
IEEE Conf. on Computer Vision and Pattern Recognition, 1998. To appear.Illumination Cones for RecognitionUnder Variable Lighting: FacesAthinodoros S. Georghiades David J. Kriegman Peter N. BelhumeurCenter for Computational Vision and ControlDepartment of Electrical EngineeringYale UniversityNew Haven, CT 06520-8267AbstractDue to illumination variability, the same object canappear dramatically di�erent even when viewed in �xedpose. To handle this variability, an object recognitionsystem must employ a representation that is eitherinvariant to, or models this variability. This paperpresents an appearance-based method for modeling thevariability due to illumination in the images of objects.The method di�ers from past appearance-based meth-ods, however, in that a small set of training imagesis used to generate a representation { the illumina-tion cone { which models the complete set of imagesof an object with Lambertian reectance under an ar-bitrary combination of point light sources at in�nity.This method is both an implementation and extension(an extension in that it models cast shadows) of theillumination cone representation proposed in [3]. Themethod is tested on a database of 660 images of 10faces, and the results exceed those of popular existingmethods.1 IntroductionAn object's appearance depends in large part on theway in which it is viewed. Often slight changes inpose and illumination produce large changes in an ob-ject's appearance. While there has been a great dealof literature in computer vision detailing methods forhandling image variation produced by changes in pose,few e�orts have been devoted to image variation pro-duced by changes in illumination. For the most part,object recognition algorithms have either ignored illu-mination variation, or dealt with it by measuring someproperty or feature of the image { e.g., edges or cor-ners { which is, if not invariant, at least insensitive tothe variability. Yet, edges and corners do not containall of the information useful for recognition. Further-more, objects which are not simple polyhedra or arenot composed of piecewise constant albedo patternsoften produce inconsistent edge and corner maps.Methods have recently been introduced which uselow-dimensional representations of images of objectsto perform recognition, see for example [5, 11, 16].These methods, often termed appearance-based meth-ods, di�er from the feature-based methods mentionedabove in that their low-dimensional representation is,in a least-squared sense, faithful to the original image.Systems such as SLAM [11] and Eigenfaces [16] havedemonstrated the power of appearance-based meth-

ods both in ease of implementation and in accuracy.Yet these methods su�er from an important drawback:recognition of an object (or face) under a particularpose and lighting can be performed reliably providedthat object has been previously seen under similar cir-cumstances. In other words, these methods in theiroriginal form have no way of extrapolating to novelviewing conditions.The \illumination cone" method of [3] is, in spirit,an appearance-based method for recognizing objectsunder extreme variability in illumination. However,the method di�ers substantially from previous meth-ods in that a small number of images of each objectunder small changes in lighting is used to generate arepresentation, the illumination cone, of all images ofthe object (in �xed pose) under all variation in illumi-nation. This paper focuses on issues for building theillumination cone representation from training imagesand using it for recognition.While the structure of the set of images under vari-able illumination was characterized in [3] and the rele-vant results are summarized in Sec. 2, no methods forperforming recognition were presented. In this paper,such recognition algorithms are introduced. Further-more, the cone representation is extended to explicitlymodel cast shadows produced by objects which havenon-convex shapes. This extension is non-trivial, re-quiring that the surface normals for the objects berecovered up to a shadow preserving generalized bas-relief (GBR) transformation.The e�ectiveness of these algorithms and the conerepresentation are validated within the context of facerecognition { it has been observed by Moses, Adiniand Ullman that the variability in an image due to il-lumination is often greater than that due to a changein the person's identity [10]. Figure 1 shows the vari-ability for a single individual. It has been observedthat methods for face recognition based on �nding lo-cal image features and using their geometric relationare generally ine�ective [4]. Hence, faces provide aninteresting and useful class of objects for testing thepower of the illumination cone representation.In this paper, we empirically compare these newmethods to a number of popular techniques such ascorrelation [4] and Eigenfaces [9, 16] as well as morerecently developed techniques such as distance to lin-ear subspace [2, 5, 12, 13]; the latter technique hasbeen shown to be much less sensitive to illumination



