
CS280 Project, Spring 1996:Grouping of Color and Texture Features forAutomated Image AnnotationSerge Belongie, Robert Blasi and Kevin MurphyMay 28, 1996AbstractWe present a system for automated image annotation which is capable of detecting concepts such assky, water and man-made structure in color images. The processing of each image consists of a featureextraction stage and a grouping stage. The ensuing concept-recognition is accomplished using a decisiontree. The pixel-level features consist of basic color and texture information. The color informationconsists of hue, saturation and value (intensity) data and the texture information is obtained using thewindowed-image second moment matrix.The pixel-level features are quantized into one of a dozen or so bins based on an empirically determinedperceptual partitioning of color/texture space. The set of binary images associated with this quantizationstep are each grouped in parallel according to three di�erent strategies. The three grouping strategiesseek to form regions according to (1) solid contiguity, (2) similarity in local orientation and (3) similarityin di�useness. As an example, one of the above mentioned binary images contains a 1 at each pointwhere the original image contains a pixel with a bluish hue. Should the input image contain clear bluesky above the horizon, the �rst grouping strategy would produce a large connected region in the binaryimage representing the pixels with a light-blue color. The second grouping strategy would abort due tolack of orientation strength and the third strategy would fail since the sky-blob is not di�use.Each blob is represented by a feature vector containing its area, coordinates in the image, eccentric-ity, principle orientation, mean saturation and mean intensity, as well as by the color/texture bin andgrouping strategy which gave rise to it. These feature vectors are the input to the decision tree classi�er.The decision tree attempts to assign a label to each blob according to these characteristics.1 IntroductionOur goal in this project is to produce a system for automatic image annotation. Such a system has appli-cations in many areas of computer vision, particularly in the domain of digital libraries. Automated imageannotation has the potential to expand the capabilities of search engines beyond simple text queries intothe realm of image-content based queries. In particular, automated image annotation could become a stan-dard feature of the so called \web crawlers"{ autonomous World Wide Web information gatherers{ whichcurrently only cull textual data from the hundreds of thousands of HTML pages in existence.Not surprisingly, the task of automated image annotation is as di�cult and unbounded as it is useful.Without a priori knowledge of an image categorization (e.g. faces, wrenches, textures), there is no singletechnique which will satisfactorily address the challenges presented by each new image which enters thesystem. This inherent di�culty suggests the use of image processing techniques which proceed from the verygeneral to the very speci�c, adapting according to the outcome of each successive processing step.1

A framework for implementing generic-to-speci�c processing in this manner is presented in [1], whereinthe successive processing steps are integrated with a hierarchy of grouping operators. This grouping-basedframework has been used, for example, to automate the detection of naked people in color photographs [2].In this system, local color, texture and symmetry features are grouped to �nd candidate limbs, which are inturn grouped to detect human �gures.We have chosen in the project presented here to employ a grouping-based framework for the detection ofa number of basic concepts such as sky, water, grass and manmade structure. Our approach begins withan early-visual processing step to obtain color and texture information and then proceeds with a numberof parallel grouping strategies. The grouping strategies seek to combine the results of the �rst processingstep in a manner which lends itself to the task of classi�cation. For example, a region of an image which is(1) coherent with respect to its light blue color and lack of texture, (2) is located in the upper half of theimage and (3) is elongated horizontally suggests the presence of sky. The classi�cation of concepts based ongrouped features is accomplished by means of a decision tree.The structure of this paper is as follows. We �rst outline the early-visual processing stage which producesthe color and texture features. Next we discuss the grouping strategies which operate on the local color andtexture features. We then discuss the structure of the decision tree. We conclude with an overview of ourresults, relevant �ndings and plans for further investigation. An interactive demonstration of our systemmay be found at http://www.cs.berkeley.edu/~murphyk/dwr/submitImage.html.2 The Early-Visual Processing StageThe goal of the early-visual processing stage is to assign each pixel of the image to one of a dozen or socolor/texture bins. We may think of this step as a quantization of the space of color and texture features.The color/texture space we use is 6 dimensional, with 3 dimensions for color and 3 dimensions for texture.The motivation for our choices of color and texture descriptors is provided next.2.1 The HSV Color SpaceEach image in the DWR database is stored as a 128 by 192 JPEG. Nominally the color at each pixel isrepresented by its three RGB values. We opted to convert the the RGB values to their HSV counterpartssince we found HSV to be a more perceptually intuitive color space. The three components of an HSV pixelhelp us to discriminate between di�erent colors as follows:Hue: useful for distinguishing among pure colors, e.g. green grass vs. red roseSaturation: allows one to specify shades of gray without regard for hue, e.g. for �nding overcast sky orconcreteValue: this is simply the brightness valueA thorough discussion of color spaces may be found in [5].2

