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Abstract

Due to illumination variability, the same object can
appear dramatically different even when viewed in fized
pose. To handle this variability, an object recognition
system must employ a representation that is either
invariant to, or models this variability. This paper
presents an appearance-based method for modeling the
variability due to illumination in the images of objects.
The method differs from past appearance-based meth-
ods, however, in that a small set of training images
1s used to generate a representation — the illumina-
tion cone — which models the complete set of images
of an object with Lambertian reflectance under an ar-
bitrary combination of point light sources at infinity.
This method is both an implementation and extension
(an extension in that it models cast shadows) of the
illumination cone representation proposed in [3]. The
method is tested on a database of 660 images of 10
faces, and the results exceed those of popular existing
methods.

1 Introduction

An object’s appearance depends in large part on the
way in which it is viewed. Often slight changes in
pose and illumination produce large changes in an ob-
ject’s appearance. While there has been a great deal
of literature in computer vision detailing methods for
handling image variation produced by changes in pose,
few efforts have been devoted to image variation pro-
duced by changes in illumination. For the most part,
object recognition algorithms have either ignored illu-
mination variation, or dealt with it by measuring some
property or feature of the image — e.g., edges or cor-
ners — which is, if not invariant, at least insensitive to
the variability. Yet, edges and corners do not contain
all of the information useful for recognition. Further-
more, objects which are not simple polyhedra or are
not composed of piecewise constant albedo patterns
often produce inconsistent edge and corner maps.
Methods have recently been introduced which use
low-dimensional representations of images of objects
to perform recognition, see for example [5, 11, 16].
These methods, often termed appearance-based meth-
ods, differ from the feature-based methods mentioned
above in that their low-dimensional representation is,
in a least-squared sense, faithful to the original image.
Systems such as SLAM [11] and Eigenfaces [16] have
demonstrated the power of appearance-based meth-

ods both in ease of implementation and in accuracy.
Yet these methods suffer from an important drawback:
recognition of an object (or face) under a particular
pose and lighting can be performed reliably provided
that object has been previously seen under similar cir-
cumstances. In other words, these methods in their
original form have no way of extrapolating to novel
viewing conditions.

The “illumination cone” method of [3] is, in spirit,
an appearance-based method for recognizing objects
under extreme variability in illumination. However,
the method differs substantially from previous meth-
ods in that a small number of images of each object
under small changes in lighting is used to generate a
representation, the illumination cone, of all images of
the object (in fixed pose) under all variation in illumi-
nation. This paper focuses on issues for building the
illumination cone representation from training images
and using it for recognition.

While the structure of the set of images under vari-
able illumination was characterized in [3] and the rele-
vant results are summarized in Sec. 2, no methods for
performing recognition were presented. In this paper,
such recognition algorithms are introduced. Further-
more, the cone representation is extended to explicitly
model cast shadows produced by objects which have
non-convex shapes. This extension is non-trivial, re-
quiring that the surface normals for the objects be
recovered up to a shadow preserving generalized bas-
relief (GBR) transformation.

The effectiveness of these algorithms and the cone
representation are validated within the context of face
recognition — it has been observed by Moses, Adini
and Ullman that the variability in an image due to il-
lumination is often greater than that due to a change
in the person’s identity [10]. Figure 1 shows the vari-
ability for a single individual. It has been observed
that methods for face recognition based on finding lo-
cal image features and using their geometric relation
are generally ineffective [4]. Hence, faces provide an
interesting and useful class of objects for testing the
power of the illumination cone representation.

In this paper, we empirically compare these new
methods to a number of popular techniques such as
correlation [4] and Eigenfaces [9, 16] as well as more
recently developed techniques such as distance to lin-
ear subspace [2, 5, 12, 13]; the latter technique has
been shown to be much less sensitive to illumination



variation than the former. However, these methods
also break down as shadowing becomes very signifi-
cant. As we will see, the presented algorithm based on
the illumination cone outperforms all of these meth-
ods on a database of 660 images. It should be noted
that our objective in this work is to focus solely on
the issue of illumination variation whereas other ap-
proaches have been more concerned with issues related
to large image databases, face finding, pose, and facial
expressions.

