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ABSTRACT

Eigenceface or Principal Component Analysis (PCA)
methods have demonstrated their success in face recog-
nition, detection, and tracking. The representation in
PCA is based on the second order statistics of the image
set, and does not address high order statistical depen-
dencies such as the relationships among three or more
pixels. Recently Higher Order Statistics (HOS) has
been applied to face and vehicle detection in the hope
that it provides a more informative low dimensional
representation than PCA. In this paper we investigate
a generalization of PCA, Kernel Principal Component
Analysis (Kernel PCA), for learning low dimensional
representations in the context of face recognition. In
contrast to HOS, kernel PCA computes the higher or-
der statistics without the combinatorial explosion of
time and memory complexity. While PCA aims to find
a second order correlation of patters, kernel PCA pro-
vides a replacement which takes into account of higher
order correlations. We compare the recognition results
using kernel methods with Eigenface methods on two
benchmarks. Empirical results show that kernel PCA
outperforms Eigenface method in face recognition.

1. MOTIVATION AND APPROACH

Subspace methods have been applied successfully in ap-
plications such as face recognition using Eigenfaces (or
PCA face) [8] [3], face detection [3], object recognition
[4], and tracking [1]. Representations such as PCA en-
codes the pattern information based on second order
dependencies among the pixels, i.e., pixelwise covari-
ance, and are insensitive to the dependencies of multi-
ple (more than two) pixels in the patterns. Since the
eigenvectors in PCA are the orthonormal bases, the
principal components are uncorrelated. In other word-
s, the coefficients for one of the axes cannot be linearly
represented from the coefficients of the other axes.
Higher order dependencies in an image include non-
linear relationships among the pixel intensity values,
such as the relationships among three or more pixels in
edges or curves, which can capture important informa-
tion for recognition. Several researchers conjectured
that higher order statistics may be crucial to better
represent complex patterns. Recently, Higher Order
Statistics (HOS) has been applied to visual learning

problems. Rajagopalan et al. use HOS of the images
of a target object to get better approximation of their
unknown distribution. Experiments on face detection
[5] and vehicle detection [6] show comparable, if no bet-
ter, results than other PCA-based methods.

HOS usually works by projecting the input patterns
to a higher dimensional space R before computing the
cumulants. The k-th order cumulant is defined in terms
of its joint moments of order up to k. For zero mean
random variables z1, 2, x3, T4, the second, third and
fourth order cumulants are given by

Cum(zy1,z2)=E]|
Cum(xy, 2, 23)=E]

Cum(x1, 2,23, %4)=E[r1222324] — E[z122|E[T324]—
E|

Clearly the computation involved in HOS depends on
the order of cumulants and is usually heavy.

In contrast to computing cumulants in HOS, we
seek a formulation which computes the higher order
statistics using only dot products, ®(x;) - ®(x;), of the
training patterns x where & is a nonlinear projection
function. Since we can compute these dot product-
s efficiently, we can solve the original problem with-
out explicitly mapping to RY. This is achieved using
Mercer kernels where a kernel k(x;,x;) computes the
dot product in some feature space RF, i.e., k(x;,x;) =
P(x;) - D(x;).

The idea of using kernel methods has also been
adopted in the Support Vector Machines (SVMs) in
which kernel functions replace the nonlinear projection
functions such that an optimal separating hyperplane
can be constructed efficiently [2]. Scholkopf et al. pro-
posed the use of Kernel PCA for object recognition
in which the principal components of an object image
comprise a feature vector to train a SVM [7]. Empirical
results on character recognition using MNIST data set
and object recondition using MPI chair database show
that Kernel PCA is able to extract nonlinear features.
Since much of the important information may be con-
tained in the high order relationships among the image
pixels of a face pattern, we investigate the use of Kernel
PCA for face recognition and compare its performance
against the Eigenface method.



2. KERNEL PRINCIPAL COMPONENT
ANALYSIS

Given a set of zero-mean observations xg, k =1,..., M,
M . L
x; € RN, and Y, x;, = 0, the covariance matrix is

1 M
C=+; > xix] (1)
j=1

PCA aims to find the projection direction that max-
imizes the variance, which is equivalent to find the
eigenvalue from the covariance matrix

Aw = Cw (2)

for eiﬁenvalues A>0and w € RY. Since Cw =
7 21 (X5 - W)x;, all solutions w with A # 0 must
lie in the span of x1,...,xp. Therefore

Axp-w)=(x-Cw) ,k=1,...,.M (3)

In Kernel PCA, each vector x is projected from the
input space, RV, to a high dimensional feature space,
RY, by a nonlinear map:

®:RY 5 RY,F>N (4)

Note that the dimensionality of the feature space can
be arbitrarily large. In RY, the covariance matrix of
d(x) is

M
1
Cc* = i > B(x;)(x;)" (5)
j=1
and the corresponding eigenvalue problem is
aw? = Ow?® (6)

All solutions w® with A # 0 lie in the span of ®(x;),
. ‘I)(XM)
M®(xp) - w®) = (®(xx) -Cw®) k=1,....M (7)

and w?® lie in the span of ®(x1), ..., ®(xar) such that

M
w? = Z a;®(x;) (8)