2.2 The Windowed Image Second Moment MatrixWe have chosen to use the windowed image second moment matrix [6] to provide the pixel-level texturedescriptors. The de�nition of the windowed image second moment matrix for an image I(x; y) isM (x; y) = rI(x; y)rI(x; y)T �G�(x; y) (1)The chosen window function in our application is an isotropic Gaussian with variance 1, which we approx-imate using separable convolution with the 1-D binomial kernel 116 [1 4 6 4 1]. The image I(x; y) istaken to be the V component of the HSV decomposition.The windowed image second moment matrix reveals through its eigenvectors and eigenvalues several piecesof information which are pertinent to the description of local image structure. In particular, the two eigen-values �max and �min of M , which are non-negative since M is postive semide�nite, o�er the followinginterpretations: �max; �min � 0 constant intensity; featureless�max � �min single orientation; parallel lines/edges�max � �min multiple orientations; junctions, line-endsIn the second case (�max � �min) the argument of the eigenvector corresponding to �min, which we denoteby �, may be inspected to obtain an estimate of the local orientation.2.3 The Color/Texture BinsOnce the six color and texture descriptors for a pixel have been extracted, namelyH;S; V; �max; �min and �,that pixel is assigned to one of 13 bins as follows. The �rst nine bins correspond to an empirically determinedpartitioning of the hue circle roughly corresponding to red, orange, yellow, green, blue-green, light blue, darkblue, purple and pink. The tenth, eleventh and twelfth bins are reserved for gray, black and white pixels,respectively. The last bin contains pixels which are deemed to be in \rough" neighborhoods, as determinedby �min and �max. The exact binning criteria are given in Appendix A.3 The Grouping StageAfter binning each pixel, a set of binary images are created to represent the locations of the pixels in theoriginal image which belong to each of the 13 bins. The binary images created in this step generally containa number of blobs of varying size and di�useness. An example set of binary images is shown in Figure 1. Inorder to take these images from the raw \pixel domain" into a more salient \region domain," we appeal tothree di�erent grouping strategies which are described next.3.1 Grouping StrategiesAll three grouping strategies run on subsampled versions of the above binary images. The subsamplingfactor is taken to be 1=4 in both dimensions. This is done to decrease computation time and cut down onnoise e�ects. 3

1. red 2. orange 3. yellow 4. green

5. blue−green 6. lt. blue 7. dk. blue 8. purple

9. pink 10. gray 11. black 12. white

13. rough Original ImageFigure 1: Illustrating the color/texture bin images for a test image.
4

The �rst (and simplest) grouping strategy (I) is preferential to solid regions and consists of connected com-ponents labeling (CCL) on the subsampled version of the original binary image. We assume 4-connectivity.Grouping strategy II is preferential to regions of consistent local orientation. This requires inspection ofthe orientation angle � underlying each pixel in a given binary image. The speci�c steps are as follows.First, a vector �eld of double-angle orientation vectors is formed by constructing exp(2i�), as prescribedby Granlund in [4]. This vector �eld is then smoothed using an 11�11 box �lter. The magnitude of thesmoothed vector �eld provides a measure of consistency in local orientation within a given 11�11 region. Amaximummagnitude of 121 is attained in regions wherein all of the �'s are equal, plus or minus 180�. Pixelswhose magnitudes are at least 110 are set to 1 and the rest are set to zero. If the underlying value of �maxis less than :001, then that pixel is set to zero as well. The image containing the surviving pixels from thesesteps is then subsampled and logicaly ANDed with the binary image from the binning stage. Finally, CCLis performed on this image as in grouping strategy I. As a �nal note, on grouping strategy II alone the set ofbinary images from the binning stage is augmented with one binary image which is set to 1 at every pixel.This is to facilitate the detection of orientated regions irrespective of color.Grouping strategy III is preferential to di�use regions. The �rst step in this strategy is to convolve thebinary image with an 11�11 box �lter. Pixels in the resulting smoothed image whose values lay between 20and 100 are then marked as \di�use." As before, CCL is performed as the �nal step.Figures 2 illustrates the three grouping strategies on four of the color/texture bin images from the test imageshown in Figure 1. Figure 3 shows the results of grouping strategy II on an image containing stripes. In thisimage, the color/texture bin image was equal to one everywhere.3.2 The Blob-Level Feature VectorsThe result of the grouping stage was to produce a large number of binary blob-images. The next step is toproduce a feature vector for each grouped blob. The following quanitities are included in the feature vector:� area� x coordinate of center of mass� y coordinate of center of mass� eccentricity� principle orientation� mean saturation� mean intensity� color/texture bin� grouping strategyWe next describe our learning/classi�cation techniques which attempt to map the blob-level feature vectorsinto concepts. 5