2 The Illumination Cone

In earlier work, it was shown that for an object with
convex shape and Lambertian reflectance, the set of all
images under an arbitrary combination of point light
sources forms a convex polyhedral cone in the image
space IR™. This cone can be constructed from as few
as three images [3]. Here we summarize the relevant
results.

To begin, consider a convex object with a Lam-
bertian reflectance function which is illuminated by a
single point source at infinity. Let x € IR" denote an
image of this object with n pixels. Let B € IR"*3
be a matrix where each row of B is the product of
the albedo with the inward pointing unit normal for
a point on the surface projecting to a particular pixel
in the image. A point light source at infinity can be
represented by s € IR® signifying the product of the
light source intensity with a unit vector in the direc-
tion of the light source. A convex Lambertian surface
with normals and albedo given by B, illuminated by
s, produces an image x given by

x = max(Bs, 0), (1)

where max(.,0) sets to zero all negative components
of the vector Bs. The pixels set to zero correspond to
the surface points lying in an attached shadow. Con-
vexity of the object’s shape is assumed at this point
to avoid cast shadows (shadows that the object casts
on itself). While attached shadows are defined by lo-
cal geometric condition, cast shadows must satisfy a
global condition.

When no part of the surface is shadowed, x lies in
the 3-D subspace £ given by the span of the matrix
B. It can be shown that the subset Ly C £ having
no shadows (i.e., falling in the non-negative orthant!)
forms a convex cone [3].

The illumination subspace L slices through other
orthants as well as the non-negative orthant. Let £;
be the intersection of the illumination subspace £ with
an orthant ¢ in IR™ through which £ passes. Certain
components of x € L; are always negative and oth-
ers always greater than or equal to zero. Since im-

1By orthant we mean the high-dimensional analogue to
quadrant, i.e., the set {x|x € IR™, with certain components
of x > 0 and the remaining components of x < 0}. By non-
negative orthant we mean the set {x|x € IR"™, with all compo-
nents of x > 0}.

age intensity is always non-negative, the image corre-
sponding to points in £; is formed by the projection
P; given by Equation 1. The projection F; is such that
it leaves the non-negative components of x € £; un-
touched, while the negative components of x become
zero. The projected set P;(L;) is also a convex cone.
L intersects at most n(n — 1) + 2 orthants [3], and so
the set of images created by varying the direction and
strength of a single light source at infinity is given by
the union of at most n(n — 1) + 2 convex cones, each
of which is at most three dimensional.

If an object is illuminated by k light sources at in-
finity, then the image is given by the superposition of
the images which would have been produced by the
individual light sources, i.e.,

k
X = Zmax(Bsi,O) (2)

where s; is a single light source. It follows that the
set of all possible images C of a convex Lambertian
surface created by varying the direction and strength
of an arbitrary number of point light sources at infinity
is a convex cone.

Furthermore, it is shown in [3] that any image in
the cone C (including the boundary) can be found as
a convex combination of extreme rays given by

Xij = max(Bsij, 0), (3)

where
Sij = bz X bj. (4)

The vectors b; and b; are the rows of B with i # j.
It is clear that there are at most m(m — 1) extreme
rays (images) for rn < n independent surface normals.
Since there is a finite number of extreme rays, the
convex cone is polyhedral.

3 Constructing the Illumination Cone
Equations 3 and 4 suggest a way to construct the il-
lumination cone for each individual: gather three or
more images of the face under varying illumination
without shadowing and use these images to estimate
the three-dimensional illumination subspace £. One
way of estimating this is to normalize the images to
be of unit length, and then use singular value decom-
position (SVD) to estimate the best three-dimensional
orthogonal basis B* in a least square sense. Note that
the basis B* differs from B by an unknown linear
transformation, i.e., B = B*A where A € GL(3); for
any light source, x = Bs = (B*A)(A™!s). Nonethe-
less from B*, the extreme rays defining the illumina-
tion cone C can be computed using Equations 3 and
4. This method, introduced in [3], was named the
llumination subspace method.

