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Abstract: We represent arbitrary smooth curved 3D
shapes by a discrete set of HOT curves where a surface
admits High Order Tangents. These curves determine
the structure of the image contours and its catastrophic
changes, and there is a natural correspondence between
some of them and monocular contour features such as in-
flections and bitangents. We present a method for auto-
matically constructing the HOT curves from continuous
sequences of video images and describe an approach to ob-
ject recognition using viewpoint-dependent monocular im-
age features as indices into a database of models and as a
bastis for pose estimation. We have implemented both the
methods and present results obtained from real images.

1 Introduction

While implemented recognition systems based on para-
metric shape representations such as algebraic surfaces or
superquadrics have demonstrated their usefulness, the ulti-
mate utility of a representation is limited by its scope. This
suggests looking for a more general representation capable
of handling arbitrary curved objects. Accordingly we de-
scribe smooth curved surfaces by HOT curves, a discrete,
non-parametric representation anchored in differential ge-
ometry. These curves determine the structure of image
contours and its catastrophic changes, and there is a nat-
ural correspondence between some of them and contour
features such as inflections and bitangents. We present
in Sect. 3 a technique for automatically constructing the
proposed representation from sequences of video images.
We propose in Sect. 4 a new method to object recogni-
tion (pose computation and indexing) from a single video
image.

We have implemented both methods, and present re-
sults obtained on real images in Sects. 3-4. We briefly
sketch future research directions in Sect. 5.
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Figure 1: Parabolic curves, limiting bitangent devel-
opables, and their projections.

2 HOT Curves

We say that a tangent vector at some point has contact
of order n with the surface (or more concisely is of order
n) when the derivative of order ¢ of the surface equation
in the direction of the tangent is zero for all ¢ < n, and
non-zero for 4 = n. While all surface points have an infin-
ity of tangents of order two (or greater) in their tangent
plane, only hyperbolic points may have third order tan-
gents. Contact of order four or higher only occurs along
certain surface curves (i.e. parabolic and flecnodal curves),
and fifth order contact only occurs at isolated points along
these curves [9].

Additionally, there are other surface curves where a line
grazes the surface in multiple discrete points with at least
second order contact in some exceptional manner: the lim-
iting bitangents, the asymptotic bitangents, and the tri-
tangents. A limiting bitangent touches the surface at two
points sharing a common (bi)tangent plane; an asymptotic
bitangent is an asymptotic direction at one of the two con-
tact points. Each of these curves has a corresponding ruled
surface which grazes the original surface along two curves.
Finally, a tritangent grazes the surface in three distinct
points and has a corresponding ruled surface.

The parabolic, flecnodal, limiting and asymptotic bi-
tangent, and tritangent curves form the basis for a shape
representation aimed at automatic model construction and
object recognition. We propose to maintain an explicit
discrete representation of these five HOT curves (where
the surface admits High Order Tangents), recording the
position of each curve point on the surface, the direction
of its surface normal, and the direction of its “special”
(bi)tangent.



There is a close relationship between the three-
dimensional HOT curves and the two-dimensional contour
inflections and bitangents (Fig. 1). Koenderink [4] char-
acterized the relationship between the curvature of an im-
age contour, the two principal curvatures, and the view-
ing direction under orthographic projection (See [12] for
an extension to the perspective case). A consequence of
this relationship is that the image of a parabolic point is
generally an inflection. This defines a natural correspon-
dence between observed inflections and parabolic points
(Fig. 1.a). Similarly, it is easy to see that a contour bi-
tangent is the projection of a limiting bitangent point
(Fig. 1.b). Contour bitangents have been used in invariant-
based recognition of 2D objects [7, 10] and solids of revolu-
tion [13]. Interestingly, the contour structure of a generic
smooth surface changes when the viewpoint coincides with
one of the higher-order tangents or bitangents along the
parabolic, flecnodal, limiting bitangent, asymptotic bitan-
gent, and tritangent curves [3]. These accidental view-
points are called wvisual events. This is the basis for the
aspect graph representation [5].

