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Abstract

We present an illumination-based method for synthe-
sizing images of an object under novel viewing condi-
tions. Qur method requires as few as three images of
the object taken under variable illumination, but from
a fized viewpoint. Unlike multi-view based image syn-
thesis, our method does not require the determination
of point or line correspondences. Furthermore, our
method is able to synthesize not simply novel view-
points, but novel illuminations conditions as well. We
demonstrate the effectiveness of our approach by gen-
erating synthetic images of human faces.

1 Introduction

We present an illumination-based method for synthe-
sizing images of an object under both novel pose and
illumination conditions. This method uses as few as
three images of the object taken under variable light-
ing but fixed pose to estimate the object’s albedo and
generate its geometric structure. Our approach does
not require any knowledge about the light source di-
rections in the modeling images, or the establishment
of point or line correspondences.

In contrast, nearly all approaches to view synthesis
or image-based rendering take a set of images gathered
from multiple viewpoints and apply techniques akin to
structure from motion [16, 28, 6], stereopsis [20, 21],
image tranfer [3], image warping [17, 19, 24], or image
morphing (7, 23]. Each of these methods requires the
establishment of correspondence between image data
(e.g. pixels) across the set. (Unlike other methods, the
Lumigraph [11, 18] exhaustively samples the ray space
and renders images of an object from novel viewpoints
by taking 2 — D slices of the 4 — D light field at the
appropriate directions.) Since dense correspondence is
difficult to obtain, most methods extract sparse image
features (e.g. corners, lines), and may use multi-view
geometric constraints (e.g. the trifocal tensor [2, 1])
or scene-dependent geometric constraints [21, 8] to re-
duce the search process and constrain the estimates.
By using a sequence of images taken at nearby view-
points, incremental tracking can further simplify the
process, particularly when features are sparse.
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For these approaches to be effective, there must
be sufficient texture or viewpoint-independent scene
features (e.g. albedo discontinuities or surface nor-
mal discontinuities). From sparse correspondence, the
epipolar geometry can be established and stereo tech-
niques can be used to provide dense reconstruction.
Underlying nearly all such stereo algorithms is a con-
stant brightness assumption — that is, the intensity (ir-
radiance) of corresponding pixels should be the same.
In turn, constant brightness implies two seldom stated
assumptions: (1) The scene is Lambertian, and (2) the
lighting is static with respect to the scene — only the
viewpoint is changing.

In the presented illumination-based approach, we
also assume that the surface is Lambertian, although
this assumption is very explicit. As a dual to the sec-
ond point listed above, our method requires that the
camera remains static with respect to the scene — only
the lighting is changing. As a consequence, geomet-
ric correspondence is trivially established, and so the
method can be applied to scenes where it is difficult
to establish multi-viewpoint correspondence, namely
scenes that are highly textured (i.e. where image fea-
tures are not sparse) or scenes that completely lack
texture (i.e. where there are insufficient image fea-
tures).

At the core of our approach for generating novel
viewpoints is a variant of photometric stereo [27, 29,
13, 12, 30] which simultaneously estimates geometry
and albedo across the scene. However, the main limi-
tation of classical photometric stereo is that the light
source positions must be accurately known, and this
necessitates a fixed lighting rig as might be possible in
an industrial setting. Instead, the proposed method
does not require knowledge of light source locations,
and so illumination could be varied by simply waiving
a light around the scene.

In fact, our method derives from work by Bel-
humeur and Kriegman in [5] where they showed that
a small set of images with unknown light source direc-
tions can be used to generate a representation — the
illumination cone — which models the complete set of
images of an object (in fixed pose) under all variation
in illumination. This method had as its pre-cursor the
work of Shashua [25] who showed that in the absence
of shadows the set of images of an object lies in a
3 — D subspace in the image space. Generated images
from the illumination cone representation accurately



depict shading and attached shadows under extreme
lighting; in [10] the cone representation was extended
to include cast shadows for objects with non-convex
shapes. Cast shadows are global effects, as opposed
to attached shadows, and their prediction requires the
reconstruction of the object’s surface.