The first problem that arises with the above pro-
cedure is with the estimation of B*. For even a con-
vex object whose Gaussian image covers the Gauss
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Figure 1: Example images from each subset of the Harvard Database used to test the algorithms.

sphere, there is only one light source direction (the
viewing direction) for which no point on the surface is
in shadow. For any other light source direction, shad-
ows will be present. For faces, which are not convex,
shadowing in the modeling images is likely to be more
pronounced. When SVD is used to estimate B* from
images with shadows, these systematic errors can bias
the estimate of B* significantly. Therefore, alternative
ways are needed to estimate B* that take into account
the fact that some data values should not be used in
the estimation.

The next problem is that usually m, the number of
independent normals in B, can be large (more than a
thousand) hence the number of extreme rays needed to
completely define the illumination cone can run in the
millions. Therefore, we must approximate the cone in
some fashion; in this work, we choose to use a small
number of extreme rays (images). In [3] it was shown
empirically that the cone is flat (i.e., elements lie near
a low dimensional linear subspace), and so the hope
is that a subsampled cone will provide an approxi-
mation that leads to good recognition performance.
In our experience, around 60-80 images are sufficient,
provided that the corresponding light source directions
s;; are more or less uniform on the illumination sphere.
The resulting cone C* is a subset of the object’s true
cone C. An alternative approximation to C can be ob-
tained by directly sampling the space of light source
directions rather than generating the samples through

Eq. 4. While the resulting images form the extreme
rays of the representation C* and lie on the boundary
of C, they are not necessarily extreme rays of C. Again
C* is a subset of C.

The last problem comes from the fact that faces are
non-convex, and so cast shadows cover significant por-
tions of the face under extreme illumination (See the
images from Subsets 4 and 5 in Fig. 1). The image
formation model (Eq. 1 used to develop the illumi-
nation cone does not account for cast shadows. For
the light source directions of the extreme rays given
by Equation 4, we can predict which pixels will be in
cast shadows.

It has been shown [1, 17] that from multiple im-
ages where the light source directions are unknown,
one can only recover a Lambertian surface up to a
three-parameter family given by the generalized bas-
relief (GBR) transformation. This family scales the
relief (flattens or extrudes) and introduces an additive
plane. Consequently, when computing s;; from B~,
the light source direction differs from the true light
source by a GBR transformation. Since shadows are
preserved under these transformation [1], images syn-
thesized from a surface whose normal field is given by
B* under light source sj; will have correct shadowing.
Thus, in constructing the extreme rays of the cone, we
first reconstruct a surface (a height function) and then
use ray-tracing techniques to determine which points
lie in a cast shadow. It should be noted that the vec-



tor field B* estimated via SVD may not be integrable,
and so prior to reconstructing the surface up to GBR,
integrability of B* is enforced.

This leads to the following steps for constructing a
representation of the illumination cone of an individ-
ual from a set of images taken under unknown lighting.
Details of these steps are given below.

Estimate B* from training images.
Enforce integrability of B*.
Reconstruct the surface up to GBR.

For a set of light source directions that uniformly
sample the sphere, synthesize extreme rays (im-
ages) of the cone that account for cast and at-
tached shadows.

W

3.1 Estimating B*

Using singular value decomposition directly on the im-
ages leads to a biased estimate of B* due to shad-
ows. In addition, portions of some of the images from
the Harvard database were saturated. Both shadows
formed under a single light source and saturations can
be detected by thresholding and labeled as “missing” —
these pixels do not satisfy the linear equation x = Bs.
Thus, we need to estimate the 3-D linear subspace B*
with known missing values.

Define the data matrix for ¢ images of an individual
to be X = [x;...x.]. If there were no shadowing, X
would be rank 3 and we could use SVD to decompose
X into X = B*S* where §* is a 3x ¢ matrix of the light
source direction for all ¢ images. To estimate a basis
B* for the 3-D linear subspace £ from image data with
missing elements, we have implemented a variation of
the algorithm presented by Shum, Ikeuchi, and Reddy
[14]; see also the methods of Tomasi and Kanade [15]
and Jacobs [8].