variation than the former. However, these methodsalso break down as shadowing becomes very signi�-cant. As we will see, the presented algorithm based onthe illumination cone outperforms all of these meth-ods on a database of 660 images. It should be notedthat our objective in this work is to focus solely onthe issue of illumination variation whereas other ap-proaches have been more concerned with issues relatedto large image databases, face �nding, pose, and facialexpressions.2 The Illumination ConeIn earlier work, it was shown that for an object withconvex shape and Lambertian reectance, the set of allimages under an arbitrary combination of point lightsources forms a convex polyhedral cone in the imagespace IRn. This cone can be constructed from as fewas three images [3]. Here we summarize the relevantresults.To begin, consider a convex object with a Lam-bertian reectance function which is illuminated by asingle point source at in�nity. Let x 2 IRn denote animage of this object with n pixels. Let B 2 IRn�3be a matrix where each row of B is the product ofthe albedo with the inward pointing unit normal fora point on the surface projecting to a particular pixelin the image. A point light source at in�nity can berepresented by s 2 IR3 signifying the product of thelight source intensity with a unit vector in the direc-tion of the light source. A convex Lambertian surfacewith normals and albedo given by B, illuminated bys, produces an image x given byx = max(Bs;0); (1)where max(:;0) sets to zero all negative componentsof the vector Bs. The pixels set to zero correspond tothe surface points lying in an attached shadow. Con-vexity of the object's shape is assumed at this pointto avoid cast shadows (shadows that the object castson itself). While attached shadows are de�ned by lo-cal geometric condition, cast shadows must satisfy aglobal condition.When no part of the surface is shadowed, x lies inthe 3-D subspace L given by the span of the matrixB. It can be shown that the subset L0 � L havingno shadows (i.e., falling in the non-negative orthant1)forms a convex cone [3].The illumination subspace L slices through otherorthants as well as the non-negative orthant. Let Libe the intersection of the illumination subspace L withan orthant i in IRn through which L passes. Certaincomponents of x 2 Li are always negative and oth-ers always greater than or equal to zero. Since im-1By orthant we mean the high-dimensional analogue toquadrant, i.e., the set fxjx 2 IRn, with certain componentsof x � 0 and the remaining components of x < 0g. By non-negative orthant we mean the set fxjx 2 IRn, with all compo-nents of x � 0g.

age intensity is always non-negative, the image corre-sponding to points in Li is formed by the projectionPi given by Equation 1. The projection Pi is such thatit leaves the non-negative components of x 2 Li un-touched, while the negative components of x becomezero. The projected set Pi(Li) is also a convex cone.L intersects at most n(n� 1) + 2 orthants [3], and sothe set of images created by varying the direction andstrength of a single light source at in�nity is given bythe union of at most n(n� 1) + 2 convex cones, eachof which is at most three dimensional.If an object is illuminated by k light sources at in-�nity, then the image is given by the superposition ofthe images which would have been produced by theindividual light sources, i.e.,x = kXi=1max(Bsi;0) (2)where si is a single light source. It follows that theset of all possible images C of a convex Lambertiansurface created by varying the direction and strengthof an arbitrary number of point light sources at in�nityis a convex cone.Furthermore, it is shown in [3] that any image inthe cone C (including the boundary) can be found asa convex combination of extreme rays given byxij = max(Bsij ;0); (3)where sij = bi � bj : (4)The vectors bi and bj are the rows of B with i 6= j.It is clear that there are at most m(m � 1) extremerays (images) for m � n independent surface normals.Since there is a �nite number of extreme rays, theconvex cone is polyhedral.3 Constructing the Illumination ConeEquations 3 and 4 suggest a way to construct the il-lumination cone for each individual: gather three ormore images of the face under varying illuminationwithout shadowing and use these images to estimatethe three-dimensional illumination subspace L. Oneway of estimating this is to normalize the images tobe of unit length, and then use singular value decom-position (SVD) to estimate the best three-dimensionalorthogonal basis B� in a least square sense. Note thatthe basis B� di�ers from B by an unknown lineartransformation, i.e., B = B�A where A 2 GL(3); forany light source, x = Bs = (B�A)(A�1s). Nonethe-less from B�, the extreme rays de�ning the illumina-tion cone C can be computed using Equations 3 and4. This method, introduced in [3], was named theillumination subspace method.The �rst problem that arises with the above pro-cedure is with the estimation of B�. For even a con-vex object whose Gaussian image covers the Gauss