In generating the geometric structure, multi-
viewpoint methods typically estimate depth directly
from corresponding image points [20, 21]. It is well
known that without sub-pixel correspondence, stere-
opsis provides a modest number of disparities over
the effective operating range, and so smoothness or
regularization constraints are used to interpolate and
provide smooth surfaces. The presented illumination-
based method estimates surface normals which are
then be integrated to generate a surface. As a result,
very subtle changes in depth are recovered as demon-
strated in the synthetic images in Figures 4 and 5.
Those images also show the effectiveness of our ap-
proach in generating realistic images of faces under
novel pose and illumination conditions.

2 Illumination Modeling

In [5] Belhumeur and Kriegman have shown that, for a
convex object with a Lambertian reflectance function,
the set of all images under an arbitrary combination
of point light sources forms a convex polyhedral cone
in the image space IR™ which can be constructed with
as few as three images.

Let x € IR" denote an image with n pixels of a
convex object with a Lambertian reflectance function
illuminated by a single point source at infinity. Let
B € R™® be a matrix where each row in B is the
product of the albedo with the inward pointing unit
normal for a point on the surface projecting to a par-
ticular pixel in the image. A point light source at
infinity can be represented by s € IR® signifying the
product of the light source intensity with a unit vector
in the direction of the light source. A convex Lam-
bertian surface with normals and albedo given by B,
illuminated by s, produces an image x given by

x = max(Bs, 0), (1)

where max(Bs, 0) sets to zero all negative components
of the vector Bs. The pixels set to zero correspond to
the surface points lying in an attached shadow. Con-
vexity of the object’s shape is assumed at this point
to avoid cast shadows (shadows that the object casts
on itself). It should be noted that when no part of
the surface is shadowed, x lies in the 3-D subspace £
given by the span of the matrix B.

If an object is illuminated by & light sources at in-
finity, then the image is given by the superposition of
the images which would have been produced by the
individual light sources, i.e.,

k

X = Z max(Bs;, 0) (2)

i=1

where s; is a single light source. Due to the inherent
superposition, it follows that the set of all possible im-
ages C of a convex Lambertian surface created by vary-
ing the direction and strength of an arbitrary number
of point light sources at infinity is a convex cone. It is
also evident from Equation 2 that this convex cone is
completely described by matrix B.

This suggests a way to construct the illumination
model for an individual: gather three or more im-
ages of the face without shadowing under varying but
unknown illumination but under fixed pose and use
them to estimate the three-dimensional illumination
subspace £. This can be done by normalizing the
images to be of unit length and then estimating the
best three-dimensional orthogonal basis B* using a
least-squares minimization technique such as singular
value decomposition (SVD). Note that the basis B*
differs from B by an unknown linear transformation,
i.e., B = B*A where A € GL(3) 9, 12, 22]; for any
light source, x = Bs = (B*A)(A 's). Nevertheless,
both B* and B define the same illumination cone and
represent valid illumination models.

Unfortunately, using SVD in the above procedure
leads to an inaccurate estimate of B*. For even a
convex object whose Gaussian image covers the Gauss
sphere, there is only one light source direction (the
viewing direction) for which no point on the surface
is in shadow. For any other light source direction,
shadows will be present. If the object is non-convex,
such as a face, then shadowing in the modeling images
is likely to be more pronounced. When SVD is used to
find B* from images with shadows, these systematic
errors bias its estimate significantly. Therefore, an
alternative way is needed to find B* that takes into
account the fact that some data values should not be
used in the estimation.

We have implemented a variation of [26] (see also
[28, 15]) that finds a basis B* for the 3-D linear sub-
space L from image data with missing elements. To
begin, define the data matrix for ¢ images of an indi-
vidual to be X = [x3...x.]. If there were no shad-
owing, X would be rank 3 (assuming no image noise),
and we could use SVD to factorize X into X = B*S*
where S* is a 3 X ¢ matrix the columns of which are the
light source directions scaled by the light intensities s;
for all ¢ images.

Since the images have shadows (both cast or at-
tached), the following method is used: without doing
any row or column permutations sift out all the full
rows (with no invalid data) of matrix X to form a full
sub-matrix X. Perform SVD on X and get an ini-
tial estimate of S*. Fix S* and estimate each of the
rows of B* independently using least squares. Then,
fix B* and update each of the light source direction
s; independently. Repeat these last two steps until es-
timates converge. In our experiments, the algorithm
is very well behaved, converging to the global mini-
mum within 10-15 iterations. Though it is possible to



Figure 1: a) Six of the original single light source im-
ages used to estimate B*. Note that the light source
direction in each image varies only slightly about the
viewing direction. b) The basis images of B*.

converge to a local minimum, we never observed this
either in simulation or in practice.

