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For these approaches to be e�ective, there mustbe su�cient texture or viewpoint-independent scenefeatures (e.g. albedo discontinuities or surface nor-mal discontinuities). From sparse correspondence, theepipolar geometry can be established and stereo tech-niques can be used to provide dense reconstruction.Underlying nearly all such stereo algorithms is a con-stant brightness assumption { that is, the intensity (ir-radiance) of corresponding pixels should be the same.In turn, constant brightness implies two seldom statedassumptions: (1) The scene is Lambertian, and (2) thelighting is static with respect to the scene { only theviewpoint is changing.In the presented illumination-based approach, wealso assume that the surface is Lambertian, althoughthis assumption is very explicit. As a dual to the sec-ond point listed above, our method requires that thecamera remains static with respect to the scene { onlythe lighting is changing. As a consequence, geomet-ric correspondence is trivially established, and so themethod can be applied to scenes where it is di�cultto establish multi-viewpoint correspondence, namelyscenes that are highly textured (i.e. where image fea-tures are not sparse) or scenes that completely lacktexture (i.e. where there are insu�cient image fea-tures).At the core of our approach for generating novelviewpoints is a variant of photometric stereo [27, 29,13, 12, 30] which simultaneously estimates geometryand albedo across the scene. However, the main limi-tation of classical photometric stereo is that the lightsource positions must be accurately known, and thisnecessitates a �xed lighting rig as might be possible inan industrial setting. Instead, the proposed methoddoes not require knowledge of light source locations,and so illumination could be varied by simply waivinga light around the scene.In fact, our method derives from work by Bel-humeur and Kriegman in [5] where they showed thata small set of images with unknown light source direc-tions can be used to generate a representation { theillumination cone { which models the complete set ofimages of an object (in �xed pose) under all variationin illumination. This method had as its pre-cursor thework of Shashua [25] who showed that in the absenceof shadows the set of images of an object lies in a3�D subspace in the image space. Generated imagesfrom the illumination cone representation accurately



depict shading and attached shadows under extremelighting; in [10] the cone representation was extendedto include cast shadows for objects with non-convexshapes. Cast shadows are global e�ects, as opposedto attached shadows, and their prediction requires thereconstruction of the object's surface.In generating the geometric structure, multi-viewpoint methods typically estimate depth directlyfrom corresponding image points [20, 21]. It is wellknown that without sub-pixel correspondence, stere-opsis provides a modest number of disparities overthe e�ective operating range, and so smoothness orregularization constraints are used to interpolate andprovide smooth surfaces. The presented illumination-based method estimates surface normals which arethen be integrated to generate a surface. As a result,very subtle changes in depth are recovered as demon-strated in the synthetic images in Figures 4 and 5.Those images also show the e�ectiveness of our ap-proach in generating realistic images of faces undernovel pose and illumination conditions.2 Illumination ModelingIn [5] Belhumeur and Kriegman have shown that, for aconvex object with a Lambertian re
ectance function,the set of all images under an arbitrary combinationof point light sources forms a convex polyhedral conein the image space IRn which can be constructed withas few as three images.Let x 2 IRn denote an image with n pixels of aconvex object with a Lambertian re
ectance functionilluminated by a single point source at in�nity. LetB 2 IRn�3 be a matrix where each row in B is theproduct of the albedo with the inward pointing unitnormal for a point on the surface projecting to a par-ticular pixel in the image. A point light source atin�nity can be represented by s 2 IR3 signifying theproduct of the light source intensity with a unit vectorin the direction of the light source. A convex Lam-bertian surface with normals and albedo given by B,illuminated by s, produces an image x given byx = max(Bs;0); (1)where max(Bs;0) sets to zero all negative componentsof the vector Bs. The pixels set to zero correspond tothe surface points lying in an attached shadow. Con-vexity of the object's shape is assumed at this pointto avoid cast shadows (shadows that the object castson itself). It should be noted that when no part ofthe surface is shadowed, x lies in the 3-D subspace Lgiven by the span of the matrix B.If an object is illuminated by k light sources at in-�nity, then the image is given by the superposition ofthe images which would have been produced by theindividual light sources, i.e.,x = kXi=1 max(Bsi;0) (2)