The overview of this method is as follows: without
doing any row or column permutations sift out all the
full rows (with no invalid data) of matrix X to form
a full sub-matrix X. Perform SVD on X and get an
estimate of S*. Fix S* and estimate each of the row
of B* independently using least squares. Then, fix
B* and estimate each of the light source direction s;
independently. Repeat last two steps until estimates
converge. The inner workings of the algorithm are
given as follows: Let b; be the ith row of B*, let x; be
the ith row of X. Let p be the indices of non-missing
elements in x;, and let x? be the row obtained by
taking only the non-missing elements of x;, and let
S? similarly be the submatrix of S* consisting of rows
with indices in p. Then, each row of B* is given by

bi = (5")1(x)”

where (S?)! is the pseudo-inverse of SP.  With the
new estimate of B* at hand, we now let x; be the
jth column of X, let p be the indices of non-missing
elements in x;, and let xé’ be the column obtained by

taking only the non-missing elements of x;. Let B”
similarly be the submatrix of B* consisting of rows
with indices in p. Then, the light source directions
are given by,
s; = (BY)'(x)

After the new set of light source S* has been calcu-
lated, the last two steps can be repeated until the es-
timate of B* converges. The algorithm is quite well
behaved converging to the global minimum within 10-
15 iterations. Though it is possible to converge to a
local minimum, we never observed this in simulation
or in practice.
3.2 Enforcing Integrability
To predict cast shadows, we must reconstruct a sur-
face and to do this, the vector field B* must corre-
spond to an integrable normal field. Since no method
has been developed to enforce integrability during the
estimation of B*, we enforce it afterwards. That is,
given B* computed as described above, we estimate a
matrix A € GL(3) such that B*A corresponds to an
integrable normal field; the development follows [17].

Counsider a continuous surface defined as the graph
of a function z(z,y), and let b be the corresponding
normal field scaled by an albedo (scalar) field. The
integrability constraint for a surface is z,, = 2y, where
subscripts denote partial derivatives. In turn, b must

satisfy:
v), ()
(ba y_ bz /.

To estimate A such that b? (z,y) = b*" (z,y)A cor-
responds to a surface, we expand this out. Letting the
columns of A be denoted by A;, Ay, A yields

(b Ag)(by Ay) — (b Ay) (b7 Ay) =
(b*" A3)(b:" A1) — (b Ay)(b} A3)
which can be expressed as
b*'S1b; =b*" ' S,b (5)

where Sl = A3Ag - AzAg and 52 = AgA{ - AlAg

S1 and Sy are skew-symmetric matrices, and so
they each have three degrees of freedom. Equation 5
is linear in the six elements of S; and S>. From the
estimate of B* obtained using the method in Sec-
tion 3.1, discrete approximations of the partial deriva-
tives (b} and by ) are computed, and then SVD is used
to solve for the six elements of S; and Sy. In [17], it
was shown that the elements of S; and S, are co-
factors of A, and a simple method for computing A
from the cofactors was presented. This procedure only
determines six degrees of freedom of A. The other
three correspond to the generalized bas relief (GBR)
transformation [1] and can be chosen arbitrarily since
GBR preserves integrability. The surface correspond-
ing to B* A differs from the true surface by GBR, i.e.,
z*(z,y) = Az(z,y) + px + vy for arbitrary A, u, v with
A # 0.



