. Time taken to converge to a pre-specified optimality gap by the optimal Ly-norm algorithm (red, dashed curve) and the optimal
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of exemplars (c) 0.5% noise, 25 exemplars and varying number of points. All quantities plotted are averages of 50 trials.

0.5% Gaussian noise was added to the image coordinates. To
simulate an outlier, 10% of image size is added to the image
point. The various errors are recorded as percentage of data
points corrupted by outliers varies and plotted in Figure 2. It
can be seen that the optimal Lo-norm algorithm achieves a
lower reprojection error than the SVD method. However, as
expected, the robust L;-norm algorithm significantly outper-
forms the other two in terms of the geometrically meaningful
camera, shape coefficient and 3D errors.

In the next three sets of experiments, we vary the noise
levels, number of exemplars and number of points and for
each case, record the time for the algorithms to converge to a
pre-specified optimality gap (0.001) The graphs in Figure 3
show that the empirical performances of our algorithms scale
quite gracefully with increase in problem size or difficulty.
This illustrates the utility of our branching strategy which
greatly alleviates the worst case complexity of branch and
bound by restricting the number of branching dimensions to
a small, fixed number irrespective of problem size.

6.2. Applications

The experiments in this section are merely suggestive
of a couple of scenarios - namely, face reconstruction us-
ing exemplar models and non-rigid structure from motion
- where an accurate bilinear fitting is desirable. Both these
problems are mature areas of computer vision in their own
right. So rather than attempts to beat the state-of-the-art
in these specific fields, these experiments must be viewed
as demonstrations of the practicality of a fast and robust
globally optimal solution in real-world applications.

6.2.1 Face reconstruction using 3D exemplars

We perform real data experiments on the Yale Face Database.
3D exemplar models are constructed by photometric stereo
using 9 frontal images of each subject, followed by surface
normal integration. The faces were roughly aligned to a com-
mon grid prior to photometric stereo using the coordinates
of the eye centers and the nose tip.

One of the 35 subjects is chosen for testing, while 3D
models of the other 34 subjects are considered exemplars for
the bilinear fitting problem. Correspondences are established
between a non-frontal image of the test subject and the 3D
exemplar models. (Since this is just a demonstration, we
circumvent the feature matching stage and simply select 50
correspondences between the test image and a frontal image
of the same subject, which gives us 2D-3D correspondences
as the exemplars are on the same grid as the frontal image.)

We assume the 3D representation of the input face is a
convex combination of the exemplar faces, which turns out
to be a good assumption in practice. It is, however, not a
requirement of the algorithm and the input shape can as well
be assumed to be a linear combination of the elements of
a PCA basis derived from the exemplars. The high quality
reconstructions obtained by globally minimizing the L-
norm objective are displayed in Figure 4.

6.2.2 Non-rigid structure from motion

A popular approach to non-rigid structure from motion is
to explain the observed structure as a linear combination of
elements of a rigid shape basis. Given a shape basis, we can
solve the bilinear fitting problem to determine the optimal
camera projection and coefficients of the linear combination.

For experimental validation, we use the synthetic shark
dataset from [29], which consists of 240 images in various
camera orientations of a non-rigid shape consisting of 91
points. A shape basis consisting of 2 elements is obtained us-
ing [29]. The algorithm of this paper is applied to minimize
reprojection error in the Ly-norm. Sample scatter plots to
demonstrate the goodness of the fit are displayed in Figure 5.
The average 3D shape error for our algorithm over the whole
length of the sequence is 0.9%.

7. Discussions

In this paper, we have proposed a globally optimal al-
gorithm for solving bilinear programs in computer vision,
under the standard Lo-norm as well as the robust L; -norm.



The driving forces of the algorithm are efficient convex re-
laxations and a branch and bound framework that exploits
the problem structure to restrict the branching dimensions to
just one set of variables in the bilinear program.

Our branching strategy is provably convergent and par-
ticularly advantageous in computer vision problems where
the cardinality of one set of variables is much smaller than
the other. Note that the uniform convergence requirement
proved in Lemma 1 is non-trivial - several popular lower
bounding schemes such as LMI relaxations [19] or sum of
squares decompositions [23] do not possess this property
and thus, cannot be used in a branch and bound framework.