Subset 1 Subset 2 Subset 3 Subset 4 Subset 5

Figure 1: Example images from each subset of the Harvard Database used to test the algorithms.sphere, there is only one light source direction (theviewing direction) for which no point on the surface isin shadow. For any other light source direction, shad-ows will be present. For faces, which are not convex,shadowing in the modeling images is likely to be morepronounced. When SVD is used to estimate B� fromimages with shadows, these systematic errors can biasthe estimate of B� signi�cantly. Therefore, alternativeways are needed to estimate B� that take into accountthe fact that some data values should not be used inthe estimation.The next problem is that usually m, the number ofindependent normals in B, can be large (more than athousand) hence the number of extreme rays needed tocompletely de�ne the illumination cone can run in themillions. Therefore, we must approximate the cone insome fashion; in this work, we choose to use a smallnumber of extreme rays (images). In [3] it was shownempirically that the cone is at (i.e., elements lie neara low dimensional linear subspace), and so the hopeis that a subsampled cone will provide an approxi-mation that leads to good recognition performance.In our experience, around 60-80 images are su�cient,provided that the corresponding light source directionssij are more or less uniform on the illumination sphere.The resulting cone C� is a subset of the object's truecone C. An alternative approximation to C can be ob-tained by directly sampling the space of light sourcedirections rather than generating the samples through

Eq. 4. While the resulting images form the extremerays of the representation C� and lie on the boundaryof C, they are not necessarily extreme rays of C. AgainC� is a subset of C.The last problem comes from the fact that faces arenon-convex, and so cast shadows cover signi�cant por-tions of the face under extreme illumination (See theimages from Subsets 4 and 5 in Fig. 1). The imageformation model (Eq. 1 used to develop the illumi-nation cone does not account for cast shadows. Forthe light source directions of the extreme rays givenby Equation 4, we can predict which pixels will be incast shadows.It has been shown [1, 17] that from multiple im-ages where the light source directions are unknown,one can only recover a Lambertian surface up to athree-parameter family given by the generalized bas-relief (GBR) transformation. This family scales therelief (attens or extrudes) and introduces an additiveplane. Consequently, when computing s�ij from B�,the light source direction di�ers from the true lightsource by a GBR transformation. Since shadows arepreserved under these transformation [1], images syn-thesized from a surface whose normal �eld is given byB� under light source s�ij will have correct shadowing.Thus, in constructing the extreme rays of the cone, we�rst reconstruct a surface (a height function) and thenuse ray-tracing techniques to determine which pointslie in a cast shadow. It should be noted that the vec-



tor �eld B� estimated via SVD may not be integrable,and so prior to reconstructing the surface up to GBR,integrability of B� is enforced.This leads to the following steps for constructing arepresentation of the illumination cone of an individ-ual from a set of images taken under unknown lighting.Details of these steps are given below.1. Estimate B� from training images.2. Enforce integrability of B�.3. Reconstruct the surface up to GBR.4. For a set of light source directions that uniformlysample the sphere, synthesize extreme rays (im-ages) of the cone that account for cast and at-tached shadows.3.1 Estimating B�Using singular value decomposition directly on the im-ages leads to a biased estimate of B� due to shad-ows. In addition, portions of some of the images fromthe Harvard database were saturated. Both shadowsformed under a single light source and saturations canbe detected by thresholding and labeled as \missing" {these pixels do not satisfy the linear equation x = Bs.Thus, we need to estimate the 3-D linear subspace B�with known missing values.De�ne the data matrix for c images of an individualto be X = [x1 : : :xc]. If there were no shadowing, Xwould be rank 3 and we could use SVD to decomposeX intoX = B�S� where S� is a 3�cmatrix of the lightsource direction for all c images. To estimate a basisB� for the 3-D linear subspace L from image data withmissing elements, we have implemented a variation ofthe algorithm presented by Shum, Ikeuchi, and Reddy[14]; see also the methods of Tomasi and Kanade [15]and Jacobs [8].The overview of this method is as follows: withoutdoing any row or column permutations sift out all thefull rows (with no invalid data) of matrix X to forma full sub-matrix ~X. Perform SVD on ~X and get anestimate of S�. Fix S� and estimate each of the rowof B� independently using least squares. Then, �xB� and estimate each of the light source direction siindependently. Repeat last two steps until estimatesconverge. The inner workings of the algorithm aregiven as follows: Let bi be the ith row of B�, let xi bethe ith row of X . Let p be the indices of non-missingelements in xi, and let xpi be the row obtained bytaking only the non-missing elements of xi, and letSp similarly be the submatrix of S� consisting of rowswith indices in p. Then, each row of B� is given bybi = (Sp)y(xpi )Twhere (Sp)y is the pseudo-inverse of Sp. With thenew estimate of B� at hand, we now let xj be thejth column of X , let p be the indices of non-missingelements in xj , and let xpj be the column obtained by