Using Equations (7) and (8), we have, for k =1,..., M,

AT (B (xk) - B(x;)) =
T (®(xk) - In B(x)))(B(x;) - B(xs)) o
9
Defining an M x M matrix K by

Kij = k(xi, x;) = ®(x;) - 2(x;) (10)

We can rewrite Equation (9) as
MMKa = K?a (11)

where o denotes a column vector with entries oy, . .., as.
The solutions of Equation (11) is the same to the fol-
lowing eigenvalue problem,

MM =Ka (12)

See [7] for technical details on the equivalence of these
two problems and how to center the vectors ®(x) in
RF. Boser, Guyon and Vapnik suggested the use of
Gaussian radial basis function kernel [2]

[xi =1l

k(xiaxj) = exp(— 20_2

In this paper, we use the polynomial kernel of degree d
k(xi,%;) = (i -x;)"

Note that conventional PCA is a special case of kernel
PCA with polynomial kernel of first order. In other
words, kernel PCA is a generalization of conventional
PCA since different kernels can be utilized for different
nonlinear projections.

We can now project the vectors in R¥ to a lower
dimensional space spanned by the eigenvectors w®, Let
x be a test sample whose projection is ®(x) in R, then
the projection of ®(x) onto the eigenvectors w?® are the
nonlinear principal components corresponding to &:

M M
w?-P(x) = Zai(q)(xi)'q)(x)) = Zaik(xiax) (13)

In other words, we can extract the first ¢ (1 < ¢ <
M) nonlinear principal components using the kernel
function without the expensive operation to explicitly
project the patterns to a high dimensional space R
The first ¢ components correspond to the first ¢ non-
increasing eigenvalues of Equation (12).

3. EXPERIMENTS

We tested Kernel PCA with polynominal kernels a-
gainst conventional PCA using two image databases.
The Yale database contains 165 images of 11 subject-
s that includes variation in both facial expression and
lighting. For efficiency, each image has been downsam-
pled to 29 x41 pixels. Figure 1 shows 22 closely cropped
images which include internal facial structures such as
the eyebrow, eyes, nose, mouth and chin, but do not
contain the facial contours.

The experiments were performed using the “leave-
one-out” strategy: To classify an image of person, that
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Figure 1: The Yale database contains 165 frontal face
images of 15 individuals taken with variation both in
facial expression and lighting.

image is removed from the training set of N — 1 images
and the dimensionality reduction matrix w® is comput-
ed. All the N images in the training set are project-
ed to a reduced space using the computed matrix w®
and recognition is performed using a nearest neighbor
classification. The number of eigenvectors (or princi-
pal components) are empirically determined to achieve
lowest error rate by each method. Table 1 shows the ex-
perimental results. Empirical results show that Kernel
PCA methods with cubic polynomial kernel achieves
the lowest error rate. Furthermore, the results show
that Kernel PCA methods are insensitive to the degree
of polynomial kernels.

Table 1: Experimental results on Yale database

| Method | Reduced space | Error Rate (%) |
Eigenface 40 28.49
Kernel PCA, d=2 80 27.27
Kernel PCA, d=3 60 24.24
Kernel PCA, d= 4 60 24.85
Kernel PCA, d= 50 26.01

The AT&T (formerly Olivetti) database contains
400 images of 40 subjects that includes variation in fa-
cial expression and pose. Each face image is downsam-
pled to 23 x 28 to reduce the computation complexity.
Figure 2 shows images of two subjects. In contrast to
the Yale database, the images include the facial con-
tours and certain pose variation. However, the lighting
condition remains the same. Figure 2 shows some sam-
ple images.
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Figure 2: The AT&T (formerly known as Olivetti)
database contains 400 frontal face images of 40 sub-
jects with variation in facial expression and pose.

We use the same strategy as used in the Yale data
set for experiments. Table 2 summarizes the empiri-

cal results. Consistent with the experiments on Yale
database, the empirical results show that Kernel PCA
methods achieve lower error rate than Eigenface ap-
proach on the AT &T dataset.

Table 2: Experimental results on AT&T database

| Method | Reduced space | Error Rate (%) |
Eigenface 30 2.75
Kernel PCA, d=2 50 2.50
Kernel PCA, d=3 50 2.00
Kernel PCA, d=4 60 2.25
Kernel PCA, d=10 80 2.25

4. DISCUSSION AND CONCLUSION

The representations in the Eigenface approaches is based
on the second order statistics of the image set, i.e., co-
variance matrix, and does not address high order sta-
tistical dependencies such as the relationships among
three or more pixels. In a task such as face recognition,
much of the important information may be contained
in the high order statistical information among the pix-
els. We have investigated and demonstrated that Ker-
nel PCA provide a more effective representation in face
recognition. Compared to other techniques for nonlin-
ear feature extraction, kernel PCA has the advantages
that it does not require nonlinear optimization, but
only solution of an eigenvalue problem. Experimental
results on two benchmark databases show that Kernel
PCA method achieves lower error rate than Eigenface
approach in face recognition.
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