yellow

green

lt. blue

rough

oriented diffusesolid

solid oriented diffuse

solid oriented diffuse

solid oriented diffuseFigure 2: The results of the three grouping strategies for four of the color/texture bin images from thepreceding �gure.
6

original image blobs of homogeneous orientation

Figure 3: The homogenously oriented regions in the striped canopy in the image on the left show up asdistinct blobs in the result of grouping strategy II, shown on the right. (The color/texture bin image wasequal to one everywhere, thus de�ning the entire image as a potential area of interest.)(animal-fur) 1 cloud 8 dirt 13 (
eshtone) 6
ower 13 (haze) 4 lawn 8 manmade 32sky 31 snow 8 tan-ground 13 tarmac 12tree 21 vegetation 37 water 12Table 1: The number of examples of each class in the training data. Classes for which we unable to collectmore than 8 examples were not used, and are shown in parentheses.4 The Classi�cation StageWe used supervised learning to construct a classi�er to map the 9 dimensional blob-level feature vector toone of 12 classes (\concepts"). These classes are the labels which we attach to the blobs, and are listed inTable 1. We chose these classes because our intuition told us a priori that we should be able to reliablydiscriminate between them. Some classes could not be used because we did not have time to �nd enoughexamples of them. The classi�er itself will be described later.The training data consisted of 208 labelled feature vectors, which were generated as follows. We used theCypress interface to the DWR database to pick images which contained examples of the classes. We computed(in Matlab) all of the blobs in the image, and for each blob which corresponded to a suitable region in theimage, we computed its feature vector and attached a label.4.1 Decision treesThere are many widely used classi�ers. We chose to use a decision tree classi�er for the following reasons.� They are easy to understand once constructed. Each path down the tree can be interpreted as a ruleof the form \if P1 ^ P2 ^ � � � ^Pn then C," where the Pi are predicates (tests on attribute values) andC is a class label. (An attribute is an element of the feature vector.) Geometrically they can be seenas dividing the feature space into box-like regions of varying size.7