taking only the non-missing elements of xj . Let Bpsimilarly be the submatrix of B� consisting of rowswith indices in p. Then, the light source directionsare given by, sj = (Bp)y(xpj )After the new set of light source S� has been calcu-lated, the last two steps can be repeated until the es-timate of B� converges. The algorithm is quite wellbehaved converging to the global minimum within 10-15 iterations. Though it is possible to converge to alocal minimum, we never observed this in simulationor in practice.3.2 Enforcing IntegrabilityTo predict cast shadows, we must reconstruct a sur-face and to do this, the vector �eld B� must corre-spond to an integrable normal �eld. Since no methodhas been developed to enforce integrability during theestimation of B�, we enforce it afterwards. That is,given B� computed as described above, we estimate amatrix A 2 GL(3) such that B�A corresponds to anintegrable normal �eld; the development follows [17].Consider a continuous surface de�ned as the graphof a function z(x; y), and let b be the correspondingnormal �eld scaled by an albedo (scalar) �eld. Theintegrability constraint for a surface is zxy = zyx wheresubscripts denote partial derivatives. In turn, b mustsatisfy: �b1b3�y = �b2b3�xTo estimate A such that bT (x; y) = b�T (x; y)A cor-responds to a surface, we expand this out. Letting thecolumns of A be denoted by A1; A2; A3 yields(b�TA3)(b�Tx A2)� (b�TA2)(b�Tx A3) =(b�TA3)(b�Ty A1)� (b�TA1)(b�Ty A3)which can be expressed asb�TS1b�x = b�TS2b�y (5)where S1 = A3AT2 �A2AT3 and S2 = A3AT1 �A1AT3 .S1 and S2 are skew-symmetric matrices, and sothey each have three degrees of freedom. Equation 5is linear in the six elements of S1 and S2. From theestimate of B� obtained using the method in Sec-tion 3.1, discrete approximations of the partial deriva-tives (b�x and b�y) are computed, and then SVD is usedto solve for the six elements of S1 and S2. In [17], itwas shown that the elements of S1 and S2 are co-factors of A, and a simple method for computing Afrom the cofactors was presented. This procedure onlydetermines six degrees of freedom of A. The otherthree correspond to the generalized bas relief (GBR)transformation [1] and can be chosen arbitrarily sinceGBR preserves integrability. The surface correspond-ing to B�A di�ers from the true surface by GBR, i.e.,z�(x; y) = �z(x; y)+�x+ �y for arbitrary �; �; � with� 6= 0.



3.3 Generating the Height FunctionHaving estimated the matrix B� and then enforcingintegrability, we now calculate the height functionz(x; y) of the face so that cast shadows can be pre-dicted. Note that the reconstruction of the height isnot Euclidean, but a representative element of the or-bit under a GBR transformation. For each normal bithe derivatives of z(x; y) with respect to x and y aregiven by the following equationsp = @z@x = �bi1bi3 ; q = @z@y = �bi2bi3 :In order to �nd z(x; y), we use the variational ap-proach presented in [7]. A surface z(x; y) is �t to thegiven components of the gradient p and q by minimiz-ing the functionalZ Z
 (zx � p)2 + (zy � q)2 dx dy;whose Euler equation reduces to r2z = px + qy.We need to constrain the solution of the Euler equa-tion, and this is achieved by the following naturalboundary conditions (zx; zy) � n = (p; q) � n wheren = (�dy=ds; dx=ds) is a normal vector to the bound-ary curve @
, and s is the arc-length along the bound-ary [7]. Thus, the component of (zx; zy) normal to thechosen boundary curve must match the normal com-ponent of (p; q). An iterative scheme using a discreteapproximation of the Laplacian can be used to gener-ate a height function of the face [7].Once the height function has been determined, itis a simple matter to modify the illumination conerepresentation to incorporate cast shadows. Using ray-tracing techniques, we can determine the cast shadowregions and correct the extreme rays of C�.Figure 2 demonstrates the process of constructingthe cone C�. Figure 2.a shows the training imagesfor one individual in the database. Figure 2.b showsthe columns of the matrix B�. Figure 2.c shows thereconstruction of the surface up to a GBR transforma-tion. The left column of Fig. 2.d shows sample imagesin the database; the middle column shows the closestimage in the illumination cone without cast shadows;and the right column shows the closest image in theillumination cone with cast shadows.4 RecognitionThe cone C� can be used in a natural way for facerecognition, and in experiments described below, wecompare three recognition algorithms to the proposedmethod. From a set of face images labeled with theperson's identity (the learning set) and an unlabeledset of face images from the same group of people (thetest set), each algorithm is used to identify the personin the test images. For more details of the comparisonalgorithms, see [2]. We assume that the face has beenlocated and aligned within the image.

a.
b.
c.