Figure 1 demonstrates the process for constructing
the illumination model. Figure 1.a shows six of the
original single light source images of a face used in the
estimation of B*. Note that the light source direction
in each image varies only slightly about the viewing
axis. Figure 1.b shows the basis images of the esti-
mated matrix B*. These basis images encode not only
the albedo (reflectance) of the face but also its surface
normal field. They can be used to construct images
of the face under arbitrary and quite extreme illumi-
nation conditions. But the image formation model in
Equation. 1 does not account for cast shadows of non-
convex objects such as faces. In order to determine
which parts of the image are in cast shadows for a
given light source direction, we need to reconstruct
the surface of the face (see next section) and then use
ray-tracing techniques.

3 Surface Reconstruction

In this section we demonstrate how we can generate
an object’s surface from B* after enforcing the inte-
grability constraint on the surface normal field. It has
been shown [4, 31] that from multiple images where
the light source directions are unknown, one can only
recover a Lambertian surface up to a three-parameter

family given by the generalized bas-relief (GBR) trans-
formation. This family scales the relief (flattens or ex-
trudes) and introduces an additive plane. It has also
been shown that the family of GBR transformations
is the only one that preserves integrability.

3.1 Enforcing Integrability

The vector field B* estimated in Section 2 may not be
integrable, so prior to reconstructing the surface up to
GBR, the integrability of B* must be enforced. Since
no method has been developed to enforce integrability
during the estimation of B*, we enforce it afterwards.
That is, given B* estimate a matrix A € GL(3) such
that B*A corresponds to an integrable normal field;
the development follows [31].

Consider a continuous surface defined as the graph
of z(xz,y), and let b be the corresponding normal field
scaled by an albedo field. The integrability constraint
for a surface is z;y = 2y, where subscripts denote
partial derivatives. In turn, b must satisfy:

(&),~ (&)
bs),  \bs),
To estimate A such that b (z,y) = b*' (z,y)A, we

expand this out. Letting the columns of A be denoted
by Al, Az, A3 yields

(b*;A3)(b§;A2) - (b*;Az)(biifh) =
(b* A3)(by A1) — (b* Ap)(b; As)
which can be expressed as
%1 * 17 *
b Slbw - b SZby (3)

where Sl = 14314%1 — 14214g1 and SQ = 14314¥1 — AlAg

S1 and So are skew-symmetric matrices and have
three degrees of freedom. Equation 3 is linear in the
six elements of S; and S;. From the estimate of
B* discrete approximations of the partial derivatives
(b} and by) are computed, and then SVD is used to
solve for the six elements of S; and Sy. In [31], it
was shown that the elements of S; and S, are co-
factors of A, and a simple method for computing A
from the cofactors was presented. This procedure only
determines six degrees of freedom of A. The other
three correspond to the generalized bas relief (GBR)
transformation [4] and can be chosen arbitrarily since
GBR preserves integrability. The surface correspond-
ing to B* A differs from the true surface by GBR, i.e.,
z*(x,y) = Az(z,y) + px + vy for arbitrary A, u, v with
A# 0.

3.2 Generating a GBR surface

After enforcing integrability, we can now reconstruct
the corresponding surface Z(z,y). Note that 2(z,y) is
not a Euclidean reconstruction of the face, but a rep-
resentative element of the orbit under a GBR trans-
formation.



To find Z(z,y), we use the variational approach pre-
sented in [14]. A surface Z(z,y) is fit to the given
components of the gradient p and ¢ by minimizing the
functional

[ | =+~ ded.

the Euler equation of which reduces to V2z = p, +¢,.
By enforcing the right natural boundary conditions
and employing an iterative scheme that uses a discrete
approximation of the Laplacian, we can reconstruct
the surface Z(z,y) [14].