� We had access to a reliable and well-known commercial implementation of decision trees called C4.5[11].� They can be learned quickly and easily. C4.5 took about 10 seconds to learn a tree on our data set.In contrast, learning neural networks is much slower.� They are a form of sequential decision process. Hence it is not always necessary to compute the wholefeature vector. This can be useful if some of the attributes are expensive to compute, e.g., computingaxes of symmetry. A more sophisticated method for deciding what features to compute, using utilitytheory, is discussed in [12].� They inherently perform discretization of continuous data. This will be discussed below.� They can return the value \unknown" if the example ends up being routed to a leaf with a very uniform(high entropy) class distribution.1Very brie
y, C4.5 learns trees as follows. It considers partitioning the data on the basis of a given attribute(e.g., dividing up the blobs as being produced by the red �lter, the orange �lter, etc.), and then measuringthe quality of that split by computing the entropy of the class distributions in each of the resulting sets.The attribute which reduces the entropy (or some related quantity) the most is chosen. This step can berepresented as a node with many branches leading to sub-nodes. Each sub-node is then recursively subdivideduntil the statistical signi�cance of a split is too low.Continuous data is handled using binary splits, as follows (see [9, 8] for more details). Suppose we are tryingto split the data on the basis of mean saturation (S). We sort the vectors by their S values, and considereach value halfway between all the S values as a potential threshold t; all vectors for which S < t go left,the rest go right. This split is evaluated as before, and the best threshold is chosen.4.2 Experimental resultsThe horizontal component of the center of mass of the blob (x) is an irrelevant attribute (all of our classesare as likely to be on the left as on the right of the image). Unfortunately, because the training set was sosmall, the tree used x as a free parameter to try to �t the data better. Hence this attribute was removed byhand, reducing the dimensionality of the feature vector to 8, before C4.5 was re-run. The �nal tree is shownin Figure 4. There are a few interesting things to note about the tree.� Visually similar classes often appear in the same subtree e.g., sky and water, or cloud and snow.� The e�ects of too small a training set are painfully evident: e.g., every red blob is considered a
ower,and every dark blue blob is considered sky. Returning the class probabilities instead of the majoritylabel would be more informative, but is not possible in C4.5.� The tree is quite large, despite pruning at the 99% con�dence level. Forcing leaves to have a higherminimum count reduced performance.We did not have enough data to create a separate test set, so instead we measured performance using 10-foldcross validation. The result was 58:71%� 3:22%. (The error on the training set was 12.5% before pruningand 22.1% after pruning at the 99% con�dence level.) The class confusion matrix on the training datais shown in Figure 5. O�-diagonal entries correspond to misclassi�cations. Notice that all 8 of the lawn1Unfortunately, C4.5 does not do this, although it does compute some kind of certainty factor.8

color-blob

manmade

whole-img

flower

red

grouping-strat

orange

meanV

yellow

grouping-strat

green

meanS

blue-green

row

lt-blue

sky

dk-blue

vegetation

purple

flower

pink

row

gray

vegetation

black

row

white

sinphi

rough

tan-ground

solid

dirt

oriented

dirt

diffuse

dirt

<= 0.4

sinphi

> 0.4

meanV

solid

vegetation

oriented

ecc

diffuse

meanS

<= 0.2

row

> 0.2

sky

<= 46

grouping-strat

> 46

cloud

<= 44

area

> 44

cloud

<= 55

snow

> 55

area

<= 0.3

sinphi

> 0.3

manmade

<= 0

grouping-strat

> 0

tan-ground

solid

tan-ground

oriented

dirt

diffuse

vegetation

<= 0.2

meanS

> 0.2

sinphi

<= 0.7

tree

> 0.7

vegetation

<= 0.4

sinphi

> 0.4

lawn

<= 0.3

tree

> 0.3

vegetation

<= 0.3

tree

> 0.3

tarmac

<= 0.1

sky

> 0.1

area

<= 103

water

> 103

tree

<= 928

vegetation

> 928

water

solid

water

oriented

dirt

diffuse

tarmac

<= 5104

sinphi

> 5104

manmade

<= 0.1

cloud

> 0.1

dirt

<= 1376

meanV

> 1376

tree

<= 0.9

manmade

> 0.9

vegetation

<= 0.4

manmade

> 0.4Figure 4: The decision tree. Row denotes the vertical position of the blob: smaller numbers are nearer thetop of the screen. Sinphi denotes j sin(�)j, where � is the orientation of the ellipse which we �t to the blob;0 corresponds to horizontal.examples were misclassi�ed as vegetation. Similarly, 8 out of 21 trees were misclassi�ed as vegetation. Thissuggests that our features were not rich enough to discriminate these two classes. Notice also that 2 out of8 cloud examples were misclassi�ed as sky, probably because of noise in the training data.4.3 Implementation detailsWe wrote a Perl program to convert the (text) tree produced by C4.5 into a series of if-then rules whichcould be used by Matlab. We used the MLC++ package [10] from Stanford/SGI and the dotty package [7]from Bell Labs for drawing the trees.5 ConclusionOur goal in this project was to demonstrate a system for automatic image annotation based on a smallnumber of simple grouping strategies. While there is clearly more work to be done, the initial results areencouraging. By associating groups of color and texture features with blob-like image regions, we foundthat our decision tree classi�er was able to produce plausible rules for detecting several basic concepts inreal-world images. The same type of semantically meaningful result is not to be found in a system basedsolely on pixel-level concept classi�cation.A brief inspection of the decision tree we produced will indicate the importance of adding more trainingexamples, as discussed in Section 4.2. We hope to add many more training examples in the future.9