3 Automatic Construction of HOT
Curve Models

In [6], we presented an implemented method for recon-
structing the limiting bitangent and parabolic curves from
a sequence of images: relying on the direct correspondence
between image features and these surface curves, we re-
formulated the methods proposed by Giblin and Weiss for
curve reconstruction rather than surface reconstruction [1].
Here, we extend our previous results in two ways.

First, reconstructing a parabolic point alone is insuffi-
cient for determining the corresponding visual event (beak
or lip) which only occurs when the viewing direction is an
asymptotic direction at that point. Thus, we present a
method for computing the asymptotic direction from im-
age measurements.

Second, we have observed that the reconstructed
parabolic points are noisier than the reconstructed points
on the bitangent curve.  The inflection points are rel-
atively easy to detect as zero-crossings of the curvature,
but because a curve is locally flat near an inflection, they
are very difficult to localize accurately. For the same rea-
son the tangent line at an inflection can be measured very
accurately. Using a temporal sequence of image tangent
lines as input, we present a method for reconstructing the
asymptotic line (a line through the surface point in the
asymptotic direction) at each point on a parabolic curve.
Essentially the same idea can be applied to computing the
limiting bitangent lines from the measured bitangents in
an image sequence.

We assume a pinhole projection model and a moving
calibrated camera. See Fig. 2. Thus, given a point on the
image contour, the viewing direction v can be determined.
We consider the image contour to be parameterized by arc

Occluding contour
Pty s)

Image plane

c(lo )

Figure 2: The projection geometry.

length s. Since the camera is moving, the image contour
is a function of time t.

In the following, we consider a spatio-temporal param-
eterization of a 3D surface p(s,t) in terms of the spatial
parameter s and the time ¢:

p(t,s) = c(t) + Alt, 5)v(t, s). (1)

We know the camera motion (c(t)), and we can de-
termine v(¢,s) from image measurements and the known
camera motion. A(t,s) is the unknown distance from c
to p. We only require that v(¢,s) be continuous in the
neighborhood of interest and that for a fixed t = to, v(to, )
parameterize a single image contour. Note that p(to, s) is
a parameterization of the 3D occluding contour. As shown
in [6], the depth parameter X is given by

A=—(n-c;)/(n-v) (2)

where the subscripts denote the partial derivative of a vec-
tor with respect to some variable. Thus, using (1) and (2),
we can reconstruct the curve.

We now address the problem of reconstructing the
asymptotic tangents from a sequence of image tangents
at a parabolic point. We will first show how to reconstruct
a particular tangent line (described by an inflection and
the tangent vector to the image contour). We then show
that this is indeed the asymptotic line.

The tangent plane for every point on the occluding con-
tour from a single image is given by:

n-(p—c)=0. (3)

where n is the surface normal at a point p(¢, s) which can
be determined by n(t,s) = v(t,s) X vs(t,s). Here vs(t,s)
is the tangent to the image contour. Differentiating (3)
with respect to ¢t and using n - p; = 0 yields

(n;-p) — (nz-¢) = (n- ;) = 0. (4)

Equations (3) and (4) define two planes containing p,
whose intersection is a line which we call the tangent line.
Its direction is along T = n X n;. A point on the tangent
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Figure 3: HOT curve reconstruction: a. An image. b. Extracted features. c. Tracked inflections. d. Reconstructed
parabolic curves. e. Asymptotic directions along the parabolic curve (from a side view). f. Reconstructed limiting
bitangent developable surface that lies on the convex hull (from a side view). g. Beak and Lip transitions on the view

sphere. h. Tangent crossing events.

line can be found by intersecting it with a third indepen-
dent plane such as

vs-(p—c)=0. (5)

A point p that satisfies (3), (4) and (5) along with the
line direction T fully defines the tangent line. We show
in [2] that at a parabolic point, the asymptotic direction
is tangent to the occluding contour, and the direction T is
the asymptotic direction.

Thus, the tangent line and the asymptotic direction can
be computed directly from the measured inflection tracks.

3.1 Implementation and Results

We have implemented the algorithm for reconstructing
the asymptotic lines at parabolic points and the bitan-
gent line of the limiting bitangent developable surface. We
place the object to be modelled on a turntable; this scene
is viewed from a nearby camera in general position (i.e.
the image plane is not parallel to the axis of rotation). Al-
though the equations in Sect. 3 were derived for the case
of moving camera, they can be rederived for the case of
moving object without difficulty.