where si is a single light source. Due to the inherentsuperposition, it follows that the set of all possible im-ages C of a convex Lambertian surface created by vary-ing the direction and strength of an arbitrary numberof point light sources at in�nity is a convex cone. It isalso evident from Equation 2 that this convex cone iscompletely described by matrix B.This suggests a way to construct the illuminationmodel for an individual: gather three or more im-ages of the face without shadowing under varying butunknown illumination but under �xed pose and usethem to estimate the three-dimensional illuminationsubspace L. This can be done by normalizing theimages to be of unit length and then estimating thebest three-dimensional orthogonal basis B� using aleast-squares minimization technique such as singularvalue decomposition (SVD). Note that the basis B�di�ers from B by an unknown linear transformation,i.e., B = B�A where A 2 GL(3) [9, 12, 22]; for anylight source, x = Bs = (B�A)(A�1s). Nevertheless,both B� and B de�ne the same illumination cone andrepresent valid illumination models.Unfortunately, using SVD in the above procedureleads to an inaccurate estimate of B�. For even aconvex object whose Gaussian image covers the Gausssphere, there is only one light source direction (theviewing direction) for which no point on the surfaceis in shadow. For any other light source direction,shadows will be present. If the object is non-convex,such as a face, then shadowing in the modeling imagesis likely to be more pronounced. When SVD is used to�nd B� from images with shadows, these systematicerrors bias its estimate signi�cantly. Therefore, analternative way is needed to �nd B� that takes intoaccount the fact that some data values should not beused in the estimation.We have implemented a variation of [26] (see also[28, 15]) that �nds a basis B� for the 3-D linear sub-space L from image data with missing elements. Tobegin, de�ne the data matrix for c images of an indi-vidual to be X = [x1 : : :xc]. If there were no shad-owing, X would be rank 3 (assuming no image noise),and we could use SVD to factorize X into X = B�S�where S� is a 3�cmatrix the columns of which are thelight source directions scaled by the light intensities sifor all c images.Since the images have shadows (both cast or at-tached), the following method is used: without doingany row or column permutations sift out all the fullrows (with no invalid data) of matrix X to form a fullsub-matrix ~X . Perform SVD on ~X and get an ini-tial estimate of S�. Fix S� and estimate each of therows of B� independently using least squares. Then,�x B� and update each of the light source directionsi independently. Repeat these last two steps until es-timates converge. In our experiments, the algorithmis very well behaved, converging to the global mini-mum within 10-15 iterations. Though it is possible to2



a.
b.Figure 1: a) Six of the original single light source im-ages used to estimate B�. Note that the light sourcedirection in each image varies only slightly about theviewing direction. b) The basis images of B�.converge to a local minimum, we never observed thiseither in simulation or in practice.Figure 1 demonstrates the process for constructingthe illumination model. Figure 1.a shows six of theoriginal single light source images of a face used in theestimation of B�. Note that the light source directionin each image varies only slightly about the viewingaxis. Figure 1.b shows the basis images of the esti-mated matrix B�. These basis images encode not onlythe albedo (re
ectance) of the face but also its surfacenormal �eld. They can be used to construct imagesof the face under arbitrary and quite extreme illumi-nation conditions. But the image formation model inEquation. 1 does not account for cast shadows of non-convex objects such as faces. In order to determinewhich parts of the image are in cast shadows for agiven light source direction, we need to reconstructthe surface of the face (see next section) and then useray-tracing techniques.3 Surface ReconstructionIn this section we demonstrate how we can generatean object's surface from B� after enforcing the inte-grability constraint on the surface normal �eld. It hasbeen shown [4, 31] that from multiple images wherethe light source directions are unknown, one can onlyrecover a Lambertian surface up to a three-parameter

family given by the generalized bas-relief (GBR) trans-formation. This family scales the relief (
attens or ex-trudes) and introduces an additive plane. It has alsobeen shown that the family of GBR transformationsis the only one that preserves integrability.3.1 Enforcing IntegrabilityThe vector �eld B� estimated in Section 2 may not beintegrable, so prior to reconstructing the surface up toGBR, the integrability of B� must be enforced. Sinceno method has been developed to enforce integrabilityduring the estimation of B�, we enforce it afterwards.That is, given B� estimate a matrix A 2 GL(3) suchthat B�A corresponds to an integrable normal �eld;the development follows [31].Consider a continuous surface de�ned as the graphof z(x; y), and let b be the corresponding normal �eldscaled by an albedo �eld. The integrability constraintfor a surface is zxy = zyx where subscripts denotepartial derivatives. In turn, b must satisfy:�b1b3�y = �b2b3�xTo estimate A such that bT (x; y) = b�T (x; y)A, weexpand this out. Letting the columns of A be denotedby A1; A2; A3 yields(b�TA3)(b�Tx A2)� (b�TA2)(b�Tx A3) =(b�TA3)(b�Ty A1)� (b�TA1)(b�Ty A3)which can be expressed asb�TS1b�x = b�TS2b�y (3)where S1 = A3AT2 �A2AT3 and S2 = A3AT1 �A1AT3 .S1 and S2 are skew-symmetric matrices and havethree degrees of freedom. Equation 3 is linear in thesix elements of S1 and S2. From the estimate ofB� discrete approximations of the partial derivatives(b�x and b�y) are computed, and then SVD is used tosolve for the six elements of S1 and S2. In [31], itwas shown that the elements of S1 and S2 are co-factors of A, and a simple method for computing Afrom the cofactors was presented. This procedure onlydetermines six degrees of freedom of A. The otherthree correspond to the generalized bas relief (GBR)transformation [4] and can be chosen arbitrarily sinceGBR preserves integrability. The surface correspond-ing to B�A di�ers from the true surface by GBR, i.e.,z�(x; y) = �z(x; y)+�x+ �y for arbitrary �; �; � with� 6= 0.3.2 Generating a GBR surfaceAfter enforcing integrability, we can now reconstructthe corresponding surface ẑ(x; y). Note that ẑ(x; y) isnot a Euclidean reconstruction of the face, but a rep-resentative element of the orbit under a GBR trans-formation.3