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) <-classified as---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----5 1 2 (a): class cloud9 1 1 2 (b): class dirt12 1 (c): class flower8 (d): class lawn1 27 2 1 1 (e): class manmade1 28 1 1 (f): class sky6 1 1 (g): class snow13 (h): class tan-ground1 8 2 1 (i): class tarmac1 1 8 11 (j): class tree1 36 (k): class vegetation1 1 10 (l): class waterFigure 5: The class confusion matrix.One fundamental limitation of the system has to do with the interplay between the early-visual processing andthe grouping stage which follows it. Namely, any concept which we can expect to identify via a successfulgrouping operation presupposes that at least one blob produced by the early-visual processing stage willcontain this concept. As such, a close-up image of a chessboard, which contains several squares of color indistinct locations, would at best be grouped as several independent squares of color. To address this problem,another layer of grouping and/or reasoning must be added to the system to account for spatial relationshipsbetween simple concepts.In future work, we intend to investigate learning strategies such as Bayes' nets and decision graphs to achievethis level of image understanding. We also intend to augment the set of early visual processing routines toprovide richer features to the ensuing grouping stage. Finally, we hope to integrate several new groupingstrategies (e.g. using texture as a repeating pattern [3] or axes of symmetry) which will extend the capabilitiesof the system to locate more complicated concepts.A De�nition of the Color/Texture Binsred H < 0:07 or H � 0:95orange 0:07 � H < 0:1yellow 0:1 � H < 0:155green 0:155 � H < 0:355blue-green 0:355 � H < 0:455light blue 0:455 � H < 0:625dark blue 0:625 � H < 0:75purple 0:75 � H < 0:825pink 0:825 � H < 0:95gray S < 0:1 and V < 0:95black V < 0:05white S < 0:1 and V > 0:95rough 0:002 < �min < :007 and �max < 0:0310

References[1] David A. Forsyth, Jitendra Malik, Margaret M. Fleck, Thomas Leung, Chris Bregler, Chad Carson andH. Greenspan, \Finding Objects by Grouping," Submitted to the Workshop on Object Recognition,Cambridge, April 1996.[2] M.M. Fleck, D.A. Forsyth, C. Bregler, \Finding Naked People," Proc. 4th European Conf on ComputerVision, 1996[3] T.K. Leung and J. Malik, \Detecting, Localizing and Grouping Repeated Scene Elements from anImage," Fourth European Conf. Computer Vision, 1996, Cambridge, England.[4] G. Granlund and H. Knutsson, Signal Processing for Computer Vision, Kluwer, 1995.[5] A.K. Jain, Fundamentals of Digital Image Processing, Prentice Hall, 1989.[6] J. G�arding and T. Lindeberg, \Direct computation of shape cues using scale-adapted spatial derivativeoperators," International Journal of Computer Vision, vol. 17, no. 2, pp. 163{191, 1996.[7] E. Koutso�os and S. North, \Drawing graphs with dot", available fromwww.research.att.com/orgs/ssr/book/reuse.[8] J. Dougherty, R. Kohavi and M. Sahami, Supervised and Unsupervised Discretization of ContinuousFeatures, Proc. of the Conference on Machine Learning, 1995.[9] U. M. Fayyad and K. B. Irani, Multi-interval discretization of continuous-valued attributes for classi�-cation learning, Intl. Joint Conf. on AI, pp. 1022{1027, 1993.[10] R. Kohavi, G. John, R. Long, D. Manley and K. P
eger, \MLC++: A machine learn-ing library in C++", in Tools with Arti�cial Intelligence, pp. 740{743, 1994. available fromhttp://robotics.stanford.edu:/users/ronnyk/mlc.html[11] J. R. Quinlan, C4.5 Programs for Machine Learning, Morgan Kau�man, 1993.[12] R. Rimey and C. Brown, \Task-oriented Vision and Multiple Bayes Nets", in Active Vision, eds. A.Blake and A. Yuille, MIT Press, 1992.
11