3.3 Generating the Height Function
Having estimated the matrix B* and then enforcing
integrability, we now calculate the height function
z(x,y) of the face so that cast shadows can be pre-
dicted. Note that the reconstruction of the height is
not Euclidean, but a representative element of the or-
bit under a GBR transformation. For each normal b;
the derivatives of z(x,y) with respect to x and y are
given by the following equations

o 82’ o bil _ 62 o bi2

p_a_ bi37

q—a—y— bz’

In order to find z(x,y), we use the variational ap-
proach presented in [7]. A surface z(z,y) is fit to the
given components of the gradient p and ¢ by minimiz-
ing the functional

[ | =0+ e 0 dway,

whose Euler equation reduces to V?z = p, + g,.
We need to constrain the solution of the Euler equa-
tion, and this is achieved by the following natural
boundary conditions (zg,zy) -n = (p,q) - n where
n = (—dy/ds,dxz/ds) is a normal vector to the bound-
ary curve 0f), and s is the arc-length along the bound-
ary [7]. Thus, the component of (2, z,) normal to the
chosen boundary curve must match the normal com-
ponent of (p,q). An iterative scheme using a discrete
approximation of the Laplacian can be used to gener-
ate a height function of the face [7].

Once the height function has been determined, it
is a simple matter to modify the illumination cone
representation to incorporate cast shadows. Using ray-
tracing techniques, we can determine the cast shadow
regions and correct the extreme rays of C*.

Figure 2 demonstrates the process of constructing
the cone C*. Figure 2.a shows the training images
for one individual in the database. Figure 2.b shows
the columns of the matrix B*. Figure 2.c shows the
reconstruction of the surface up to a GBR transforma-
tion. The left column of Fig. 2.d shows sample images
in the database; the middle column shows the closest
image in the illumination cone without cast shadows;
and the right column shows the closest image in the
illumination cone with cast shadows.

4 Recognition

The cone C* can be used in a natural way for face
recognition, and in experiments described below, we
compare three recognition algorithms to the proposed
method. From a set of face images labeled with the
person’s identity (the learning set) and an unlabeled
set of face images from the same group of people (the
test set), each algorithm is used to identify the person
in the test images. For more details of the comparison
algorithms, see [2]. We assume that the face has been
located and aligned within the image.

Figure 2: The figure demonstrates the process of con-
structing the cone C*. a) the training images. b) ma-
trix B*. c¢) reconstruction up to a GBR transforma-
tion. d) sample images from database (left column);
closest image in illumination cone without cast shad-
ows (middle column); and closest image in illumina-
tion cone with cast shadows (right column).

The simplest recognition scheme is a nearest neigh-
bor classifier in the image space [4]. An image in the
test set is recognized (classified) by assigning to it the



label of the closest point in the learning set, where
distances are measured in the image space. If all of
the images are normalized to have zero mean and unit
variance, this procedure is equivalent to choosing the
image in the learning set that best correlates with the
test image. Because of the normalization process, the
result is independent of light source intensity.

As correlation methods are computationally expen-
sive and require great amounts of storage, it is natural
to pursue dimensionality reduction schemes. A tech-
nique now commonly used in computer vision — par-
ticularly in face recognition — is principal components
analysis (PCA) which is popularly known as Figen-
faces [5, 11, 9, 16]. Given a collection of training
images x; € IR", a linear projection of each image
y: = Wx; to an f-dimensional feature space is per-
formed. A face in a test image x is recognized by
projecting x to the feature space, and nearest neigh-
bor classification is performed in IR’. The projection
matrix W is chosen to maximize the scatter of all pro-
jected samples. It has been shown that when f equals
the number of training images, the Eigenface and Cor-
relation methods are equivalent (See [2, 11]). One pro-
posed method for handling illumination variation in
PCA is to discard from W the three most significant
principal components; in practice, this yields better
recognition performance [2].

A third approach is to model the illumination varia-
tion of each face as a three-dimensional linear subspace
L as described in Section 2. To perform recognition,
we simply compute the distance of the test image to
each linear subspace and choose the face correspond-
ing to the shortest distance. We call this recognition
scheme the Linear Subspace method [1]; it is a vari-
ant, of the photometric alignment method proposed in
[13], and related to [6, 12]. While this is expected to
model the variation in intensity when the surface is
completely illuminated, it does not model shadowing.

Finally, given a test image x, recognition using l-
lumination cones is performed by first computing the
distance of the test image to each cone, and then
choosing the face that corresponds to the shortest dis-
tance. Since each cone is convex, the distance can be
found by solving a convex optimization problem. In
particular, the non-negative linear least squares tech-
nique contained in Matlab was used in our implemen-
tation, and this algorithm has computational complex-
ity O(ne?) where n is the number of pixels and e is
the number of extreme rays.