To �nd ẑ(x; y), we use the variational approach pre-sented in [14]. A surface ẑ(x; y) is �t to the givencomponents of the gradient p and q by minimizing thefunctionalZ Z
 (ẑx � p)2 + (ẑy � q)2 dx dy:the Euler equation of which reduces to r2z = px+qy.By enforcing the right natural boundary conditionsand employing an iterative scheme that uses a discreteapproximation of the Laplacian, we can reconstructthe surface ẑ(x; y) [14].As stated before, we can only recover the surfaceof the object up to three parameter family given bythe GBR transformation. To use this surface for syn-thesizing images of the face from novel viewpoints, weneed to somehow resolve this ambiguity. Recall thata GBR transformation scales the relief (
attens or ex-trudes) and introduces an additive plane. Since weare dealing with human faces which constitute a wellknown class of objects, we can choose an appropriateset of GBR parameters that transforms the relief of aface into some canonical class shape. (In the case whenthe class of objects is not well de�ned, the problem ofresolving the GBR ambiguity becomes more subtle.)Note that this operation (which is also a GBR trans-formation) does not completely resolve the ambiguityof the relief. It nevertheless comes very close to thate�ect.Figure 2 shows the reconstructed surface of the face(of Figure 1) after resolving the GBR ambiguity. The�rst basis image of B� shown in Figure 1.b has beentexture-mapped on the surface. Even though we cannever hope to recover the exact Euclidean structureof the face (i.e. resolve the ambiguity completely), wecan still generate synthetic images of a face under vari-able pose where the shape distortions due to the GBRambiguity cannot be discerned. Moreover, since shad-ows are preserved under GBR transformations [4], im-ages synthesized under an arbitrary light source from asurface whose normal �eld has been GBR transformedwill have correct shadowing.4 Image SynthesisWe �rst demonstrate the ability of our method to gen-erate images of an object under novel illumination con-ditions but under �xed pose. Figure 3 shows samplesingle light source images of a face which have beencorrected to account for cast shadows. We employed aray-tracing technique that uses the reconstructed sur-face of the face to determine the cast shadow regionsin the images. Observe that despite the near absenceof shadows in the images of Figure 1.a, the sampleimages have strong attached and cast shadows.Figure 4 displays a set of synthesized images of thethe face viewed under variable pose but with �xedlighting. The images were created by rigidly rotating

Figure 2: The reconstructed surface.the reconstructed surface shown in Figure 2 �rst aboutthe horizontal and then about the vertical axis. Alongthe rows from left to right, the azimuth varies (in 10degree intervals) from 30 degrees to the right of theface to 10 degrees to the left. Down the columns, theelevation varies (again in 10 degree intervals) from 20degrees above the horizon to 30 degrees below. Forexample, in bottom image of the second column fromthe left the surface has an azimuth of 20 degrees to theright and an elevation of 30 degrees below the horizon.The single light source illuminating the surface is fol-lowing the face around as it changes pose. This impliesthat a patch on the surface has the same intensiry inall poses. It is interesting to see that the images lookquite realistic with maybe the exception of the threeright images in the bottom row which appear to be alittle 
attened. This is not due to any errors duringthe geometric or photometric modeling but probablydue to our visual priors; we are not used to looking ata face from above.In Figure 5 we combine both variations in viewingconditions to synthesize images of the face under novelpose and illumination conditions. We used the sameposes as in Figure 4 but now the light from the singlepoint source is �xed to come along the gaze directionof the face in the top-right image. Therefore, as theface moves around and its gaze direction changes withrespect to the light source direction, the shading of thesurface changes and both attached and cast shadowsare formed, as one would expect. The synthesizedimages seem to agree with our visual intuition.4



Figure 3: Sample images of the face under novel illu-mination conditions but �xed pose.5 DiscussionAppearance variation of an object caused by smallchanges in illumination under �xed pose can provideenough information for estimating (under the assump-tion of Lambertian re
ectance function) the object'ssurface normal �eld scaled by its albedo. In the pre-sented method, as few as three images with no knowl-edge about the light source directions can be used inthe estimation. The estimated surface normal �eldcan then be integrated to reconstruct the object's sur-face. Unlike multi-view based image synthesis, our ap-proach does not require the determination of point orline correspondences to do the reconstruction. Giventhat we are dealing with a well known class of ob-jects, we can acceptably resolve the GBR ambiguity ofthe reconstructed surface. Then, the surface togetherwith the surface normal �eld scaled by the albedo aresu�cient for synthesizing images of the object undernovel pose and lighting. We have demonstrated thee�ectiveness of this approach by generating syntheticimages of human faces.
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Figure 4: Synthesized images under variable pose but with �xed lighting; the single light source is following theface. 7



Figure 5: Synthesized images under both variable pose and lighting. As the face moves around the single lightsource stays �xed resulting to image variability due to changes in pose and illumination conditions.8