One avenue for future research is extension to multilin-
earity. While multilinear expressions can always be broken
down into a series of bilinear ones, a more sophisticated
approach to address trilinearity has a few applications in
computer vision. For instance, it will allow texture (or re-
flectance) to be incorporated into the exemplar-based face
reconstruction problem.

(a) Frontal  (b) Test 1 (c) Test2  (d) Test 3

(e) “Ground truth” for 1 (f) Reconstruction of 1

(e) Reconstruction of 2 (f) Reconstruction of 3
Figure 4. Reconstruction of human faces using 3D exemplars. (a)
One of 9 frontal images used for obtaining “ground truth” from
photometric stereo. (b) Sample input image for our algorithm, with
correspondences marked to the 3D model. (c) Test image 2. (d)
Test image 3. (e) “Ground truth” photometric stereo reconstruction
for subject 1. (f) Reconstruction for subject 1 obtained using the
L1-norm algorithm in this paper. (g) Reconstruction for subject 2.
(h) Reconstruction for subject 3.
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Figure 5. 3D scatter plots demonstrating the bilinear fit obtained
by the optimal L, algorithm for representing a deforming shark
as a linear combination of rigid basis shapes. Red circles indicate
ground truth and blue dots indicate the reconstruction.

Appendix

Given Lemma 1, it can be shown, similar to [4, 13], that the
branch and bound algorithm proposed in Section 5 converges.

Define the condition number of a rectangle as C (Q) =
max; (u; — l;)/min; (u; — I;), where I; and u; are bounds on
the z; terms only. Then, the following is true for our choice of
sub-division rule:

Lemma 2. C (Q) < max{C (Qo), 2}

Proof. Let some (Q € P be split into Q1 and ()2 by bisection
along the longest x;-edge. Let X' (Q) = min;(u; — I;) and
as before, x(Q) = max;(u; — l;). Then, x(Q1) < x(Q)/2
and x(Q2) < x(Q)/2. Moreover, X'(@1) = X'(Q2) =
min{x(Q)/2, x'(Q)}. It follows that C (Q1) < max{C (Q), 2}
and C (Q2) < max{C (Q), 2} and as a consequence, the lemma is
proved. O

Lemma 3. After a “large enough” number of branching opera-
tions, there exists at least one “small enough” rectangle. More pre-
cisely, there exists a rectangle for which the maximum length along
dimensions corresponding to x;, t = 1,--- ,n, can be bounded in
terms of the number of branching operations.

Proof. The volume of a rectangle is given by
vol (Q) = [1;(ui — L) [1;(Ui — L) = V" I (us — 1)
V@) @) 2 v

= et
7V0‘X(Q) ! sinc
> (B8 v c@ 2 1



where Vi* = [, (Us — L;) remains constant throughout the branch-
ing process. Thus, x(Q) < ¢ C (Q) vol Q)"

Since a new rectangle is created by bisection at every branching
stage, after k branching steps, there exists some Q' € P}, such that
vol (Q') < %QO). Using Lemma 2, it follows that there exists
some Q' € Py, such that

/ 1 n
X(Q) < 77 max{C (Qo), 2}[vol (Qo) /K" (16)
and the lemma stands proved. O

We are now in a position to prove Proposition 1. Specifically, let
W, and % in equation (1) be the global lower and upper bounds
maintained by the branch and bound algorithm at the end of &’
iterations. Then, we show that given € > 0, 3k such that for some
k' < k, it was the case that ¢}, — L, < e.

Proof. Lemma 1 guarantees the existence of § > 0 such that
x(Q) <6 = Py (Q) — i (Q) < €. From Lemma 3, for a large
enough £ such that

o7 max{C (@), 2Hvol (Qu)/KM™ <5/2, (17)
there exists a rectangle Q" € Py, such that x(Q') < 6/2. Let Q'
be formed by sub-division of some rectangle Q. Then, x(Q") <
§, thus, from Lemma 1, &y, (Q”) — &1 (Q"") < €. Since the
algorithm chose Q" for branching at some iteration ', it must have
satisfied @y, (Q") = «%,. Thus,

Vo= < Bu (Q")—ir < Bup (Q7)— P (Q) < € (18)

and the convergence proof stands completed. O
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