In the example shown, we have chosen to use an Is-
raeli glass bottle (which is approximately a solid of revolu-
tion), since the parabolic and bitangent developable lines
are readily interpreted. In particular, these curves should

be circles centered on the object’s axis while the corre-
sponding visual event curves should sweep lines of latitude
on the view sphere. Our methods do not make use of the
fact that this object is a solid of revolution. 280 images
were taken at one degree increments. As described in [6],
the inflection points and bitangents are found using scale
space methods, and feature points are tracked through the
sequence using first order prediction.

Figure 3.a—c shows a cropped image of the bottle, the
detected contours, inflections and bitangent lines, and the
temporal feature tracks. Figure 3.d shows the recovered
parabolic curves. In Fig. 3.e the asymptotic directions are
drawn along the parabolic lines. Fig. 3.f shows the recov-
ered limiting bitangent developable surface that lies on the
convex hull. The recovered asymptotic directions, which
correspond to lip and beak events in an aspect graph, are
drawn on the view sphere in Fig. 3.g. The tangent crossing
events (the direction of limiting bitangent lines) are shown
in Fig. 3.h.

4 Object Recognition

In the polyhedral domain there is a pointwise corre-
spondence between viewpoint-independent object features
such as vertices or edges and image features such as line
segments and corners. The situation is more complicated
for curved objects since most image features (e.g., contour



Figure 4: A bitangent and the two inflections in the cor-
responding pocket.

segments or their inflections) depend on viewpoint. In this
section, we use the natural correspondence between the
parabolic and limiting bitangent curves of a surface and
the inflections and bitangents of its contour for pose com-
putation and indexing into a database of models.

We assume scaled orthographic projection. The key ob-
servation is that two surface points with different surface
normals completely determine the viewing direction from
which they are simultaneously observable. This viewing di-
rection is given as the intersection of their tangent planes.
Thus given a pair of points on the parabolic curves (in IR?)
or on the limiting bitangent curves (in IR®) we can compute
the viewing direction from which they are simultaneously
observable. We can also predict the position of the contour
features as well as the contour tangent at those features.
Using these, we can predict a number of image observ-
ables that are independent of the other viewing parame-
ters (rotation, translation, and scaling in the image plane).
These scale-independent image observables are the angles
between the tangent lines and the ratios of distances be-
tween the features. We then use these observables as table
indices in a table whose entries record the corresponding
viewing directions and scale factors. This table can then
be used for pose estimation. Note the interesting fact that
by simply adding the identity of the model to each entry in
the table, it can also be used to retrieve candidate matches
from a database of object models.

A pair of parabolic points yields two such scale-
independent parameters, implying that the indexed ta-
ble will be two-dimensional. Since the entries in this
two-dimensional table form a two-dimensional surface pa-
rameterized by the position of two points along parabolic
curves, this table is likely to be densely populated. A
pair of limiting bitangents yields four scale-independent
parameters. This yields a four-dimensional table, but the
entries corresponding to a given model still form a two-
dimensional surface in this four-dimensional space. This
makes the table sparse, reducing the likelihood of getting
a large number of candidates for a single pair of features.

Note that we can further consider a piece of contour
lying between two bitangent points which forms a pocket
with at least two inflections if there are no intervening
occlusions (Fig. 4). This case yields six scale-independent
parameters as described next.

As shown in Fig. 4 the three tangent lines form a tri-
angle, which can be represented by two angles o, 3, and
the length d of the edge between them. We can mea-

sure four more quantities from the image: the distances

',d5 between the two contacts by, by of the bitangent
with the contour and the vertices ai,as of the triangle,
and the distances dY,d between a;,as and the inflections
i1,i2 (Fig. 4). We obtain six scale-independent parame-
ters: «,B,d1/d,ds/d,d} /dandds /d. Note that although
three curves are involved in the construction of a pocket,
the viewing direction corresponding to a particular pocket
is completely determined by two surface points only. In
other words, the entries corresponding to a given object
model still form a two-dimensional surface, but this time
it is embedded in a six-dimensional space. This is why we
have chosen to use pockets formed by a pair of inflections
and a bitangent in our implementation.