As stated before, we can only recover the surface
of the object up to three parameter family given by
the GBR transformation. To use this surface for syn-
thesizing images of the face from novel viewpoints, we
need to somehow resolve this ambiguity. Recall that
a GBR transformation scales the relief (flattens or ex-
trudes) and introduces an additive plane. Since we
are dealing with human faces which constitute a well
known class of objects, we can choose an appropriate
set of GBR parameters that transforms the relief of a
face into some canonical class shape. (In the case when
the class of objects is not well defined, the problem of
resolving the GBR ambiguity becomes more subtle.)
Note that this operation (which is also a GBR trans-
formation) does not completely resolve the ambiguity
of the relief. It nevertheless comes very close to that
effect.

Figure 2 shows the reconstructed surface of the face
(of Figure 1) after resolving the GBR ambiguity. The
first basis image of B* shown in Figure 1.b has been
texture-mapped on the surface. Even though we can
never hope to recover the exact Euclidean structure
of the face (i.e. resolve the ambiguity completely), we
can still generate synthetic images of a face under vari-
able pose where the shape distortions due to the GBR
ambiguity cannot be discerned. Moreover, since shad-
ows are preserved under GBR transformations [4], im-
ages synthesized under an arbitrary light source from a
surface whose normal field has been GBR transformed
will have correct shadowing.

4 Image Synthesis
We first demonstrate the ability of our method to gen-
erate images of an object under novel illumination con-
ditions but under fixed pose. Figure 3 shows sample
single light source images of a face which have been
corrected to account for cast shadows. We employed a
ray-tracing technique that uses the reconstructed sur-
face of the face to determine the cast shadow regions
in the images. Observe that despite the near absence
of shadows in the images of Figure 1l.a, the sample
images have strong attached and cast shadows.
Figure 4 displays a set of synthesized images of the
the face viewed under variable pose but with fixed
lighting. The images were created by rigidly rotating

Figure 2: The reconstructed surface.

the reconstructed surface shown in Figure 2 first about
the horizontal and then about the vertical axis. Along
the rows from left to right, the azimuth varies (in 10
degree intervals) from 30 degrees to the right of the
face to 10 degrees to the left. Down the columns, the
elevation varies (again in 10 degree intervals) from 20
degrees above the horizon to 30 degrees below. For
example, in bottom image of the second column from
the left the surface has an azimuth of 20 degrees to the
right and an elevation of 30 degrees below the horizon.
The single light source illuminating the surface is fol-
lowing the face around as it changes pose. This implies
that a patch on the surface has the same intensiry in
all poses. It is interesting to see that the images look
quite realistic with maybe the exception of the three
right images in the bottom row which appear to be a
little flattened. This is not due to any errors during
the geometric or photometric modeling but probably
due to our visual priors; we are not used to looking at
a face from above.

In Figure 5 we combine both variations in viewing
conditions to synthesize images of the face under novel
pose and illumination conditions. We used the same
poses as in Figure 4 but now the light from the single
point source is fixed to come along the gaze direction
of the face in the top-right image. Therefore, as the
face moves around and its gaze direction changes with
respect to the light source direction, the shading of the
surface changes and both attached and cast shadows
are formed, as one would expect. The synthesized
images seem to agree with our visual intuition.



Figure 3: Sample images of the face under novel illu-
mination conditions but fixed pose.

5 Discussion

Appearance variation of an object caused by small
changes in illumination under fixed pose can provide
enough information for estimating (under the assump-
tion of Lambertian reflectance function) the object’s
surface normal field scaled by its albedo. In the pre-
sented method, as few as three images with no knowl-
edge about the light source directions can be used in
the estimation. The estimated surface normal field
can then be integrated to reconstruct the object’s sur-
face. Unlike multi-view based image synthesis, our ap-
proach does not require the determination of point or
line correspondences to do the reconstruction. Given
that we are dealing with a well known class of ob-
jects, we can acceptably resolve the GBR ambiguity of
the reconstructed surface. Then, the surface together
with the surface normal field scaled by the albedo are
sufficient for synthesizing images of the object under
novel pose and lighting. We have demonstrated the
effectiveness of this approach by generating synthetic
images of human faces.
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Figure 4: Synthesized images under variable pose but with fixed lighting; the single light source is following the
face.



Figure 5: Synthesized images under both variable pose and lighting. As the face moves around the single light
source stays fixed resulting to image variability due to changes in pose and illumination conditions.