d.Figure 2: The �gure demonstrates the process of con-structing the cone C�. a) the training images. b) ma-trix B�. c) reconstruction up to a GBR transforma-tion. d) sample images from database (left column);closest image in illumination cone without cast shad-ows (middle column); and closest image in illumina-tion cone with cast shadows (right column).The simplest recognition scheme is a nearest neigh-bor classi�er in the image space [4]. An image in thetest set is recognized (classi�ed) by assigning to it the



label of the closest point in the learning set, wheredistances are measured in the image space. If all ofthe images are normalized to have zero mean and unitvariance, this procedure is equivalent to choosing theimage in the learning set that best correlates with thetest image. Because of the normalization process, theresult is independent of light source intensity.As correlation methods are computationally expen-sive and require great amounts of storage, it is naturalto pursue dimensionality reduction schemes. A tech-nique now commonly used in computer vision { par-ticularly in face recognition { is principal componentsanalysis (PCA) which is popularly known as Eigen-faces [5, 11, 9, 16]. Given a collection of trainingimages xi 2 IRn, a linear projection of each imageyi = Wxi to an f -dimensional feature space is per-formed. A face in a test image x is recognized byprojecting x to the feature space, and nearest neigh-bor classi�cation is performed in IRf . The projectionmatrixW is chosen to maximize the scatter of all pro-jected samples. It has been shown that when f equalsthe number of training images, the Eigenface and Cor-relation methods are equivalent (See [2, 11]). One pro-posed method for handling illumination variation inPCA is to discard from W the three most signi�cantprincipal components; in practice, this yields betterrecognition performance [2].A third approach is to model the illumination varia-tion of each face as a three-dimensional linear subspaceL as described in Section 2. To perform recognition,we simply compute the distance of the test image toeach linear subspace and choose the face correspond-ing to the shortest distance. We call this recognitionscheme the Linear Subspace method [1]; it is a vari-ant of the photometric alignment method proposed in[13], and related to [6, 12]. While this is expected tomodel the variation in intensity when the surface iscompletely illuminated, it does not model shadowing.Finally, given a test image x, recognition using il-lumination cones is performed by �rst computing thedistance of the test image to each cone, and thenchoosing the face that corresponds to the shortest dis-tance. Since each cone is convex, the distance can befound by solving a convex optimization problem. Inparticular, the non-negative linear least squares tech-nique contained in Matlab was used in our implemen-tation, and this algorithm has computational complex-ity O(n e2) where n is the number of pixels and e isthe number of extreme rays.5 Experimental ResultsTo test the e�ectiveness of these recognition algo-rithms, we performed a series of experiments on adatabase from the Harvard Robotics Laboratory inwhich lighting had been systematically varied [5, 6].In each image in this database, a subject held his/herhead steady while being illuminated by a dominantlight source. The space of light source directions,
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Subset 5Figure 3: The highlighted lines of longitude and lat-itude indicate the light source directions for Subsets1 through 5. Each intersection of a longitudinal andlatitudinal line on the right side of the illustration hasa corresponding image in the database.which can be parameterized by spherical angles, wasthen sampled in 15� increments. See Figure 3. Fromthis database, we used 660 images of 10 people (66 ofeach). We extracted �ve subsets to quantify the e�ectsof varying lighting. Sample images from each subsetare shown in Fig. 1. Subset 1 (respectively 2, 3, 4, 5)contains 30 (respectively 90, 130, 170, 210) images forwhich both of the longitudinal and latitudinal anglesof light source direction are within 15� (respectively30�; 45�; 60�; 75�) of the camera axis.All of the images were cropped within the faceso that the contour of the head was excluded. Forthe Eigenface and correlation tests, the images werenormalized to have zero mean and unit variance, asthis improved the performance of these methods. Forthe Eigenface method, we used twenty principal com-ponents { recall that performance approaches corre-lation as the dimension of the feature space is in-creased [2, 11]. Since the �rst three principal com-ponents are primarily due to lighting variation andsince recognition rates can be improved by eliminat-ing them, error rates are also presented when princi-pal components four through twenty-three are used.For the cone experiments, we tested two variations:in the �rst variation (cones-attached), the represen-tation was constructed ignoring cast shadows and soextreme rays were generated directly from Eq. 3. Inthe second variation (Cones-cast), the representationwas constructed as described in Section 3.Mirroring the extrapolation experiment describedin [2], each method was trained on samples from Sub-set 1 and then tested using samples from Subsets 2,3, 4 and 5. (Note that when tested on Subset 1, allmethods performed without error). Figure 4 showsthe result from this experiment.6 DiscussionFrom the results of this experiment, we draw the fol-lowing conclusions:� The illumination cone representation outperformsall of the other techniques.
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