4.1 Implementation and Results

Two of the observables associated with a pocket
(namely d7 /d and dj /d) depend on the position of the in-
flections along the contour. To avoid mistakes due to poor
localization, we use the remaining four parameters for in-
dexing. The two parameters associated with the position
of the inflections are used for verification only.

For each model in the database, we consider all pairs of
discrete parabolic curves, and all pairs of points on them.
For each pair of parabolic points, the viewing direction
from which both the points will appear on the contour is
computed as the cross-product of the surface normals. All
the limiting bitangents that are seen from this direction
are found by searching the corresponding curves for a point
whose surface normal is coplanar with the normals at the
two parabolic points.

For each triple formed by these parabolic points
and a bitangent, the six scale-independent parameters
are computed. Of these, the four more reliable ones
(o, B,d}/d,d5/d) are used to index the table. We store
in the corresponding table entry the viewing direction v,
the scale d, the two ratios dY /d,d5 /d, and the identity of
the model.

We have a discrete representation of the HOT curves as
well as of the parameter space. To avoid missing any possi-
ble viewpoint, we use interpolation whenever neighbouring
parabolic point pairs do not map onto neighbouring cells
of the discretized parameter space.

At the time of recognition, the contour inflections and
bitangents are found in the image. For each triple of the
features, the six scale-independent parameters are com-
puted. Four of these are used to index the four-dimensional
table, and entries from the indexed cell are retrieved. The
remaining two parameters are used to find the closest en-
try among the retrieved ones. For complex objects, sev-
eral triples of features are observed. In this case, the table
is independently indexed for each triple. The candidates
corresponding to all the triples are sorted using the differ-
ence between scale-independent parameters of the candi-
date pocket and those of the detected pocket in the image.
The sorted candidates are considered in turn. Using the
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Figure 5: Result: recognized object models overlaid onto the original image using the estimated pose.

viewpoint and the object model associated with the cur-
rent candidate, we predict the image position of the rest
of the features associated with that model. We use the
average distance from predicted features to detected im-
age features to prune false matches. The candidate which
gives the shortest average distance is declared to be the
final recognized object.

We have implemented the recognition algorithm on a
Sun Sparc 10. Depending on the complexity (number of
parabolic curves) of the object, it takes from 10 to 25 min-
utes to add an object to the database. The recognition
takes about 30 seconds. Out of these 30 seconds, the cru-
cial step of hypothesizing the candidate models and view-
points takes only about 5 seconds. The rest of the time is
spent in the verification step.

At the time of recognition we always used the same
database consisting of the models of four objects: a squash,
a pear, a banana and a duck decoy. The HOT curves for
the squash and duck model were constructed using the
technique given in Sect. 3. The pear’s and the banana’s
HOT curves were computed analytically from quartic sur-
face models constructed using the methods of [11]. Fig. 5
shows the result of recognition on a variety of input im-
ages of the squash and the duck. In all cases, the majority
of the retrieved entries corresponded to the correct object
model. In all cases, the verification step pruned out any
false candidates.

5 Discussion

The results shown in Sects. 3-4 offer a preliminary
demonstration of the power of the HOT curve representa-
tion. We must conduct more experiments with more com-
plicated objects, but we believe that it would have been
quite difficult to model and recognize our duck decoy using
a parametric shape representation such as superquadrics or
algebraic surfaces.

Since the localization of the inflections is not very ac-
curate, it might be better to use only the tangent lines
instead of the point positions for recognition. In this case
we would only need to store the tangent plane information
along the HOT curves of each model, which would simplify
the modelling process.

We are exploring the automatic construction of the as-
pect graph of an object [5] from a sequence of images. We

already have two of the ingredients necessary for this con-
struction: the asymptotic tangents at parabolic points and
the limiting bitangents. We are investigating the compu-
tation of the asymptotic tangents at flecnodal points and
the asymptotic bitangents and tritangents. Once those
have been computed, a simple algorithm based on plane-
sweep techniques (such as the one described in [8]) should
be sufficient for computing the partition of the view sphere
into an aspect graph.
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