5 Experimental Results

To test the effectiveness of these recognition algo-
rithms, we performed a series of experiments on a
database from the Harvard Robotics Laboratory in
which lighting had been systematically varied [5, 6].
In each image in this database, a subject held his/her
head steady while being illuminated by a dominant
light source. The space of light source directions,

Subset 1

|
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Subset 2

\ \ \ Subset 3
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Figure 3: The highlighted lines of longitude and lat-
itude indicate the light source directions for Subsets
1 through 5. Each intersection of a longitudinal and
latitudinal line on the right side of the illustration has
a corresponding image in the database.

which can be parameterized by spherical angles, was
then sampled in 15° increments. See Figure 3. From
this database, we used 660 images of 10 people (66 of
each). We extracted five subsets to quantify the effects
of varying lighting. Sample images from each subset
are shown in Fig. 1. Subset 1 (respectively 2, 3, 4, 5)
contains 30 (respectively 90, 130, 170, 210) images for
which both of the longitudinal and latitudinal angles
of light source direction are within 15° (respectively
30°,45°,60°, 75°) of the camera axis.

All of the images were cropped within the face
so that the contour of the head was excluded. For
the Eigenface and correlation tests, the images were
normalized to have zero mean and unit variance, as
this improved the performance of these methods. For
the Eigenface method, we used twenty principal com-
ponents — recall that performance approaches corre-
lation as the dimension of the feature space is in-
creased [2, 11]. Since the first three principal com-
ponents are primarily due to lighting variation and
since recognition rates can be improved by eliminat-
ing them, error rates are also presented when princi-
pal components four through twenty-three are used.
For the cone experiments, we tested two variations:
in the first variation (cones-attached), the represen-
tation was constructed ignoring cast shadows and so
extreme rays were generated directly from Eq. 3. In
the second variation (Cones-cast), the representation
was constructed as described in Section 3.

Mirroring the extrapolation experiment described
in [2], each method was trained on samples from Sub-
set 1 and then tested using samples from Subsets 2,
3, 4 and 5. (Note that when tested on Subset 1, all
methods performed without error). Figure 4 shows
the result from this experiment.

6 Discussion

From the results of this experiment, we draw the fol-
lowing conclusions:

e The illumination cone representation outperforms
all of the other techniques.
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Method Error Rate (%)
Subset | Subset | Subset | Subset
2 3 4 5
Correlation 8.9 40.8 65.9 84.1
Eigenface 8.9 45.4 67.1 84.1
Eigenface 6.7 33.8 55.3 78.1
w/o 1st 3
Linear subspace 0.0 3.8 22.4 50.7
Cones-attached 0.0 2.3 17.1 44.8
Cones-cast 0.0 0.0 10.0 37.0

Figure 4: Extrapolation: When each of the meth-
ods is trained on images with near frontal illumination
(Subset 1), the graph and corresponding table show
the relative performance under extreme light source
conditions.

e When cast shadows are included in the illumina-
tion cone, error rates are improved.

e For very extreme illumination (Subset 5), the
Correlation and Eigenface methods completely
break down, and exhibit results that are slightly
better than chance (90% error rate). The cone
method performs significantly better, but cer-
tainly not well enough to be usable in practice.
At this point, more experimentation is required
to determine if recognition rates can be improved
by either using more sampled extreme rays or by
improving the image formation model.

The experiment described above was limited to the
available dataset from the Harvard Robotics Labo-
ratory. To perform more extensive experimentation,
we are constructing a geodesic lighting rig that sup-
ports 64 xenon strobes. Using this rig, we will be
able to modify the illumination at frame rates and
gather an extensive image database covering a broader
range of lighting conditions including multiple sources.
The speed of acquisition will also permit us to read-
ily obtain images of a large number of individuals.
We will then perform more extensive experimentation
with this newly gathered database.
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